Automatically Generating Malicious

!'- Disks using Symbolic Execution

Junfeng Yang, Can Sar, Paul Twohey,
Cristian Cadar and Dawson Engler

Stanford University

Trend: mount untrusted disks

0 are D bution: D) g So are e Pa PA 0 eped mo 0 0 3 efo !Em

File Edit View Go Bookmarks Tools Help Fle Edit View Go Bookmarks Tools Help
N &) & A (%] R —
&E-- (%] @ | & http:f/developer.appled <& - £ - & ()) [httpiffwn.net/articles/ 134446/ ¥ O |G, |
VA
. : Home Weekly edition Kermel Security Distributions
@ Developer Connection LWN. Arch Searchh I Culend TN st FA
net chives earc etters endar net FAQ .
Subscriptions Advertise TWrite for LW Contact us Privacy
6} Log In | Not a Member?
ADC Home > Reference Lt Your Lingx nfo saurce Patch: [PATCH] unprivileged mount/umount
= show TOC
- - ; . .
Spunabred Lan From: Miklos Szeredi <miklos@szeredihu
- . o e e To: linuz-fsdevel@wger kemel org, linug-kemel@vger kemel org
Distributing Subject: [RCF] [PATCH] unprivileged mountfumount
SComnecs Foedivet | Date: Tue, 03 May 2005 16:31:35 +0200
— — - processing - the Open
i3k IMages nave necome Source way! Ce: ericvh@gmail com, smfrench@austin rr.com, hch@infradead. or,
Copy application (located in ¥ . - y : : 2 @ B % g
when installing from disk imal Arcluve-lnk: Article, Thread
R You are “oth’ggedm This (lightly tested) patch against 2.6.12-rc* adds sone
Note: Starting in Mac 0S X v Topi ; : ? ’ R
P : S Og 1 Nnow infrastructure and basic functionality for unprivileged mount/uwmount
shpplications/Util
Create an account systen calls.
Subscribe to LW
Details:
In this section: .
Improving the Us Weekly Edition - new wnt_owner field in struct vismount
Creating An Inter Return to the Kernel - if mnt_owner is NULL, it's a privileged mount
Adding a Licensd page - global limit on unprivileged mounts in /proc/sys/fs/mount-max
How Disk Copy - per user limit of mounts in rlimit
Caveats for Inter - allow uwount for the owner (except force flag)
Recent Features - allow unprivileged bind mount to files/directories writable by owner
- add nosuid,nodev flags to unprivileged mounts
LN net Weekly Edition
forMayﬂ 2006 Next step would be to add some policy for new mounts. I'm thinking of
5 o either something static: e.g. F3_SAFE flag for "safe” filesystems, or
g The Grumpy Editor's a more configurable approach through sysfs or something.
|mprOV|ng the guide to audio stream) v
< ! >
Done Done

By ez w GO R, O

File systems vulnerable to malicious disks

= Privileged, run in kernel

= Not designed to handle malicious disks.
FS folks not paranoid (v.s. networking)

= Complex structures (40 if statements in
ext2 mount) = many corner cases.
Hard to sanitize, test

= Result: easy exploits

Generated disk of death
(JFS, Linux 2.4.19, 2.4.27, 2.6.10)

Offset Hexr Values

00000 | 0000 0000 0000 0000 0000 0000 0000 0000
08000 | 464a 3153 0000 0000 0000 0000 0000 0000
08010 | 1000 0000 0000 0000 0000 0000 0000 0000
08020 | 0000 0000 0100 0000 0000 0000 0000 0000
08030 | €004 000f 0000 0000 0002 0000 0000 0000
08040 | 0000 0000 0000 0000 0000 0000 0000 0000
10000

Create 64K file, set 64th sector to above. Mount.

And PANIC your kernel!

Goal: automatically find many file
system security holes

FS security holes are hard to test

= Manual audit/test: labor, miss errors®

= Random test: automatic©. can't go far®

= Unlikely to hit narrow input range.
= Blind to structures

int fake_mount(char* disk) {
struct super_block *sb = disk:
if(sb- >magic |= OXEF53) //hard to pass using random
return -1;

// sb->foo is unsigned, therefore >= 0
if(sb->foo > 8192)

return -1;
x = y/sb->foo; //potential division-by-zero
return O;

i Soln: let FS generate its own disks

= EXE: Execution generated Executions [Cadar
and Engler, SPIN'05] [Cadar et al Stanford TR2006-1]

= Run code on symbolic input, initial value = “anything”
= As code observes input, it tells us values input can be

= At conditional branch that uses symbolic input, explore
both

= On true branch, add constraint input satisfies check
= On false that it does not
= exit() or error: solve constraints for input.

