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Abstract. We present POS, a concurrency testing approach that sam-
ples the partial order of concurrent programs. POS uses a novel priority-
based scheduling algorithm that dynamically reassigns priorities regard-
ing the partial order information and formally ensures that each par-
tial order will be explored with significant probability. POS is simple
to implement and provides a probabilistic guarantee of error detection
better than state-of-the-art sampling approaches. Evaluations show that
POS is effective in covering the partial-order space of micro-benchmarks
and finding concurrency bugs in real-world programs, such as Firefox’s
JavaScript engine SpiderMonkey.

1 Introduction

Concurrent programs are notoriously difficult to test. Executions of different
threads can interleave arbitrarily, and any such interleaving may trigger unex-
pected errors and lead to serious production failures [13]. Traditional testing over
concurrent programs relies on the system scheduler to interleave executions (or
events) and is limited to detect bugs because some interleavings are repeatedly
tested while missing many others.

Systematic testing [18, 9, 16, 30, 29, 28], instead of relying on the system
scheduler, utilizes formal methods to systematically schedule concurrent events
and attempt to cover all possible interleavings. However, the interleaving space
of concurrent programs is exponential to the execution length and often far ex-
ceeds the testing budget, leading to the so-called state-space explosion problem.
Techniques such as partial order reduction (POR) [10, 8, 1, 2] and dynamic
interface reduction [11] have been introduced to reduce the interleaving space.
But, in most cases, the reduced space of a complex concurrent program is still
too large to test exhaustively. Moreover, systematic testing often uses a deter-
ministic search algorithm (e.g., the depth-first search) that only slightly adjusts
the interleaving at each iteration, e.g., flip the order of two events. Such a search
may very well get stuck in a homogeneous interleaving subspace and waste the
testing budget by exploring mostly equivalent interleavings.

To mitigate the state-space explosion problem, randomized scheduling algo-
rithms are proposed to sample, rather than enumerating, the interleaving space
while still keeping the diversity of the interleavings explored [28]. The most
straightforward sampling algorithm is random walk: at each step, randomly pick
an enabled event to execute. Previous work showed that even such a sampling



Thread A Thread B
---------------- -------------
+->assert(x==0); step(1);
| ...
| ...
| step(m-1);
+------------------x = 1;

(a)

Thread A Thread B
--------------- -----------------
A1: x++; B1: y--;

barrier(); barrier();
A2: x--; B2: x = 0;
A3: y++; B3: y = 1;

(b)

Fig. 1. (a) An example illustrating random walk’s weakness in probabilistic guarantee
of error detection, where variable x is initially 0.; (b) An example illustrating PCT’s
redundancy in exploring the partial order.

outperformed the exhaustive search at finding errors in real-world concurrent
programs [24]. This can be explained by applying the small-scope hypothesis [12,
§5.1.3] to the domain of concurrency error detection [17]: errors in real-world
concurrent programs are non-adversarial and can often be triggered if a small
number of events happen in the right order, which sampling has a good proba-
bility to achieve.

Random walk, however, has a unsurprisingly poor probabilistic guarantee
of error detection. Consider the program in Fig. 1a. The assertion of thread A
fails if, and only if, the statement “x = 1” of thread B is executed before this
assertion. Without knowing which order (between the assertion and “x = 1”)
triggers this failure as a priori, we should sample both orders uniformly because
the probabilistic guarantee of detecting this error is the minimum sampling
probability of these two orders. Unfortunately, random walk may yield extremely
non-uniform sampling probabilities for different orders when only a small number
of events matter. In this example, to trigger the failure, the assertion of thread
A has to be delayed (or not picked) by m times in random walk, making its
probabilistic guarantee as low as 1/2m.

To sample different orders more uniformly, Probabilistic Concurrency Testing
(PCT) [4] depends on a user-provided parameter d, the number of events to
delay, to randomly pick d events within the execution, and inserts a preemption
before each of the d events. Since the events are picked randomly by PCT, the
corresponding interleaving space is sampled more uniformly, resulting in a much
stronger probabilistic guarantee than random walk. Consider the program in
Fig. 1a again. To trigger the failure, there is no event needed to be delayed, other
than having the right thread (i.e. thread B) to run first. Thus, the probability
trigger (or avoid) the failure is 1/2, which is much higher than 1/2m.

