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Abstract

Due to the increasing deployment of Deep Neural Net-

works (DNNs) in real-world security-critical domains

including autonomous vehicles and collision avoidance

systems, formally checking security properties of DNNs,

especially under different attacker capabilities, is becom-

ing crucial. Most existing security testing techniques for

DNNs try to find adversarial examples without providing

any formal security guarantees about the non-existence

of such adversarial examples. Recently, several projects

have used different types of Satisfiability Modulo Theory

(SMT) solvers to formally check security properties of

DNNs. However, all of these approaches are limited by

the high overhead caused by the solver.

In this paper, we present a new direction for formally

checking security properties of DNNs without using SMT

solvers. Instead, we leverage interval arithmetic to com-

pute rigorous bounds on the DNN outputs. Our approach,

unlike existing solver-based approaches, is easily paral-

lelizable. We further present symbolic interval analysis

along with several other optimizations to minimize over-

estimations of output bounds.

We design, implement, and evaluate our approach as

part of ReluVal, a system for formally checking security

properties of Relu-based DNNs. Our extensive empirical

results show that ReluVal outperforms Reluplex, a state-

of-the-art solver-based system, by 200 times on average.

On a single 8-core machine without GPUs, within 4 hours,

ReluVal is able to verify a security property that Reluplex

deemed inconclusive due to timeout after running for

more than 5 days. Our experiments demonstrate that

symbolic interval analysis is a promising new direction

towards rigorously analyzing different security properties

of DNNs.

1 Introduction

In the last five years, Deep Neural Networks (DNNs) have

enjoyed tremendous progress, achieving or surpassing

human-level performance in many tasks such as speech

recognition [19], image classifications [30], and game

playing [46]. We are already adopting DNNs in security-

and mission-critical domains like collision avoidance and

autonomous driving [1, 5]. For example, unmanned Air-

craft Collision Avoidance System X (ACAS Xu), uses

DNNs to predict best actions according to the location and

the speed of the attacker/intruder planes in the vicinity. It

was successfully tested by NASA and FAA [2, 33] and is

on schedule to be installed in over 30,000 passengers and

cargo aircraft worldwide [40] and US Navy’s fleets [3].

Unfortunately, despite our increasing reliance on

DNNs, they remain susceptible to incorrect corner-case

behaviors: adversarial examples [48], with small, human-

imperceptible perturbations of test inputs, unexpectedly

and arbitrarily changing a DNN’s predictions. In a

security-critical system like ACAS Xu, an incorrectly

handled corner case can easily be exploited by an attacker

to cause significant damage costing thousands of lives.

Existing methods to test DNNs against corner cases

focus on finding adversarial examples [7, 16, 31, 32, 37,

39, 41, 42, 51] without providing formal guarantees about

the non-existence of adversarial inputs even within very

small input ranges. In this paper, we focus on the problem

of formally checking that a DNN never violates a security

property (e.g., no collision) for any malicious input pro-

vided by an attacker within a given input range (e.g., for

attacker aircraft’s speeds between 0 and 500 mph).

Due to non-linear activation functions like ReLU, the

general function computed by a DNN is highly non-linear

and non-convex. Therefore it is difficult to estimate the

output range accurately. To tackle these challenges, all

prior works on the formal security analysis of neural net-

works [6,12,21,25] rely on different types of Satisfiability

Modulo Theories (SMT) solvers and are thus severely lim-

ited by the efficiency of the solvers.

We present ReluVal, a new direction for formally check-

ing security properties of DNNs without using SMT

solvers. Our approach leverages interval arithmetic [45] to

compute rigorous bounds on the outputs of a DNN. Given

the ranges of operands (e.g., a1 ∈ [0,1] and a2 ∈ [2,3]),
interval arithmetic computes the output range efficiently

using only the lower and upper bounds of the operands

(e.g., a2− a1 ∈ [1,3] because 2− 1 = 1 and 3− 0 = 3).

Compared to SMT solvers, we found interval arithmetic

to be significantly more efficient and flexible for formal



analysis of a DNN’s security properties.

Operationally, given an input range X and security prop-

erty P, ReluVal propagates it layer by layer to calculate

the output range, applying a variety of optimizations to

improve accuracy. ReluVal finishes with two possible

outcomes: (1) a formal guarantee that no value in X vi-

olates P (“secure”); and (2) an adversarial example in X
violating P (“insecure”). Optionally, ReluVal can also

guarantee that no value in a set of subintervals of X vi-

olates P (“secure subintervals”) and that all remaining

subintervals each contains at least one concrete adversar-

ial example of P (“insecure subintervals”).

A key challenge in ReluVal is the inherent overestima-

tion caused by the input dependencies [8, 45] when in-

terval arithmetic is applied to complex functions. Specif-

ically, the operands of each hidden neuron depend on

the same input to the DNN, but interval arithmetic as-

sumes that they are independent and may thus compute

an output range much larger than the true range. For

example, consider a simplified neural network in which

input x is fed to two neurons that compute 2x and −x
respectively, and the intermediate outputs are summed to

generate the final output f (x) = 2x− x. If the input range

of x is [0,1], the true output range of f (x) is [0,1]. How-

ever, naive interval arithmetic will compute the range of

f (x) as [0,2]− [0,1] = [−1,2], introducing a huge over-

estimation error. Much of our research effort focuses on

mitigating this challenge; below we describe two effective

optimizations to tighten the bounds.

First, ReluVal uses symbolic intervals whenever possi-

ble to track the symbolic lower and upper bounds of each

neuron. In the preceding example, ReluVal tracks the

intermediate outputs symbolically ([2x,2x] and [−x,−x]
respectively) to compute the range of the final output

as [x,x]. When propagating symbolic bound constraints

across a DNN, ReluVal correctly handles non-linear func-

tions such as ReLUs and calculates proper symbolic upper

and lower bounds. It concretizes symbolic intervals when

needed to preserve a sound approximation of the true

ranges. Symbolic intervals enable ReluVal to accurately

handle input dependencies, reducing output bound estima-

tion errors by 85.67% compared to naive extension based

on our evaluation.

Second, when the output range of the DNN is too large

to be conclusive, ReluVal iteratively bisects the input

range and repeats the range propagation on the smaller

input ranges. We term this optimization iterative interval
refinement because it is in spirit similar to abstraction

refinement [4, 18]. Interval refinement is also amenable

to massive parallelization, an additional advantage of Re-

luVal over hard-to-parallelize SMT solvers.

Mathematically, we prove that interval refinement on

DNNs always converges in finite steps as long as the DNN

is Lipschitz continuous which is true for any DNN with

finite number of layers. Moreover, lower values of Lips-

chitz constant result in faster convergence. Stable DNNs

are known to have low Lipschitz constants [48] and there-

fore the interval refinement algorithm can be expected

to converge faster for such DNNs. To make interval re-

finement even more efficient, ReluVal uses additional

optimizations that analyze how each input variable influ-

ences the output of a DNN by computing each layer’s

gradients to input variables. For instance, when bisecting

an input range, ReluVal picks the input variable range that

influences the output the most. Further, it looks for input

variable ranges that influence the output monotonically,

and uses only the lower and upper bounds of each such

range for sound analysis of the output range, avoiding

splitting any of these ranges.

We implemented ReluVal using around 3,000 line of

C code. We evaluated ReluVal on two different DNNs,

ACAS Xu and an MNIST network, using 15 security prop-

erties (out of which 10 are the same ones used in [25]).