= To find FS security holes, set disk symbolic

A galactic view

j‘> Test Driver

oonin | TestCases

symbolic
Disk Blocks

j‘> L — |"/ buf] i]\l Constraint
I'I_'_I.l Symbolic >’ e Solver

 DEk

Constraints
Runtime

I W

Test Case Generation

EXE-cc instrumented

[:‘____::: Concrete Disks

(L
. " oo oo |
0 — : —
o00t0 | T e
00111 T
User-Mode- 00111 J
Linux T
v i‘> T 5 >
Path Selection
o) || Mexs | Symbolic
* | Execution

ext3

Unmodified Linux

Test Case Checking

i Outline

=) = How EXE works
= Apply EXE to Linux file systems
= Results

The toy example

int fake_mount(char* disk) {
struct super_block *sb = disk:
if(sb- >magic |= OxEF53) //hard to pass using random
return -1;

// sb->foo is unsigned, therefore >= 0
if(sb->foo > 8192)

return -1;
x = y/sb->foo; //potential division-by-zero
return O;

i Concrete v.s. symbolic execution

Concrete: sb->magic = OXxEF53, sb->foo = 9000

b->magic |= OXEF53= return -1]
sb->foo > 8192 return -1]
x=y/sb->foo
!

[return O]

i Concrete v.s. symbolic execution

Symbolic: sb->magic and sb->foo unconstrained

b->magic 1= OXEF53= return -1 l
sb->magic 1= OXEF53
sb->foo > 8192 return -1]

sb->magic == OxEF53
x=y/sb->foo

sb->foo > 8192

! sb->magic == OXEF53
[return O] sb->foo < 8192
X == y/sb->foo

The toy example: instrumentation

int fake_mount(char* disk) { int fake_mount_exe(char* disk) {

struct super_block *sb = disk; struct super_block *sb = disk;
if(fork() == child) {

constraint(sb- >magic |= OXEF53):;
if(sb- >magic |= OxEF53) return -1;

return -1; } else
constraint(sb- >magic == OxEF53);

if(fork() == child) {

if(sb->foo > 8192) constraint(sb->foo > 8192);
return -1; return -1;
} else

constraint(sb->foo <= 8192);

check_symbolic_div_by_zero(sb- >foo);
x = y/sb->foo: x=y/sb->foo;
return O; return O;

:L How to use EXE

= Mark disk blocks as symbolic
= void make_symbolic(void* disk_block, unsigned size)

= Compile with EXE-cc (based on CIL)

= Insert checks around every expression: if operands
all concrete, run as normal. Otherwise, add as
constraint

= Insert fork when symbolic could cause multiple acts

= Run: forks at each decision point.

= When path terminates, solve constraints and
generate disk images

= Terminates when: (1) exit, (2) crash, (3) error
= Rerun concrete through uninstrumented Linux

i Why generate disks and rerun?

= Ease of diagnosis. No false positive
= One disk, check many versions

= Increases path coverage, helps
correctness testing

Mixed execution

= Too many symbolic var, too many constraints
=» constraint solver dies

= Mixed execution: don't run everything
symbolically

= Example: x = y+z;
= if y, z both concrete, run as in uninstrumented
= Otherwise set "x ==y + 7", record x = symbolic.

= Small set of symbolic values
= disk blocks (make_symbolic) and derived

= Result: most code runs concretely, small slice
deals w/ symbolics, small # of constraints

= Perhaps why worked on Linux mounts, sym on
demand

‘-| Symbolic checks

int fake_mount(char* disk) { int fake_mount_exe(char* disk) {

struct super_block *sb = disk;

if(sb- >magic |= OxEF53)
return -1;

if(sb->foo > 8192)
return -1;

x = y/sb->foo;
return O;

struct super_block *sb = disk;
if(fork() == child) {
constraint(sb- >magic |= OXEF53):;
return -1;
} else
constraint(sb- >magic == OxEF53);

if(fork() == child) {
constraint(sb->foo > 8192);
return -1;

} else
constraint(sb- >foo <= 8192);

check_symbolic_div_by_zero(sb- >foo);
x=y/sb->foo:
return O;

i Symbolic checks

= Key: Symbolic reasons about many
possible values simultaneously. Concrete
about just current ones (e.g. Purify).