However, PCT does not consider the partial order of events entailed by a con-
current program, such that the explored interleavings are still quite redundant.
Consider the example in Fig. 1b. Both A1 and B1 are executed before the barrier
and do not race with any statement. Statements A2 and B2 form a race, and so
do statements A3 and B3. Depending on how each race is resolved, the program
events have total four different partial orders. However, without considering the
effects of barriers, PCT will attempt to delay A1 or B1 in vain. Furthermore, with-
out considering the race condition, PCT may first test an interleaving A2 →



A3 → B2 → B3 (by delaying A3 and B2), and then test a partial-order equivalent
and thus completely redundant interleaving A2 → B2 → A3 → B3 (by delaying
A3 and B3). Such redundancies in PCT waste testing resources and weaken the
probabilistic guarantee.

Towards addressing the above challenges, this paper makes three main con-
tributions. First, we present a concurrency testing approach, named partial order
sampling (POS), that samples the concurrent program execution based on the
partial orders and provides strong probabilistic guarantees of error detection. In
contrast to the sophisticated algorithms and heavy bookkeeping used in prior
POR work, the core algorithm of POS is much more straightforward. In POS,
each event is assigned with a random priority and, at each step, the event with
the highest priority is executed. After each execution, all events that race with
the executed event will be reassigned with a fresh random priority. Since each
event has its own priority, POS (1) samples the orders of a group of dependent
events uniformly and (2) uses one execution to sample independent event groups
in parallel, both benefiting its probabilistic guarantee. The priority reassignment
is also critical. Consider racing events e1 and e2, and an initial priority assign-
ment that runs e1 first. Without the priority reassignment, e2 may very well be
delayed again when a new racing event e3 occurs because e2’s priority is more
likely to be small (the reason that e2 is delayed after e1 at the first place). Such
priority reassignments ensure that POS samples the two orders of e2 and e3
uniformly.

Secondly, the probabilistic guarantee of POS has been formally analyzed and
shown to be exponentially stronger than random walk and PCT for general pro-
grams. The probability for POS to execute any partial order can be calculated
by modeling the ordering constraints as a bipartite graph and computing the
probability that these constraints can be satisfied by a random priority assign-
ment. Although prior POR work typically have soundness proofs of the space
reduction [8, 1], those proofs depend on an exhaustive searching strategy and it
is unclear how they can be adapted to randomized algorithms. Some random-
ized algorithms leverage POR to heuristically avoid redundant exploration, but
no formal analysis of their probabilistic guarantee is given [28, 22]. To the best
of our knowledge, POS is the first work to sample partial orders with formal
probabilistic guarantee of error detection.

Lastly, POS has been implemented and evaluated using both randomly gen-
erated programs and real-world concurrent software such as Firefox’s JavaScript
engine SpiderMonkey in SCTBench [24]. Our POS implementation supports
shared-memory multithreaded programs using Pthreads. The evaluation results
show that POS provided 134.1× stronger overall guarantees than random walk
and PCT on randomly generated programs, and the error detection is 2.6× faster
than random walk and PCT on SCTBench. POS managed to find the six most
difficult bugs in SCTBench with the highest probability among all algorithms
evaluated and performed the best among 20 of the total 32 non-trivial bugs in
our evaluation.



Related Work. There is a rich literature of concurrency testing. Systematic
testing [9, 18, 28, 14] exhaustively enumerates all possible schedules of a program,
which suffers from the state-space explosion problem. Partial order reduction
techniques [10, 8, 1, 2] alleviate this problem by avoiding exploring schedules
that are redundant under partial order equivalence but rely on bookkeeping the
massive exploration history to identify redundancy and it is unclear how they
can be applied to the sampling methods.

PCT [4] explores schedules containing orderings of small sets of events and
guarantees probabilistic coverage of finding bugs involving rare orders of a small
number of events. PCT, however, does not take partial orders into account and
becomes ineffective when dealing with a large number of ordering events. Also,
the need of user-provided parameters diminishes the coverage guarantee, as the
parameters are often provided imprecisely. Chistikov et al. [5] introduced hit-
ting families to cover all admissible total orders of a set of events. However, this
approach may cover redundant total orders that correspond to the same partial
order. RAPOS [22] leverages the ideas from the partial order reduction, resem-
bling our work in its goal, but does not provide a formal proof for its probabilistic
guarantee. Our micro-benchmarks show that POS has a 5.0× overall advantage
over RAPOS (see §6.1).