Our results show that ReluVal can provide formal guar-

antees for all 15 properties, and is on average 200 times

faster than Reluplex, a state-of-the-art DNN verifier using

a specialized solver [25]. ReluVal is even able to prove

a security property within 4 hours that Reluplex [25]

deemed inconclusive due to timeout after 5 days. For

MNIST, ReluVal verified 39.4% out of 5000 randomly

selected test images to be robust against up to |X |∞ ≤ 5

attacks.

This paper makes three main contributions.

• To the best of our knowledge, ReluVal is the first

system that leverages interval arithmetic to provide

formal guarantees of DNN security.

• Naive application of interval arithmetic to DNNs is

ineffective. We present two optimizations – sym-

bolic intervals and iterative refinement – that signif-

icantly improve the accuracy of interval arithmetic

on DNNs.

• We designed, implemented, evaluated our techniques

as part of ReluVal and demonstrated that it is on

average 200× faster than Reluplex, a state-of-the-art

DNN verifier using a specialized solver [25].

2 Background

2.1 Preliminary of Deep Learning
A typical feedforward DNN can be thought of as a

function f : X → Y mapping inputs x ∈ X (e.g., im-

ages, texts) to outputs y ∈ Y (e.g., labels for image

classification, texts for machine translation). Specifi-

cally, f is composed of a sequence of parametric func-

tions f (x;w) = fl( fl−1(· · · f2( f1(x;w1);w2) · · ·wl−1),wl),



where l denotes the number of layers in a DNN, fk de-

notes the corresponding transformation performed by k-

th layer, and wk denotes the weight parameters of k-th

layer. Each fk∈1,...l performs two operations: (1) a lin-

ear transformation of its input (i.e., either x or the output

from fk−1) denoted by wk · fk−1(x), where f0(x) = x and

fk �=0(x) is the output of fk denoting intermediate output

of layer k while processing x, and (2) a nonlinear trans-

formation σ(wk · fk−1(x)) where σ is the nonlinear acti-

vation function. Common activation functions include

sigmoid, hyperbolic tangent, or ReLU (Rectified Linear

Unit) [38]. In this paper, we focus on DNNs using ReLU

(Relu(x) = max(0,x)) as the activation function as it is

one of the most popular ones used in the modern state-of-

the-art DNN architectures [17, 20, 47].

2.2 Threat Model
Target system. In this paper, we consider all types of

security-critical systems, e.g., airborne collision avoid-

ance system for unmanned aircraft like ACAS Xu [33],

which use DNNs for decision making in the presence

of an adversary/intruder. DNNs are becoming increas-

ingly popular in such systems due to better accuracy and

less performance overhead than traditional rule-based sys-

tems [24]. For example, an aircraft collision avoidance

system’s decision-making process can use DNNs to pre-

dict the best action based on sensor data of the current

speed and course of the aircraft, those of the adversary,

and distances between the aircraft and nearby intruders.

Figure 1: The DNN in the victim aircraft (ownship)

should predict a left turn (upper figure) but unexpect-

edly advises to turn right and collides with the intruder

(lower figure) due to the presence of adversarial inputs

(e.g., if the attacker approaches at certain angles).

Security properties. In this paper, we focus on input-

output-based security properties of DNN-based systems

that ensure the correct actions in the presence of adversar-

ial inputs within a given range. Input-output properties are

well suited for the DNN-based systems as their decision

logic is often opaque even to their designers. Therefore,

unlike traditional programs, writing complete specifica-

tions involving internal states is often hard.

For example, consider a security property that tries

to ensure that a DNN-based car crash avoidance system

predicts the correct steering angle in the presence of an

approaching attacker vehicle: it should steer left if the

attacker approaches it from right. In this setting, even

though the final decision is easy to predict for humans,

the correct outputs for the internal neurons are hard to

predict even for the designer of the DNN.

Attacker model. We assume that the inputs an adver-

sary can provide are bounded within an interval specified

by a security property. For example, an attacker aircraft

has a maximum speed (e.g., it can only move between 0

and 500 mph). Therefore, the attacker is free to choose

any value within that range. This attacker model is, in

essence, similar to the ones used for adversarial attacks

on vision-based DNNs where the attacker aims to search

for visually imperceptible perturbations (within certain

bound) that, when applied on the original image, makes

the DNN predict incorrectly. Note that, in this setting, the

imperceptibility is measured using a Lp norm. Formally,

given a computer vision DNN f , the attacker solves fol-

lowing optimization problem: min(Lp(x′ − x)) such that

f (x) �= f (x′), where Lp(·) denotes the p-norm and x′ − x
is the perturbation applied to original input x. In other

words, the security property of a vision DNN being robust

against adversarial perturbations can be defined as: for

any x′ within a L-distance ball of x in the input space,

f (x) = f (x′).
Unlike the adversarial images, we extend the attacker

model to allow different amounts of perturbations to dif-

ferent features. Specifically, instead of requiring overall

perturbations on input features to be bounded by L-norm,

our security properties allow different input features to

be transformed within different intervals. Moreover, for

DNNs where the outputs are not explicit labels, unlike

adversarial images, we do not require the predicted label

to remain the same. We support properties specifying

arbitrary output intervals.

An example. As shown in Figure 1, normally, when the

distance (one feature of the DNN) between the victim

ship (ownship) and the intruder is large, the victim ship

advisory system will advise left to avoid the collision

and then advise right to get back to the original track.

However, if the DNN is not verified, there may exist one

specific situation where the advisory system, for certain

approaching angles of the attacker ship, advises the ship

incorrectly to take a right turn instead of left, leading to a



fatal collision. If an attacker knows about the presence of

such an adversarial case, he can specifically approach the

ship at the adversarial angle to cause a collision.

2.3 Interval Analysis
Interval arithmetic studies the arithmetic operations on

intervals rather than concrete values. As discussed above,

since (1) the DNN safety property checking requires set-

ting input features within certain ranges and checking the

output ranges for violations, and (2) the DNN computa-

tions only include additions and multiplications (linear

transformations) and simple nonlinear operations (e.g.,

ReLUs), interval analysis is a natural fit to our problem.

We provide some formal definitions of interval extensions

of functions and their properties below. We use these

definitions in Section 4 for demonstrating the correctness

of our algorithm.

Formally, let x denote a concrete real value and X :=
[X ,X ] denote an interval, where X is the lower bound,

and X is the upper bound. An interval extension of a

function f (x) is a function of intervals F such that, for

any x ∈ X , F([x,x]) = f (x). The ideal interval extension

F(X) approaches the image of f , f (X) := { f (x) : x ∈ X}.
Let f (X1,X2, ...,Xd) := { f (x1,x2, ...,xd) : x1 ∈ X1,x2 ∈

X2, ...,xd ∈ Xd} where d is the number of input dimen-

sions. An interval valued function F(X1,X2, ...,Xd) is

inclusion isotonic if, when Yi ⊆ Xi for i= 1, ...,d, we have

F(Y1,Y2, ...,Yd)⊆ F(X1,X2, ...,Xd)

An interval extension function F(X) that is defined on

an interval X0 is said to be Lipschitz continuous if there is

some number L such that:

∀X ⊆ X0,w(F(X))≤ L ·w(X)

where w(X) is the width of interval X , and X here denotes

X = (X1,X2, ...,Xd), a vector of intervals [45].

3 Overview

Interval analysis is a natural fit to the goal of verifying

safety properties in neural networks as we have discussed

in Section 2.3. Naively, by setting input features as inter-

vals, we could follow the same arithmetic performed in

the DNN to compute the output intervals. Based on the

output intervals, we can verify if the input perturbations

will finally lead to violations or not (e.g., output intervals

go beyond a certain bound). Note that, lack of violations

indicates the safety property is verified to be safe due to

over-approximations.