= Symbolic checks:

= When reach dangerous op, EXE checks if any
input exists that could cause blow up.

= Builtin: x/0, x%0, NULL deref, mem overflow,
arithmetic overflow, symbolic assertion

i Check symbolic div-by-0: x/y, y symbolic

= Found 2 bugs in ext2, copied to ext3

void check_sym_div_by_zero (y) {
if(query(y==0) == satisfiable)
if(fork() == child) {
constraint(y != 0);
return;
} else {
constraint(y == 0);
solve_and_generate_disk():
error("divided by O!")

More on EXE (Stanford TR2006-1)

= Handling C constructs
= Casts: untyped memory
= Bitfield
= Symbolic pointer, array index: disjunctions
= Limitations
= Constraint solving NP
= Uninstrumented functions
= Symbolic div/mod: assert divisor = power of two
= Symbolic double dereference: concretize
= Symbolic loop: heuristic search

i Outline

= How EXE works
=) = Apply EXE to Linux file systems
= Results

A galactic view

Test Driver

A

User-Mode-
Linux

\/
D ext3 B

*
3 S

LS

symbolic —
Disk Blocks

Test Case Generation

EXE-cc instrumented

i Why User-Mode-Linux + disk driver

= Hard to cut Linux FS out of kernel.
User-Mode-Linux=check in situ

= End-to-end check

= EXE needs to fork/wait for process
= Hard to debug OS on raw machine
= We already had the framework

Making Linux work with EXE

= Disable threading

= Replace ASM functions called by FS
(strcmp, memcpy...) with C versions

= User-Mode-Linux loaded @ fixed (too
small) location. Stripped down

s EXE-cc/CIL can't compile 8 files. Not
called with symbolic args. Use gcc

i Making EXE work with Linux

= Still research prototype =» bugs

= EXE dies if too many constraints, too
many symbolic var

= Optimization: v = symbolic_exp, if
symbolic_exp has unique value, don't
make v symbolic. Slow down "“tainting”

= No free of symbolic heap objects

i Outline

= How EXE works
= Apply EXE to Linux file systems
==) = Results

Results

s Checked ext2, ext3, and JFS mounts

= Ext2: four bugs.

= One buffer overflow = read and write
arbitrary kernel memory (next slide)

=« Two div/mod by 0
= One kernel crash

= Ext3: four bugs (copied from ext2)
= JFS: one NULL pointer dereference
= Extremely easy-to-diagnose: just mount!

* Simplified: ext2 r/w kernel memory

int ext2 overflow(int block, unsigned count

block is symbolic ===>

block + count can overflo
and becomes negative!

while(count--)

Pass block to bar ========p=bar(block++);

}
void bar(int block) {

// B = power of 2
block_group is symbolic ===>int block_group = (block-A)/B;

block can be large! //array length is 8
Symbolic read off bound === = array[block_group]

Symbolic write off bound e==p»array[block_group] = ..
-

Related Work

FS testing

= Mostly stress test for functionality bugs

= Linux ISO9660 FS handling flaw, Mar 2005
(http://lwn.net/Articles/128365/)

Static analysis

Model checking
= Symbolic model checking

Input generation
= Using symbolic execution to generate testcases

:L Conclusion

= FS vulnerable to malicious disks

= Applied EXE to Linux file systems ext2,
ext3, JFS mounts. Worked well. Found
5 unique security holes

= EXE offers a promising approach to
finding security holes

i Future work

= Automatic exploit generation
= User interacts with kernel through syscalls

=« Compile Linux with EXE. Mark data(syscall
arg) from user as symbolic

= Find paths to bugs

= Generate concrete input + C code to call
kernel.

= Mechanized way to produce exploits.

Future work (Cont.)

= Automatic “hardening”
= EXE finds error with path constraints.

= Can translate constraints to if-statements
and reject concrete input that satisfies.

= E.g. wrap up disk reads. If disk malicious,
return “Cannot mount.”

= Similar to Shield, vulnerability signature
checking

= Nice feature: fully automatic, no manual filter,
automatically detect exploit