Coverage-driven concurrency testing [32, 26] leverages relaxed coverage met-
rics to discover rarely explored interleavings. Directed testing [23, 21] focuses
on exploring specific types of interleavings, such as data races and atomicity
violations, to reveal bugs. There is a large body of other work showing how to
detect concurrency bugs using static analysis [19, 25] or dynamic analysis [7, 20,
15]. But none of them can be effectively applied to real-world software systems,
while still have formal probabilistic guarantees.

2 Running Example

Figure 2 shows the running example of this paper. In this example, we assume
that memory accesses are sequentially consistent and all shared variables (e.g.,
x, w, etc.) are initialized to be 0. The program consists of two threads, i.e., A and
B. Thread B will be blocked at B4 by wait(w) until w > 0. Thread A will set w
to be 1 at A3 via signal(w) and unblock thread B. The assertion at A4 will fail
if, and only if, the program is executed in the following total order:

B1 → A1 → B2 → B3 → A2 → A3 → B4 → B5 → B6 → A4

To detect this bug, random walk has to make the correct choice at every step.
Among all ten steps, three of them only have a single option: A2 and A3 must
be executed first to enable B4, and A4 is the only statement left at the last step.
Thus, the probability of reaching the bug is 1/27 = 1/128. As for PCT, we have
to insert two preemption points just before statements B2 and A2 among ten
statements, thus the probability for PCT is 1/10 × 1/10 × 1/2 = 1/200, where
this 1/2 comes from the requirement that thread B has to be executed first.



global int x = y = z = w = 0;

Thread A Thread B
-------------------- --------------------

local int a = b = 0;
A1: x++; B1: x = 1;
A2: y++; B2: a = x;
A3: signal(w); B3: y = a;
A4: assert(z < 5); B4: wait(w);

B5: b = y;
B6: z = a + b;

Fig. 2. The running example involving two threads.

In POS, this bug can be detected with a substantial probability of 1/48,
much higher than other approaches. Indeed, our formal guarantees ensure that
any behavior of this program can be covered with a probability of at least 1/60.

3 Preliminary

Concurrent Machine Model. Our concurrent abstract machine models a
finite set of processes and a set of shared objects. The machine state is denoted
as s, which consists of the local state of each process and the state of shared
objects. The abstract machine assumes the sequential consistency and allows
the arbitrary interleaving among all processes. At each step, starting from s,
any running process can be randomly selected to make a move to update the
state to s′ and generate an event e, denoted as s

e−→ s′.
An event e is a tuple e := (pid, intr, obj, ind), where pid is the process ID,

intr is the statement (or instruction) pointer, obj is the shared object accessed
by this step (we assume each statement only access at most a single shared ob-
ject), and ind indicates how many times this intr has been executed and is used
to distinguish different runs of the same instruction. For example, the execution
of the statement “A2: y++” in Fig. 2 will generate the event (A, A2, y, 0). Such
an event captures the information of the corresponding step and can be used to
replay the execution. In other words, given the starting state s and the event e,
the resulting state s′ of a step “ e−→ ” is determined.

A trace t is a list of events generated by a sequence of program transitions
(or steps) starting from the initial machine state (denoted as s0). For example,
the following program execution:

s0
e0−→ s1

e1−→ · · · en−→ sn+1

generates the trace t := e0 • e1 • · · · • en, where the symbol “ • ” means “cons-ing”
an event to the trace.Trace events can be accessed by index (e.g., t[1] = e1).

A trace can be used to replay a sequence of executions. In other words, given
the initial machine state s0 and the trace t, the resulting state of running t
(denoted as “State(t)”) is determined.



We write En(s) := {e | ∃s′, s e−→ s′} as the set of events enabled (or allowed to
be executed) at state s. Take the program in Fig. 2 as an example. Initially, both
A1 and B1 can be executed, and the corresponding two events form the enabled
set En(s0). The blocking wait at B4, however, can be enabled only after being
signaled at A3. A state s is called a terminating state if, and only if, En(s) = ∅.
We assume that any disabled event will eventually become enabled and every
process must end with either a terminating state or an error state. This indicates
that all traces are finite. For readability, we often abbreviate En(State(t)), i.e.,
the enabled event set after executing trace t, as En(t).