However, naively computing output intervals in this

way suffers from high errors as it computes extremely
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Figure 2: Running example to demonstrate our tech-

niques.

loose bounds due to the dependency problem. In particu-

lar, it can only get a highly conservative estimation of the

output range, which is too wide to be useful for checking

any safety property. In this section, we first demonstrate

the dependency problem with a motivating example using

naive interval analysis. Next, based on the same example,

we describe how the techniques described in this paper

can mitigate this problem.

A working example. We use a small motivating exam-

ple shown in Figure 2 to illustrate the inter-dependency

problem and our techniques in dealing with this problem

in Figure 3.

Let us assume that the sample NN is deployed in an un-

manned aerial vehicle taking two inputs (1) distance from

the intruder and (2) intruder approaching angle, while

producing the steering angle as output. The NN has five

neurons arranged in three layers. The weights attached to

each edge is also shown in Figure 3 .

Assume that we aim to verify if the predicted steering

angle is safe by checking a property that the steering angle

should be less than 20 if the distance from the intruder is

in [4,6] and the possible angle of approaching intruder is

in [1,5].
Let x denote the distance from an intruder and y de-

note the approaching angle of the intruder. Essentially,

given x ∈ [4,6] and y ∈ [1,5], we aim to assert that

f (x,y) ∈ [−∞,20]. Figure 3a illustrates the naive inter-

val propagation in this NN. By performing the interval

multiplications and additions, along with applying the

ReLU activation functions, we get the output interval to

be [0,22]. Note that this is an overestimation because the

upper bound 22 cannot be achieved: it can only appear

when the left hidden neuron outputs 27 and the right one

outputs 5. However, for the left hidden neuron to output

27, the conditions x = 6 and y = 5 have to be satisfied.

Similarly, for the right hidden neuron to output 5, the

conditions x = 4 and y = 1 have to be satisfied. These

two conditions are contradictory and therefore cannot be
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Figure 3: Examples showing (a) naive interval extension where the output interval is very loose as it ignores the

inter-dependency of the input variables, (b) using symbolic interval analysis to keep track of some of the dependencies,

and (c) using bisection to reduce the over-approximation error.

satisfied simultaneously and therefore the final output 22

can never appear. This effect is known as the dependency
problem [45].

As we have defined that a safe steering angle must

be less than or equal to 20, we cannot guarantee non-

existence of violations, as the steering angle can have a

value as high as 22 according to the naive interval propa-

gation described above.

Symbolic interval propagation. Figure 3b demonstrates

how we maintain the symbolic intervals to preserve as

much dependency information as we can while propa-

gating the bounds through the NN layers. In this paper,

we only keep track of linear symbolic bounds and con-

cretize the bounds when it is not possible to maintain

accurate linear bounds. We compute the final output in-

tervals using the corresponding symbolic equations. Our

approach helps in significantly cutting down the over-

approximation errors.

For example, in the current example, the intermediate

neurons update their symbolic lower and upper bounds to

be 2x+3y and x+y, denoting the operations performed by

the previous linear transformations (taking the dot product

of the input and weight parameters). As we also know

2x+ 3y > 0 and x+ y > 0 for the given input range x ∈
[4,6] and y ∈ [1,5], we can safely propagate the symbolic

intervals through the ReLU activation functions.

In the final layer, the propagated bound will be [x+
2y,x+ 2y], where we can finally compute the concrete

interval [6,16]. This is tighter than the naive baseline

interval [0,22] and can be used to verify the property that

the steering angle will be less than 20.

In summary, symbolic interval propagation explicitly

represents the intermediate computations of each neuron

in terms of the symbolic intervals that encode the inter-

dependency of the inputs to minimize overestimation.

However, in more complex cases, there might be inter-

mediate neurons with symbolic bounds whose possible

values can potentially be negative. For such cases, we

can no longer keep the symbolic interval using a linear

equation while passing it through a ReLU. Therefore, we

concretize their upper and lower bounds and ignore their

dependencies. To minimize the errors caused by such

cases, we introduce another optimization, iterative refine-
ment, as described below. As shown in Section 7, we

can achieve very tight bounds by combining these two

techniques.

Iterative refinement. Figure 3c illustrates another opti-

mization that we introduce for mitigating the dependency

problem. Here, we leverage the fact that the dependency

error for Lipschitz continuous functions decreases as the

width of intervals decreases (any DNN with a finite num-

ber of layers is Lipschitz continuous as shown in Sec-

tion 4.2). Therefore, we can bisect the input interval by

evenly dividing the interval into the union of two consec-

utive sub-intervals and reduce the overestimation. The

output bound can thus be tightened as shown in the ex-

ample. The interval becomes [2,20], which proves the

non-existence of the violation. Note that we can iteratively

refine the output interval by repeated splitting of the input

intervals. Such operations are highly parallelizable as

the split sub-intervals can be checked independently (Sec-

tion 7). In Section 4, we provide a proof that the iterative

refinement can effectively reduces the width of the output

range to an arbitrary precision within finite steps for any

Lipschitz continuous DNN.

4 Proof of Correctness

Section 3 demonstrates the basic idea of naive interval

extension and the optimization of iterative refinement.

In this section, we give the detailed proof about the cor-

rectness of interval analysis/estimation on DNNs, also

known as interval extension estimation, and the conver-

gence of iterative refinement. The proofs are based on



two aforementioned properties of neural networks: inclu-
sion isotonicity and Lipschitz continuity. In general, the

correctness guarantee of interval extension holds for most

finite DNNs while the convergence guarantee requires

Lipschitz continuity. In the following, we give the proof

of correctness for two most important techniques we use

throughout the paper, but the proof is generic and works

for our other optimizations such as symbolic interval anal-

ysis, influence analysis and monotonicity as described in

Section 5.

Let f denote an NN and F denote its naive interval

extension. We define the naive interval extension as a

function F(X) that (1) satisfies for all x ∈ X ,F([x,x]) =
f (x) and (2) that only involves naive interval operations

during interval variable representations. For all the other

types of interval extensions, they can be easily analyzed

based on the following proof.

4.1 Correctness of Overestimation
We are going to demonstrate that, for the naive interval

extension of f , F always overestimates the theoretically

tightest output range f . According to our definition of

inclusion isotonicity described in Section 2, it suffices

to prove that the naive interval extension of an NN is

inclusion isotonic. Note that we only consider neural

networks with ReLUs as activation functions for the fol-

lowing proof, but the proof can be easily extended to other

popular activation functions like tanh or sigmoid.

First, we need to demonstrate that F is inclusion iso-

tonic. Because ReLU is monotonic, so we can sim-

ply consider its interval extension to be ReluI(X) :=
[max(0,X),max(0,X)]. Therefore, ∀Y ⊂ X , we have

max(0,X) ≤ max(0,Y ) and max(0,X) ≥ max(0,Y ) so

that its interval extension Relu(Y )⊆ Relu(X). Most com-

mon activation functions are inclusion isotonic. We refer

interested readers to [45] for a list of common functions

that are inclusion isotonic.

We note that f (X) is a composition of activation func-

tions and linear functions. And we also see that linear

functions, as well as common activation functions, are

inclusion isotonic [45]. Because any combinations of in-

clusion isotonic functions are still inclusion isotonic, thus,

we have that the interval representation F(X) of f (X) is

inclusion isotonic.

