
Automatically Generating Malicious
Disks using Symbolic Execution

Junfeng Yang, Can Sar, Paul Twohey,
Cristian Cadar and Dawson Engler

Stanford University

Trend: mount untrusted disks

 Removable device (USB stick, CD, DVD)

 Let untrusted user mount files as disk
images

File systems vulnerable to malicious disks

 Privileged, run in kernel

 Not designed to handle malicious disks.
FS folks not paranoid (v.s. networking)

 Complex structures (40 if statements in
ext2 mount) many corner cases.
Hard to sanitize, test

 Result: easy exploits

Generated disk of death
(JFS, Linux 2.4.19, 2.4.27, 2.6.10)

Create 64K file, set 64th sector to above. Mount.

And PANIC your kernel!

Goal: automatically find many file
system security holes

FS security holes are hard to test

 Manual audit/test: labor, miss errors

 Random test: automatic. can’t go far
 Unlikely to hit narrow input range.

 Blind to structures

int fake_mount(char* disk) {
 struct super_block *sb = disk;
 if(sb->magic != 0xEF53) //hard to pass using random
 return -1;
 // sb->foo is unsigned, therefore >= 0
 if(sb->foo > 8192)
 return -1;
 x = y/sb->foo; //potential division-by-zero
 return 0;
}

Soln: let FS generate its own disks

 EXE: Execution generated Executions [Cadar

and Engler, SPIN’05] [Cadar et al Stanford TR2006-1]

 Run code on symbolic input, initial value = “anything”

 As code observes input, it tells us values input can be

 At conditional branch that uses symbolic input, explore
both

 On true branch, add constraint input satisfies check

 On false that it does not

 exit() or error: solve constraints for input.

 To find FS security holes, set disk symbolic

A galactic view

EXE-cc instrumented

1

2

3

4 5

Unmodified Linux

ext3

User-Mode-

Linux

Outline

 How EXE works

 Apply EXE to Linux file systems

 Results

The toy example

int fake_mount(char* disk) {
 struct super_block *sb = disk;
 if(sb->magic != 0xEF53) //hard to pass using random
 return -1;
 // sb->foo is unsigned, therefore >= 0
 if(sb->foo > 8192)
 return -1;
 x = y/sb->foo; //potential division-by-zero
 return 0;
}

Concrete v.s. symbolic execution

sb->magic != 0xEF53 return -1

Concrete: sb->magic = 0xEF53, sb->foo = 9000

sb->foo > 8192 return -1

x=y/sb->foo

return 0

Concrete v.s. symbolic execution

sb->magic != 0xEF53 return -1

Symbolic: sb->magic and sb->foo unconstrained

sb->foo > 8192 return -1

x=y/sb->foo

return 0

sb->magic != 0xEF53

sb->magic == 0xEF53
sb->foo > 8192

sb->magic == 0xEF53
sb->foo < 8192
x == y/sb->foo

The toy example: instrumentation

int fake_mount(char* disk) {
 struct super_block *sb = disk;

 if(sb->magic != 0xEF53)
 return -1;

 if(sb->foo > 8192)
 return -1;

 x = y/sb->foo;
 return 0;
}

int fake_mount_exe(char* disk) {
 struct super_block *sb = disk;
 if(fork() == child) {
 constraint(sb->magic != 0xEF53);
 return -1;
 } else
 constraint(sb->magic == 0xEF53);

 if(fork() == child) {
 constraint(sb->foo > 8192);
 return -1;
 } else
 constraint(sb->foo <= 8192);

 check_symbolic_div_by_zero(sb->foo);
 x=y/sb->foo;
 return 0;
}

How to use EXE

 Mark disk blocks as symbolic
 void make_symbolic(void* disk_block, unsigned size)

 Compile with EXE-cc (based on CIL)
 Insert checks around every expression: if operands

all concrete, run as normal. Otherwise, add as
constraint

 Insert fork when symbolic could cause multiple acts

 Run: forks at each decision point.
 When path terminates, solve constraints and

generate disk images

 Terminates when: (1) exit, (2) crash, (3) error

 Rerun concrete through uninstrumented Linux

Why generate disks and rerun?

 Ease of diagnosis. No false positive

 One disk, check many versions

 Increases path coverage, helps
correctness testing

Mixed execution

 Too many symbolic var, too many constraints
 constraint solver dies

 Mixed execution: don’t run everything
symbolically
 Example: x = y+z;
 if y, z both concrete, run as in uninstrumented
 Otherwise set “x == y + z”, record x = symbolic.