Partial Order of Traces. Two events e0 and e1 are called independent events
(denoted as e0⊥e1) if, and only if, they neither belong to the same process nor
access the same object:

e0⊥e1 := (e0.pid ̸= e1.pid) ∧ (e0.obj ̸= e1.obj)

The execution order of independent events does not affect the resulting state. If a
trace t can be generated by swapping adjacent and independent events of another
trace t′, then these two traces t and t′ are partial order equivalent. Intuitively,
partial order equivalent traces are guaranteed to lead the program to the same
state. The partial order of a trace is characterized by the orders between all
dependent events plus their transitive closure. Given a trace t, its partial order
relation “⊏t” is defined as the minimal relation over its events that satisfies:

1) ∀i j, i < j ∧ t[i] ̸⊥ t[j] =⇒ t[i] ⊏t t[j]
2) ∀i j k, t[i] ⊏t t[j] ∧ t[j] ⊏t t[k] =⇒ t[i] ⊏t t[k]

Two traces with the same partial order relation and the same event set must be
partial order equivalent.

Given an event order E and its order relation ⊏E , we say a trace t follows E
and write “t ≃ E” if, and only if,

∀e0 e1, e0 ⊏t e1 =⇒ e0 ⊏E e1

We write “t |= E” to denote that E is exactly the partial order of trace t:

t |= E := ∀e0 e1, e0 ⊏t e1 ⇐⇒ e0 ⊏E e1

Probabilistic Error-Detection Guarantees. Each partial order of a concur-
rent program may lead to a different and potentially incorrect outcome. There-
fore, any possible partial order has to be explored. The minimum probability
of these explorations are called the probabilistic error-detection guarantee of a
randomized scheduler.

Algorithm 1 presents a framework to formally reason about this guarantee. A
sampling procedure Sample samples a terminating trace t of a program. It starts
with the empty trace and repeatedly invokes a randomized scheduler (denoted
as Sch) to append an event to the trace until the program terminates. The ran-
domized scheduler Sch selects an enabled event from En(t) and the randomness
comes from the random variable parameter, i.e., R.



Algorithm 1 Sample a trace using scheduler Sch and random variable R

1: procedure Sample(Sch, R)
2: t← [ ]
3: while En(t) ̸= ∅ do
4: e← Sch(En(t), R)
5: t← t • e
6: end while
7: return t
8: end procedure

A naive scheduler can be purely random without any strategy. A sophisti-
cated scheduler may utilize additional information, such as the properties of the
current trace and the enabled event set.

Given the randomized scheduler Sch on R and any partial order E of a pro-
gram, we write “P (Sample(Sch, R) |= E)” to denote the probability of covering
E , i.e., generating a trace whose partial order is exactly E using Algorithm 1. The
probabilistic error-detection guarantee of the scheduler Sch on R is then defined
as the minimum probability of covering the partial order E of any terminating
trace of the program:

min
E

P (Sample(Sch, R) |= E)

4 POS - Algorithm and Analysis

In this section, we first present BasicPOS, a priority-based scheduler and an-
alyze its probability of covering a given partial order (see §4.1). Based on the
analysis of BasicPOS, we then show that such a priority-based algorithm can be
dramatically improved by introducing the priority reassignment, resulting in our
POS algorithm (see §4.2). Finally, we present how to calculate the probabilistic
error-detection guarantee of POS on general programs (see §4.3).

4.1 BasicPOS

In BasicPOS, each event is associated with a random and immutable priority,
and, at each step, the enabled event with the highest priority will be picked to
execute. We use Pri to denote the map from events to priorities and describe
BasicPOS in Algorithm 2, which instantiates the random variable R in Algo-
rithm 1 with Pri. The priority Pri(e) of every event e is independent with each
other and follows the uniform distribution U(0, 1).

We now consider in what condition would BasicPOS sample a trace that
follows a given partial order E of a program. It means that the generated trace t,
at the end of each loop iteration (line 5 in Algorithm 2), must satisfy the invariant
“t ≃ E”. Thus, the event priorities have to be properly ordered such that, given
a trace t satisfies “t ≃ E”, the enabled event e∗ with the highest priority must
satisfies “t • e∗ ≃ E”. In other words, given “t ≃ E”, for any e ∈ En(t) and



Algorithm 2 Sample a trace with BasicPOS under the priority map Pri

1: procedure SampleBasicPOS(Pri) ▷ Pri ∼ U(0, 1)
2: t← [ ]
3: while En(t) ̸= ∅ do
4: e∗ ← argmaxe∈En(t) Pri(e)
5: t← t • e∗

6: end while
7: return t
8: end procedure

“t • e ̸≃ E”, there must be some e′ ∈ En(t) satisfying “t • e′ ≃ E” and a proper
priority map where e′ has a higher priority, i.e., Pri(e′) > Pri(e). Thus, e will
not be selected as the event e∗ at line 4 in Algorithm 2. The following Lemma 1
indicates that such an event e′ always exists:
Lemma 1.