Next, we show for arbitrary X = (X1, . . . ,Xd), that:

f (X)⊆ F(X)

Applying the previously shown inclusion isotonicity prop-

erties of F(X), we get:

f (X1, . . . ,Xd) =
⋃

(x1,...,xd)∈X

{ f (x1, . . . ,xd)}

=
⋃

(x1,...,xd)∈X

F([x1,x1], . . . , [xd ,xd ])

Now, for any such (x1, . . . ,xd) ∈ X , we have

F([x1,x1], . . . , [xd ,xd ]) ⊆ F(X1, . . . ,Xd), since

([x1,x1], . . . , [xd ,xd ]) ⊆ (X1, . . . ,Xd), and F(X) is

inclusion isotonic. We thus get:
⋃

(x1,...,xd)∈X

F([x1,x1], . . . , [xd ,xd ])⊆ F(X1, . . . ,Xd) (1)

which is exactly the desired result.

Now, we get the result shown in Equation 1 that for

all input X , the interval extension of f , F(X), always

contains the true codomain (theoretically tightest bound)

for f (X).

4.2 Convergence in Finite Number of Splits
Now we see that the naive interval extension of f is an

overestimation of true output. Next, we show that iter-

atively splitting input is an effective way to refine and

reduce such overestimated error. Empirically, we can see

finite number of splits allow us to approximate f with F
with arbitrary accuracy, this is guaranteed by Lipschitz

continuity property of NNs.

First, we need to prove F is Lipschitz continuous. It

is straightforward to show that many common activation

functions are Lipschitz continuous [45]. Here, we show

the natural interval extension ReluI is Lipschitz contin-

uous, with a Lipschitz constant L := 1. We see, for any

input interval X :

w(ReluI(X)) = max(X ,0)−max(X ,0)

≤ max(X ,0)−X ≤ X−X = w(X)

Thus, the interval extension ReluI of ReLU is Lipschitz

continuous. As the NN is a finite composition of Lips-

chitz continuous functions, its interval extension F is still

Lipschitz continuous as well [45].

Now we demonstrate that by splitting input X into N
smaller pieces and taking the union of their corresponding

outputs, we can achieve a refined output estimation with

at least N times smaller overestimation error. We define

an N-split uniform subdivision of input X = (X1, ...,Xd)
as a collection of sets Xi, j:

Xi, j := [Xi +( j−1)
w(Xi)

N
,Xi + j

w(Xi)

N
]

where i ∈ 1, . . . ,d and j ∈ 1, . . .N. We note that this is

exactly a partition of each Xi into N pieces of equiva-

lent width such that ∀i, j, w(Xi, j) = w(Xi)/N and Xi =⋃N
j=1 Xi, j. We then define a refinement of F over X with

N splits as:

F(N)(X) :=
N⋃

i=1

F(X1,i, . . . ,Xd,i)



Finally, we define the range of overestimated error

created by naive interval extension on an NN after N-split

refinement as w(E(N)(X)):

w(E(N)(X)) := w(F(N)(X))−w( f (X))

Because F is Lipschitz continuous, Theorem 6.1 in

[45] gives us the following result:

w(E(N)(X))≤ 2L ·w(X)/N (2)

Equation 2 shows the error width of the N-split refine-

ment w(E(N)(X)) converges to 0 linearly as we increase

N. That is, we can achieve arbitrary accuracy when using

N-split refinement to approximate f (X) with sufficiently

large N.

5 Methodology

Figure 4 shows the main workflow along with the differ-

ent components of ReluVal. Specifically, ReluVal uses

symbolic interval analysis to get a tight estimation of the

output ranges based on the input ranges. It declares a secu-

rity property as verified if the estimated output interval is

tight enough to satisfy the property. If the output interval

shows potential existence of violations, ReluVal randomly

samples a few points from the interval and check for vio-

lations. If any adversarial case is detected, i.e., a concrete

input violating the security property, it outputs this as

a counterexample. Otherwise, ReluVal uses iterative in-

terval refinement to further tighten the output interval to

approach the theoretically tightest bound and repeats the

same process described above. Once the number of itera-

tions reaches a preset threshold, ReluVal outputs timeout

denoting it cannot verify the security property.

Figure 4: Workflow of ReluVal in checking security prop-

erty of DNN.

As discussed in Section 3, simple interval extension

only obtains loose/conservative intervals due to input de-

pendency problem. Below, we describe the details of the

optimizations we propose to further tighten the bounds.

5.1 Symbolic Interval Propagation

Symbolic Interval propagation is one of our core contri-

butions to mitigate the input dependency problem and

tighten the output interval estimation. If a DNN would

only consist of linear transformations, keeping symbolic

equation throughout the intermediate computations of a

DNN can perfectly eliminate the input dependency errors.

However, as shown in Section 3, passing an equa-

tion through a ReLU node essentially involves dropping

the equation and replacing it with 0 if the equation can

evaluate to a negative value for the given input range.

Therefore, we keep the lower and upper bound equations

(Equp,Eqlow) for as many neurons as we can and only

concretize as needed.

Algorithm 1 Symbolic interval analysis

Inputs: network← tested neural network

input← input interval

1: Initialize eq = (equp,eqlow);
2: // cache mask matrix needed in backward propagation
3: R[numLayer][layerSize];
4: // loops for each layer
5: for layer = 1 to numlayer do
6: // matmal equations with weights as interval;
7: eq= weight

⊗
eq;

8: // update the output ranges for each node
9: if layer != lastLayer then

10: for i = 1 to layerSize[layer] do
11: if equp[i]≤ 0 then
12: // Update to 0

13: R[layer][i]=[0,0]; �
d(relu(x))

dx = [0,0]
14: equp[i] = eqlow[i] = 0;
15: else if eqlow[i]≥0 then
16: // Keep dependency

17: R[layer][i]=[1,1]; �
d(relu(x))

dx = [1,1]
18: else
19: // Concretization

20: R[layer][i]=[0,1]; �
d(relu(x))

dx = [0,1]
21: eqlow[i] = 0
22: if equp[i]≤ 0 then
23: equp[i] = equp[i];
24: else
25: output = {lower, upper};

26: return R, output;

Algorithm 1 elaborates the procedure of propagating

symbolic intervals/equations during the interval computa-

tion of a DNN. We describe the core components and the

details of this technique below.

Constructing symbolic intervals. Given a particular

neuron A, (1) If A is in the first layer, we can compute the



symbolic bounds as:

EqA
up(X) = EqA

low(X) = w1x1 + ...+wdxd

where x1, ...,xd are the inputs and w1, ...,wd are the

weights of the corresponding edges. (2) If A belongs to

the intermediate layer, we initialize the symbolic intervals

of A’s output as:

EqA
up(X) =W+EqAprev

up (X)+W−EqAprev
low (X)

EqA
low(X) =W+EqAprev

low (X)+W−EqAprev
up (X)

where EqAprev
up and EqAprev

low are the equations from last layer.