 Small set of symbolic values
 disk blocks (make_symbolic) and derived

 Result: most code runs concretely, small slice
deals w/ symbolics, small # of constraints
 Perhaps why worked on Linux mounts, sym on

demand

Symbolic checks

int fake_mount(char* disk) {
 struct super_block *sb = disk;

 if(sb->magic != 0xEF53)
 return -1;

 if(sb->foo > 8192)
 return -1;

 x = y/sb->foo;
 return 0;
}

int fake_mount_exe(char* disk) {
 struct super_block *sb = disk;
 if(fork() == child) {
 constraint(sb->magic != 0xEF53);
 return -1;
 } else
 constraint(sb->magic == 0xEF53);

 if(fork() == child) {
 constraint(sb->foo > 8192);
 return -1;
 } else
 constraint(sb->foo <= 8192);

 x=y/sb->foo;
 return 0;
}

check_symbolic_div_by_zero(sb->foo);

Symbolic checks

 Key: Symbolic reasons about many
possible values simultaneously. Concrete
about just current ones (e.g. Purify).

 Symbolic checks:

 When reach dangerous op, EXE checks if any
input exists that could cause blow up.

 Builtin: x/0, x%0, NULL deref, mem overflow,
arithmetic overflow, symbolic assertion

Check symbolic div-by-0: x/y, y symbolic

 Found 2 bugs in ext2, copied to ext3

void check_sym_div_by_zero (y) {
 if(query(y==0) == satisfiable)
 if(fork() == child) {
 constraint(y != 0);
 return;
 } else {
 constraint(y == 0);
 solve_and_generate_disk();
 error(“divided by 0!”)
 }
}

More on EXE (Stanford TR2006-1)

 Handling C constructs

 Casts: untyped memory

 Bitfield

 Symbolic pointer, array index: disjunctions

 Limitations

 Constraint solving NP

 Uninstrumented functions

 Symbolic div/mod: assert divisor = power of two

 Symbolic double dereference: concretize

 Symbolic loop: heuristic search

Outline

 How EXE works

 Apply EXE to Linux file systems

 Results

A galactic view

EXE-cc instrumented

Unmodified Linux

ext3

User-Mode-

Linux

Why User-Mode-Linux + disk driver

 Hard to cut Linux FS out of kernel.
User-Mode-Linux=check in situ

 End-to-end check

 EXE needs to fork/wait for process

 Hard to debug OS on raw machine

 We already had the framework

Making Linux work with EXE

 Disable threading

 Replace ASM functions called by FS
(strcmp, memcpy…) with C versions

 User-Mode-Linux loaded @ fixed (too
small) location. Stripped down

 EXE-cc/CIL can’t compile 8 files. Not

called with symbolic args. Use gcc

Making EXE work with Linux

 Still research prototype bugs

 EXE dies if too many constraints, too
many symbolic var

 Optimization: v = symbolic_exp, if
symbolic_exp has unique value, don’t
make v symbolic. Slow down “tainting”

 No free of symbolic heap objects

Outline

 How EXE works

 Apply EXE to Linux file systems

 Results

Results

 Checked ext2, ext3, and JFS mounts

 Ext2: four bugs.
 One buffer overflow read and write

arbitrary kernel memory (next slide)

 Two div/mod by 0

 One kernel crash

 Ext3: four bugs (copied from ext2)

 JFS: one NULL pointer dereference

 Extremely easy-to-diagnose: just mount!

Simplified: ext2 r/w kernel memory

int ext2_overflow(int block, unsigned count) {
 if(block < lower_bound
 || (block+count) > higher_bound)
 return -1;
 while(count--)
 bar(block++);
}
void bar(int block) {
 // B = power of 2
 int block_group = (block-A)/B;
 …
 //array length is 8
 … = array[block_group]
 …
 array[block_group] = …
 …
}

block is symbolic

block + count can overflow

and becomes negative!

block_group is symbolic

block can be large!

Symbolic read off bound

Symbolic write off bound

Pass block to bar

Related Work

 FS testing

 Mostly stress test for functionality bugs

 Linux ISO9660 FS handling flaw, Mar 2005
(http://lwn.net/Articles/128365/)

 Static analysis

 Model checking

 Symbolic model checking

 Input generation

 Using symbolic execution to generate testcases

Conclusion

 FS vulnerable to malicious disks

 Applied EXE to Linux file systems ext2,
ext3, JFS mounts. Worked well. Found
5 unique security holes

 EXE offers a promising approach to
finding security holes

Future work

 Automatic exploit generation

 User interacts with kernel through syscalls

 Compile Linux with EXE. Mark data(syscall
arg) from user as symbolic

 Find paths to bugs

 Generate concrete input + C code to call
kernel.

 Mechanized way to produce exploits.

Future work (Cont.)

 Automatic “hardening”

 EXE finds error with path constraints.

 Can translate constraints to if-statements
and reject concrete input that satisfies.

 E.g. wrap up disk reads. If disk malicious,
return “Cannot mount.”

 Similar to Shield, vulnerability signature
checking

 Nice feature: fully automatic, no manual filter,
automatically detect exploit