W+ and W− denote the positive and negative weights of

current layer respectively. The output will be [w+a,w+b]
for multiplying positive weight parameters w+ with an

interval [a,b]. For the negative weight parameters, the

output will be flipped in terms of a and b, i.e., [w−b,w−a].
Concretization. While passing a symbolic equation

through the ReLU nodes, we evaluate the concrete value

of the equation’s upper and lower bounds Equp(X) and

Eqlow(X). If Eqlow(X)> 0, then we pass the lower equa-

tion on to the next layer. Otherwise, we concretize it to

be 0. Similarly, if Equp(X)> 0, we pass the upper equa-

tion on to the next layer. Otherwise, we concretize it as

Equp(X).
Correctness. We first clarify three different output in-

tervals: (1) theoretically tightest bound f (X), (2) naive

interval extension bound F(X), and (3) symbolic bound

[Eqlow(X),Equp(X)]. We prove that the symbolic bound

is a superset of theoretically tightest bound and a subset

of naive interval extension bound:

f (X)⊆ [Eqlow(X),Equp(X)]⊆ F(X) (3)

For a given input range propagated to the output layer,

it will involve both computing linear transformations and

applying ReLUs. Symbolic interval analysis keeps the

accurate bounds for linear transformations and uses con-

cretization to handle non-linearity. Compared to theoreti-

cally tightest bound, the only approximation introduced

during the symbolic propagation process is due to con-

cretization while handling ReLU nodes, which is an over-

approximation as shown before. Naive interval extension,

on the other hand, is a degenerate version of symbolic

interval analysis where it does not keep any symbolic

constraints. Therefore, symbolic interval analysis over-

approximates the theoretically tightest bound and, in turn,

is over-approximated by naive interval extension as shown

in Equation 3.

5.2 Iterative Interval Refinement
While symbolic interval analysis helps in computing rel-

atively tight bounds, the estimated output intervals for

complex networks may still not be tight enough for veri-

fying properties, especially when the input intervals are

comparably large and thus resulting in many concretiza-

tions. As discussed above in Section 5, for such cases, we

resort to another technique, iterative interval refinement.

In addition, we also propose two other optimizations, in-

fluence analysis and monotonicity, which further refine

the estimated output ranges based on iterative interval

refinement.

Baseline iterative refinement. In Section 4, we have

proved that theoretically tightest bound could be ap-

proached by repeatedly splitting the input intervals. There-

fore, we perform iterative bisections on each input interval

X1, ...,Xn until the output interval is tight enough to meet

the security property, or time out, as shown in Figure 4.

The iterative bisection process can be represented as a

bisection tree as shown in Figure 5. Each bisection on one

input yields two children denoting two consecutive sub-

intervals, the union of which computes the output bound

for their parent. Here, X (i) j means the jth input interval

with split depth i. After one bisection on X (i) j , it creates

two children: X (i+1)2 j−1 = {X1, ..., [Xi,
Xi+Xi

2 ], ...,Xd} and

X (i+1)2 j = {X1, ..., [
Xi+Xi

2 ,Xi], ...,Xd}.
To identify the existence of any adversarial example in

the bisected input ranges, we sample a few input points

(the current default is the middle point of each range) and

verify if the concrete output leads to any property viola-

tion. If so, we output the adversarial example, mark this

sub-interval as definitely containing adversarial examples,

and conclude the analysis for this specific sub-interval.

Otherwise, we repeat the symbolic interval analysis pro-

cess for the sub-intervals. This default configuration is

tailored towards deriving a conclusive answer of “secure”

or “insecure” for the entire input intervals. Users of Re-

luVal can configure it to further split an insecure interval

to potentially discover secure sub-intervals within the

insecure interval.

Optimizing iterative refinement. We develop two other

optimizations, namely influence analysis and monotonic-

ity, to further cut the average bisection depths.

(1) Influence analysis. When deciding which input

intervals to bisect first, instead of following a random

strategy, we compute the gradient or Jacobian of the out-

put with respect to each input feature and pick the largest

one as the first to bisect. The high-level intuition is that

the gradient approximates the influence of the input on

the output, which essentially measures the sensitivity of

the output to each input feature.

Algorithm 2 shows the steps for backward computation

of the input feature influence. Note that instead of work-

ing on concrete values, this version works with intervals.

The basic idea is to approximate the influence caused

by ReLUs. If there is no ReLU in the target DNN, the



Figure 5: A bisection tree with split depth of n. Each

node represents a bisected sub-interval.

Algorithm 2 Backward propagation for gradient interval

Inputs: network← tested neural network

R← gradient mask

1: // initialize upper and lower gradient bounds
2: gup = glow = weights[lastLayer];
3: for layer = numlayer-1 to 1 do
4: for 1 to layerSize[layer] do
5: // g is an interval containing gup and glow
6: // interval hadamard product
7: g=R[layer]

⊗
g;

8: // interval matrix multiplication
9: g=weights[layer]

⊙
g;

10: return g;

Jacobian matrix is completely determined by the weight

parameters, which is independent of the input. A ReLU

node’s gradient can either be 0 for negative input or 1 for

positive input. We use intervals to track and propagate

the bounds on the gradients of the ReLU nodes during

backward propagation as shown in Algorithm 2.

We further use the estimated gradient interval to com-

pute the smear function for an input feature [26, 27]:

Si(X) = max1≤ j≤d |Ji j|w(Xj), where Ji j denotes the gradi-

ent of input Xj for output Yi. For each refinement step, we

bisect the Xj with the highest smear value to reduce the

over-approximation error as shown in Algorithm 3.

(2) Monotonicity. Computing the Jacobian matrix also

helps us to reason about the monotonicity property of

the output for a given input interval. In particular, for

the cases where the partial derivative of ∂Fi
∂Xj

is always

positive or negative for the given input interval X , we can

simply replace the interval Xj with two concrete values Xj

and Xj. Because, as the DNN output is monotonic in that

input interval, it is impossible for any intermediate value

to cause a violation without either Xj or Xj causing one.

Algorithm 3 Using influence analysis to choose the most

influential feature to split

Inputs: network← tested neural network

input← input interval

g← gradient interval calculated by backward propagation

1: for i = 1 to input.length do
2: // r is the range of each input interval
3: r = w(input[i]);
4: // e is the influence from each input to output
5: e = gup[i]∗ r;
6: if e > largest then � most effective feature
7: largest = e;
8: splitFeature = i;

9: return splitFeature;

Our empirical results in Section 7 also indicate that such

monotonicity checking can help decrease the number of

splits required for checking different security properties.

6 Implementation

Setup. We implement ReluVal in C and leverage

OpenBLAS1 to enable efficient matrix multiplications. We

evaluate ReluVal on a Linux server running Ubuntu 16.04

with 16 CPU cores and 256GB memory.

Parallelization. One unique advantage of ReluVal over

other security property checking systems like Reluplex

is that the interval arithmetic in the setting of verifying

DNNs is highly parallelizable by nature. During the pro-

cess of iterative interval refinement, newly created input

ranges can be checked independently. This feature allows

us to create as many threads as possible, each taking care

of a specific input range, to gain significant speedup by

distributing different input ranges to different workers.

However, there are two key challenges that required

solving to fully leverage the benefits of parallelization.

First, as shown in Section 5.2, the bisection tree is often

not balanced leading to substantially different running

times for different threads. We found that often several

laggard threads slow down the computation, i.e., most of

the available workers stay idle while only a few workers

keep on refining the intervals. Second, as it is hard to

predict the depth of the bisection tree for any sub-interval

in advance, starting a new thread for each sub-interval

may result in high scheduling overhead. To solve these

two problems, we develop a dynamic thread rebalancing

algorithm that can identify the potentially deeper parts of

the bisection tree and efficiently redistribute those parts

among other workers.

Outward rounding. The large number of floating ma-

trix multiplications in a DNN can potentially lead to se-

vere precision drops after rounding [15]. For example,

assume that the output of one neuron is [0.00000001,

1http://www.openblas.net/



0.00000002]. If the floating-point precision is e−7, then

it is automatically rounded up to [0.0,0.0]. After one

layer propagation with a weight parameter of 1000, the

correct output should be [0.00001, 0.00002]. However,

after rounding, the output will incorrectly become [0.0,

0.0]. As the interval propagates through the neural net-

work, more errors will accumulate and significantly affect

the output precision. In fact, our tests show that some

adversarial examples reported by Reluplex [25] are false

positives due to such rounding problem.

To avoid such issues, we adopt outward rounding in

ReluVal. In particular, for every newly calculated interval

or symbolic interval, we always round the bounds outward

to ensure the computed output range is always a sound

overestimation of the true output range. We implement

outward rounding with 32-bit floats. We find that this

precision is enough for verifying properties of ACAS Xu

models, though it can easily be extended to 64-bit double.

7 Evaluation

7.1 Evaluation Setup
In the evaluation, we consider two general categories of

DNNs, deployed for handling two different tasks.

The first category is airborne collision avoidance sys-

tem (ACAS) crucial for alerting and preventing the col-

lisions between aircraft. We focus our evaluation on

ACAS Xu models for collision avoidance in unmanned

aircraft [28].

The second category includes the models deployed to

recognize hand-written digit from the MNIST dataset.

Our preliminary results demonstrate that ReluVal can also

scale to larger networks that the solver-based verification

tools often struggle to check.

ACAS Xu. The ACAS Xu system consists of forty-five

different NN models. Each network is composed of an

input layer taking five inputs, an output layer generating

five outputs, and six hidden layers with each containing

fifty neurons. As shown in Figure 6, five inputs include

{ρ,θ ,ψ,vown,vint}. In particular, ρ denotes the distance

between ownship and intruder, θ denotes the heading

direction angle of ownship relative to the intruder, ψ
denotes the heading direction angle of the intruder relative

to ownship, vown is the speed of ownship, and vint is the

speed of intruder. Output of the NN includes {COC, weak
left, weak right, strong left, strong right}. COC denotes

clear of conflict, weak left means heading left with angle

1.5o/s, weak right means heading right with angle 1.5o/s,

strong left is heading left with angle 3.0o/s, and strong
right denotes heading right with angle 3.0o/s. Each output

in NN corresponds to the score for this action (minimal

for the best).

MNIST. For classifying hand-written digits, we test a

Figure 6: Horizontal view of ACAS Xu operating scenarios.

neural network with 784 inputs, 10 outputs, and two hid-

den layers. Each intermediate layer has 512 neurons. On

the MNIST test dataset, it can achieve 98.28% accuracy

for classification.

7.2 Performance on ACAS Xu Models

In this section, we first present a detailed comparison of

ReluVal and Reluplex in terms of the verification perfor-

mance. Then, we compare ReluVal with a state-of-the-art

adversarial attack on DNNs, Carlini-Wagner [7], showing

that on average ReluVal can consistently find 50% more

adversarial examples. Finally, we show that ReluVal can

accurately narrow down all possible adversarial ranges

and therefore provide more insights on the distribution of

adversarial corner-cases.

Comparison to Reluplex. Table 1 compares the time

taken by ReluVal with that of Reluplex for verifying ten

original properties described in their paper [25]. In ad-

dition, we include the experimental results for five new

security properties. The detailed description of each prop-

erty is in the Appendix. Table 1 shows that ReluVal

always outperforms Reluplex at checking all fifteen se-

curity properties. For the properties on which Reluplex

times out, ReluVal is able to terminate in significantly

shorter time. On average, ReluVal achieves up to 200×
speedup over Reluplex.

Finding adversarial inputs. In terms of the number of

adversarial examples detected, ReluVal also outperforms

the popular attacks using gradients to find adversarial

examples. Here, we compare ReluVal to the Carlini and

Wagner (CW) attack [7], a state-of-the-art gradient-based

attack that minimizes specialized CW loss function.

As gradient-based attacks start from a seed input and

iteratively looking for adversarial examples, the choice

of seeds may highly influence the success of the attack

at finding adversarial inputs. Therefore, we try differ-

ent randomly picked seed inputs to facilitate the input

generation process. Note that our technique in ReluVal

does not need any seed input. Thus it is not restricted



Source Properties Networks Reluplex Time (sec) ReluVal Time (sec) Speedup

Security

Properties

from [25]

φ1 45 >443,560.73* 14,603.27 >30×
φ2 34∗2 123,420.40 117,243.26 1×
φ3 42 35,040.28 19,018.90 2×
φ4 42 13,919.51 441.97 32×
φ5 1 23,212.52 216.88 107×
φ6 1 220,330.82 46.59 4729×
φ7 1 >86400.0* 9,240.29 >9×
φ8 1 43,200.01 40.41 1069×
φ9 1 116,441.97 15,639.52 7×
φ10 1 23,683.07 10.94 2165×

Additional

Security

Properties

φ11 1 4,394.91 27.89 158×
φ12 1 2,556.28 0.104 24580×
φ13 1 >172,800.0* 148.21 >1166×
φ14 2 >172,810.86* 288.98 >598×
φ15 2 31,328.26 876.80 36×

* Reluplex uses different timeout thresholds for different properties.

Table 1: ReluVal’s performance at verifying properties of ACAS Xu compared with Reluplex. φ1 to φ10 are the

properties proposed in Reluplex [25]. φ11 to φ15 are our additional properties.

# Seeds CW CW Miss ReluVal ReluVal Miss
50 24/40 40.0% 40/40 0%

40 21/40 47.5% 40/40 0%

30 17/40 58.5% 40/40 0%

20 10/40 75.0% 40/40 0%

10 6/40 85.0% 40/40 0%

Table 2: The number of adversarial inputs CW can find

compared to ReluVal on 40 adversarial ACAS Xu proper-

ties. The third column shows the percentage of adversarial

properties CW failed to find.

by the potentially undesired starting seed and can fully

explore the input space. As shown in Table 2, on aver-

age, CW misses 61.2% number of models, which do have

adversarial inputs exist that CW fails to find.

Narrowing down adversarial ranges. A unique fea-

ture of ReluVal is that it can isolate adversarial ranges

of inputs from the non-adversarial ones. This is use-

ful because it allows a DNN designer to potentially iso-

late and avoid adversarial ranges with a given precision

(e.g., e− 6 or smaller). Here we set the precision to be

e−6, i.e., we allow splitting of the intervals into smaller

sub-intervals unless their length becomes less than e−6.

Table 3 shows the results of the three different proper-

ties that we checked. For example, property S1 specifies

model_4_1 should output strong right with input range

ρ = [400,10000], θ = 0.2, ψ = −3.09, vown = 10, and

vint = 10. For this property, ReluVal splits the input ranges

into 262,144 smaller sub-intervals and is able to prove

that 163,915 sub-intervals are safe. ReluVal also finds

that ρ = [400,6402.36] does not contain any adversarial

inputs while ρ = [6402.36,10000] is adversarial.

P Adv Range Adv Timeout Non-adv
S1 [6402.36,10000] 98229 1 163915

S2 [−0.2,−0.186] and [−0.103,0] 18121 2 14645

S3 [−0.1,0.0085] 17738 1 15029

Table 3: The second column shows the input ranges con-

taining at least one adversarial input, while the rest of

ranges are found by ReluVal to be non-adversarial. The

last three columns show the number of total sub-intervals

checked by ReluVal with a precision of e−6.

7.3 Preliminary Tests on MNIST Model

Besides ACAS Xu, we also test ReluVal on an MNIST

model that achieves decent accuracy (98.28%). Given a

particular seed image, we allow arbitrary perturbations to

every pixel value while bounding the total perturbation

by the L∞ norm. In particular, ReluVal can prove 956

seed images to be safe for |X |∞ ≤ 1 and 721 images safe

for |X |∞ ≤ 2 respectively out of 1000 randomly selected

test images. Figure 7 shows the detailed results. As the

norm is increased, the percentage of images that have

no adversarial perturbations drops quickly to 0. Note

that we get more timeouts as the L∞ norm increase. We

believe that we can further optimize our system to work

on GPUs to minimize such timeouts and verify properties

with larger norm bounds.

2We remove model_4_2 and model_5_3 because Reluplex found

incorrect adversarial examples due to rounding problems (these models

do not have any adversarial cases).



Figure 7: Percentage of images proved to be non-

adversarial with L∞ = 1,2,3,4,5 by ReluVal on MNIST

test model out of 1000 random test MNIST images.

7.4 Optimizations

In this subsection, we evaluate the effectiveness of the

optimizations proposed in Section 5 compared to the naive

interval extension with iterative interval refinement. The

results are shown in Table 4.

Methods Deepest Dep (%) Avg Dep (%) Time (%)
S.C.P 42.06 49.28 99.99

I.A. 10.65 10.85 96.04

Mono 0.325 0.497 16.91

Table 4: The percentages of the deepest depth, average

depth, and average running time improvement caused by

the three main components of ReluVal: symbolic interval

analysis, influence analysis, and monotonicity compared

to the naive interval analysis.

Symbolic interval propagation. Table 4 shows that sym-

bolic interval analysis saves the deepest and average depth

of bisection tree (Figure 5) by up to 42.06% and 49.28%,

respectively, over naive interval extension.

Influence analysis. As one of the optimizations used

in iterative refinement, influence analysis helps priori-

tize splitting of the most influential input to the output.

Compared to the sequential splitting features, influence-

analysis-based splitting reduces the average depth by

10.85% and thus cut down the running time by up to

96.04%.

Monotonocity. The improvements from using mono-

tonicity are relatively smaller in terms of tree depth.

However, it can still reduce the average running time

by 16.91% on average, especially when the average depth

is high.

8 Related Work

Adversarial machine learning. Several recent works

have shown that even the state-of-the-art DNNs can be

easily fooled by adding small carefully crafted human-

imperceptible perturbations to the original inputs [7, 16,

37, 48]. This has resulted in an arms race among re-

searchers competing to build more robust networks and

design more efficient attacks [7, 16, 31, 32, 39, 41, 51].

However, most of the defenses are restricted to only one

type of adversaries/security properties (e.g., overall per-

turbations bounded by some norms) even though other

researchers have shown that other semantics-preserving

changes like lightning changes, small occlusions, rota-

tions, etc. can also easily fool the DNNs [13, 42, 43, 49].

However, none of these attacks can provide any prov-

able guarantees about the non-existence of adversarial

examples for a given neural network. Unlike these at-

tacks, ReluVal can provide a provable security analysis of

given input ranges, systematically narrowing down and

detecting all adversarial ranges.

Verification of machine learning systems. Recently,

several projects [12, 21, 25] have used customized SMT

solvers for verifying security properties of DNNs. How-

ever, such techniques are mostly limited by the scalability

of the solver. Therefore, they tend to incur significant

overhead [25] or only provide weaker guarantees [21].

By contrast, ReluVal uses interval-based techniques and

significantly outperforms the state-of-the-art solver-based

systems like Reluplex [25].

Kolter et al. [29] and Raghunathan et al. [44] trans-

form the verification problem into a convex optimization

problem using relaxations to over-approximate the out-

puts of ReLU nodes. Similarly, Gehr et al. [14] leverages

zonotopes for approximating each ReLU outputs. Dvi-

jotham et al. [11] transform the verification problem into

an unconstrained dual formulation using Lagrange relax-

ation and use gradient-descent to solve the optimization

problem. However, all of these works focus on simply

over-approximating the total number of potential adver-

sarial violations without trying to find concrete counterex-

amples. Therefore, they tend to suffer from high false

positive rates unless the underlying DNN’s training al-

gorithm is modified to minimize such violations. By

contrast, ReluVal can find concrete counterexamples as

well as verify security properties of pre-trained DNNs.

Recently, Mixed Integer Linear programming (MILP)

solvers combined with gradient descent have also been

proposed for verification of DNNs [9, 10]. Integrating

our interval analysis together with such approaches is an

interesting future research problem.

Verivis [43] by Pei et al. is a black-box DNN verifica-

tion system that leverages the discreteness of image pixels.

However, unlike ReluVal, it cannot verify non-existence



of norm-based adversarial examples.

Interval optimization. Interval analysis has shown great

success in many application domains including non-

linear equation solving and global optimization prob-

lems [23, 34, 35]. Due to its ability to provide rigorous

bounds on the solutions of an equation, many numerical

optimization problems [22,50] leveraged interval analysis

to achieve a near-precise approximation of the solutions.

We note that the computation inside NN is mostly a se-

quence of simple linear transformations with nonlinear

activation functions. These computations thus highly

resemble those in traditional domains where interval anal-

ysis has been shown to be successful. Therefore, based

on the foundation of interval analysis laid by Moore et

al. [36, 45], we leverage interval analysis for analyzing

the security properties of DNNs.

9 Future Work and Discussion

Supporting other activation functions. Interval exten-

sion can, in theory, be applied to any activation function

that maintains inclusion isotonicity and Lipschitz conti-

nuity. As mentioned in Section 4, most popular activation

functions (e.g., tanh, sigmoid) satisfy these properties.

To support these activation functions, we need to adapt

the symbolic interval propagation process. We plan to

explore this as part of future work. Our current prototype

implementation of symbolic interval propagation supports

several common piece-wise linear activation functions

(e.g., regular ReLU, Leaky ReLU, and PReLU).

Supporting other norms besides L∞. While interval

arithmetic is most immediately applicable to L∞, other

norms (e.g., L2 and L1) can also be approximated using

intervals. Essentially, L∞ allows the most flexible pertur-

bations and the perturbations bounded by other norms like

L2 are all subsets of those allowed by the corresponding

L∞ bound. Therefore, if ReluVal can verify the absence of

adversarial examples for a DNN within an infinite norm

bound, the DNN is also guaranteed to be safe for the corre-

sponding p-norm (p=1/2/3..) bound. If ReluVal identifies

adversarial subintervals for an infinite norm bound, we

can iteratively check whether any such subinterval lies

within the corresponding p-norm bound. If not, we can

declare the model to contain no adversarial examples for

the given p-norm bound. We plan to explore this direction

in future.

Improving DNN Robustness. The counterexamples

found by ReluVal can be used to increase the robustness

of a DNN through adversarial training. Specific, we can

add the adversarial examples detected by ReluVal to the

training dataset and retrain the model. Also, a DNN’s

training process can further be changed to incorporate

ReluVal’s interval analysis for improved robustness. In-

stead of training on individual samples, we can convert

the training samples into intervals and change the training

process to minimize losses for these intervals instead of

individual samples. We plan to pursue this direction as

future work.

10 Conclusion

Although this paper focuses on verifying security proper-

ties of DNNs, ReluVal itself is a generic framework that

can efficiently leverage interval analysis to understand

and analyze the DNN computation. In the future, we

hope to develop a full-fledged DNN security analysis tool

based on ReluVal, just like traditional program analysis

tools, that can not only efficiently check arbitrary security

properties of DNNs but can also provide insights into the

behaviors of hidden neurons with rigorous guarantees.

In this paper, we designed, developed, and evaluated

ReluVal, a formal security analysis system for neural net-

works. We introduced several novel techniques including

symbolic interval arithmetic to perform formal analysis

without resorting to SMT solvers. ReluVal performed

200 times faster on average than the current state-of-art

solver-based approaches.
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A Appendix: Formal Definitions for ACAS
Xu Properties φ1 to φ15

Inputs. Inputs for each ACAS Xu DNN model are:

ρ: the distance between ownship and intruder;

θ : the heading direction angle of ownship relative to intruder;

ψ: heading direction angle of intruder relative to ownship;

vown: speed of ownshipe;

vint : speed of intruder;

Outputs. Outputs for each ACAS Xu DNN model are:

COC: Clear of Conflict;

weak left: heading left with angle 1.5o/s;

weak right: heading right with angle 1.5o/s;

strong left: heading left with angle 3.0o/s;

strong right: heading right with angle 3.0o/s.

45 Models. There are 45 different models indexed by two extra

inputs aprev and τ , model_x_y means the model used when

aprev = x and τ = y :

aprev: previous action indexed as {COC, weak left, weak
right, strong left, strong right}.

τ: time until loss of vertical separation indexed as {0, 1, 5,

10, 20, 40, 60, 80, 100}

Property φ1: If the intruder is distant and is significantly slower

than the ownship, the score of a COC advisory will always be

below a certain fixed threshold.

Tested on: all 45 networks.

Input ranges: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.

Desired output: the output of COC is at most 1500.

Property φ2: If the intruder is distant and is significantly slower

than the ownship, the score of a COC advisory will never be

maximal.

Tested on: model_x_y, x ≥ 2, except model_5_3 and

model_4_2

Input ranges: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.

Desired output: the score for COC is not the maximal score.

Property φ3: If the intruder is directly ahead and is moving

towards the ownship, the score for COC will not be minimal.

Tested on: all models except model_1_7, model_1_8 and

model_1_9

Input ranges: 1500 ≤ ρ ≤ 1800, −0.06 ≤ θ ≤ 0.06, ψ ≥
3.10, vown ≥ 980, vint ≥ 960.

Desired output: the score for COC is not the minimal score.

Property φ4: If the intruder is directly ahead and is moving

away from the ownship but at a lower speed than that of the

ownship, the score for COC will not be minimal.

Tested on: all models except model_1_7, model_1_8 and

model_1_9

Input ranges: 1500≤ ρ ≤ 1800, −0.06≤ θ ≤ 0.06, ψ = 0,

vown ≥ 1000, 700≤ vint ≤ 800.

Desired output: the score for COC is not the minimal score.



Property φ5: If the intruder is near and approaching from the

left, the network advises âĂIJstrong rightâĂİ.

Tested on: model_1_1

Input ranges: 250≤ ρ ≤ 400, 0.2≤ θ ≤ 0.4, −3.141592≤
ψ ≤−3.141592+0.005, 100≤ vown ≤ 400, 0≤ vint ≤ 400.

Desired output: the score for “strong right” is the minimal

score.

Property φ6: If the intruder is sufficiently far away, the network

advises COC.

Tested on: model_1_1

Input ranges: 12000≤ ρ ≤ 62000, (0.7≤ θ ≤ 3.141592)∪
(−3.141592 ≤ θ ≤ −0.7), −3.141592 ≤ ψ ≤ −3.141592 +
0.005, 100≤ vown ≤ 1200, 0≤ vint ≤ 1200.

Desired output: the score for COC is the minimal score.

Property φ7: If vertical separation is large, the network will

never advise a strong turn

Tested on: model_1_9

Input ranges: 0 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤ 3.141592,

−3.141592 ≤ ψ ≤ 3.141592, 100 ≤ vown ≤ 1200, 0 ≤ vint ≤
1200.

Desired output: the scores for “strong right” and “strong left”

are never the minimal scores.

Property φ8: For a large vertical separation and a previous

“weak left” advisory, the network will either output COC or

continue advising “weak left.”

Tested on: model_2_9

Input ranges: 0 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤ −0.75 ·
3.141592, −0.1 ≤ ψ ≤ 0.1, 600 ≤ vown ≤ 1200, 600 ≤ vint ≤
1200.

Desired output: the score for “weak left” is minimal or the

score for COC is minimal.

Property φ9: Even if the previous advisory was “weak right,”

the presence of a nearby intruder will cause the network to

output a “strong left” advisory instead.

Tested on: model_3_3

Input ranges: 2000 ≤ ρ ≤ 7000, 0.7 ≤ θ ≤ 3.141592,

−3.141592 ≤ ψ ≤ −3.141592+0.01, 100 ≤ vown ≤ 150, 0 ≤
vint ≤ 150.

Desired output: the score for “strong left” is minimal.

Property φ10: For a far away intruder, the network advises COC.

Tested on: model_4_5

Input ranges: 36000 ≤ ρ ≤ 60760, 0.7 ≤ θ ≤ 3.141592,

−3.141592 ≤ ψ ≤ −3.141592 + 0.01, 900 ≤ vown ≤ 1200,

600≤ vint ≤ 1200.

Desired output: the score for COC is minimal.

Property φ11: If the intruder is near and approaching from the

left but the vertical separation is comparably large, the network

still tend to advise “strong right” more than COC.

Tested on: model_1_1

Input ranges: 250≤ ρ ≤ 400, 0.2≤ θ ≤ 0.4, −3.141592≤
ψ ≤−3.141592+0.005, 100≤ vown ≤ 400, 0≤ vint ≤ 400.

Desired output: the score for “strong right” is always smaller

than COC.

Property φ12: If the intruder is distant and is significantly slower

than the ownship, the score of a COC advisory will be the

minimal.

Tested on: model_3_3

Input ranges: ρ ≥ 55947.691, vown ≥ 1145, vint ≤ 60.

Desired output: the score for COC is the minimal score.

Property φ13: For a far away intruder but the vertical distance

are small, the network always advises COC no matter the direc-

tions are.

Tested on: model_1_1

Input ranges: 60000 ≤ ρ ≤ 60760, −3.141592 ≤ θ ≤
3.141592, −3.141592 ≤ ψ ≤ 3.141592, 0 ≤ vown ≤ 360, 0 ≤
vint ≤ 360.

Desired output: the score for COC is the minimal.

Property φ14: If the intruder is near and approaching from the

left and vertical distance is small, the network always advises

strong right no matter previous action is strong right or strong

left.

Tested on: model_4_1, model_5_1

Input ranges: 250≤ ρ ≤ 400, 0.2≤ θ ≤ 0.4, −3.141592≤
ψ ≤−3.141592+0.005, 100≤ vown ≤ 400, 0≤ vint ≤ 400.

Desired output: the score for “strong right” is always the

minimal.

Property φ15: If the intruder is near and approaching from the

right and vertical distance is small, the network always advises

strong left no matter previous action is strong right or strong

left.

Tested on: model_4_1, model_5_1

Input ranges: 250 ≤ ρ ≤ 400, −0.4 ≤ θ ≤ −0.2,

−3.141592 ≤ ψ ≤ −3.141592 + 0.005, 100 ≤ vown ≤ 400,

0≤ vint ≤ 400.

Desired output: the score for “strong left” is always the

minimal.

Property S1:
Tested on: model_4_1

Input ranges: 400≤ ρ ≤ 10000, θ = 0.2, ψ =−3.141592+
0.005, vown = 10, vint = 10.

Desired output: the score for “strong right” is the minimal.

Property S2:
Tested on: model_4_1

Input ranges: ρ = 400, −0.2 ≤ θ ≤ 0, ψ = −3.141592+
0.005, vown = 1000, vint = 1000.

Desired output: the score for “strong right” is the minimal.

Property S3:
Tested on: model_1_2

Input ranges: ρ = 400, −0.1 ≤ θ ≤ 0.1, ψ = −3.141592,

vown = 500, vint = 600.

Desired output: the score for “strong right” is the minimal.