∀t e, t ≃ E ∧ e ∈ En(t) ∧ t • e ̸≃ E
=⇒ ∃e′, e′ ∈ En(t) ∧ t • e′ ≃ E ∧ e′ ⊏E e

Proof. We can prove it by contradiction. Since traces are finite, we assume that
some traces are counterexamples to the lemma and t is the longest such trace.
In other words, we have t ≃ E and there exists e ∈ En(t) ∧ t • e ̸≃ E such that:

∀e′, e′ ∈ En(t) ∧ t • e′ ≃ E =⇒ ¬(e′ ⊏E e) (1)

Since E is the partial order of a terminating trace and the traces t has not
terminated yet, we know that there must exist an event e′ ∈ En(t) such that
t • e′ ≃ E . Let t′ := t • e′, by (1), we have that ¬(e′ ⊏E e) and

e ∈ En(t′)
∧ t′ • e ̸≃ E
∧ ∀e′′, e′′ ∈ En(t′) ∧ t′ • e′′ ≃ E =⇒ ¬(e′′ ⊏E e)

First two statements are intuitive. The third one also holds, otherwise, e′ ⊏E
e can be implied by the transitivity of partial orders using e′′. Thus, t′ is a
counterexample that is longer than t, contradicting to our assumption. ⊓⊔

Thanks to Lemma 1, we then only need to construct a priority map such
that this e′ has a higher priority. Let “e ▷◁E e′ := ∃t, t ≃ E ∧ {e, e′} ⊆ En(t)”
denote that e and e′ can be simultaneously enabled under E . We write

PSE(e) := {e′ | e′ ⊏E e ∧ e ▷◁E e′}

as the set of events that can be simultaneously enabled with but have to be
selected prior to e in order to follow E . We have that any e′ specified by Lemma 1
must belong to PSE(e). Let VE be the event set ordered by E . The priority map
Pri can be constructed as below:∧

e∈VE , e′∈PSE(e)

Pri(e) < Pri(e′) (Cond-BasicPOS)



The traces sampled by BasicPOS using this Pri will always follow E .
Although (Cond-BasicPOS) is not the necessary condition to sample a trace

following a desired partial order, from our observation, it gives a good estimation
for the worst cases. This leads us to locate the major weakness of BasicPOS: the
constraint propagation of priorities. An event e with a large PSE(e) set may have
a relatively low priority since its priority has to be lower than all the events in
PSE(e). Thus, for any simultaneously enabled event e′ that has to be delayed
after e, Pri(e′) must be even smaller than Pri(e), which is unnecessarily hard to
satisfy for a random Pri(e′). Due to this constraints propagation, the probability
that a priority map Pri satisfies (Cond-BasicPOS) can be as low as 1/|VE |!.

Here, we explain how BasicPOS samples the following trace that triggers
the bug described in §2:

tbug := (B, B1, x, 0) • (A, A1, x, 0) • (B, B2, x, 0) • (B, B3, y, 0) • (A, A2, y, 0)
• (A, A3, w, 0) • (B, B4, w, 0) • (B, B5, y, 0) • (B, B6, z, 0) • (A, A4, z, 0)

To sample trace tbug , according to (Cond-BasicPOS), the priority map has
to satisfy the following constraints:

Pri(tbug [0] = (B, B1, x, 0)) > Pri(tbug [1] = (A, A1, x, 0))
Pri(tbug [1]) > Pri(tbug [2] = (B, B2, x, 0))
Pri(tbug [2]) > Pri(tbug [4] = (A, A2, y, 0))
Pri(tbug [3] = (B, B3, y, 0)) > Pri(tbug [4])
Pri(tbug [6] = (B, B4, w, 0)) > Pri(tbug [9] = (A, A4, z, 0))
Pri(tbug [7] = (B, B5, y, 0)) > Pri(tbug [9])
Pri(tbug [8] = (B, B6, z, 0)) > Pri(tbug [9])

Note that these are also the necessary constraints for BasicPOS to follow
the partial order of tbug . The probability that a random Pri satisfies the
constraints is 1/120. The propagation of the constraints can be illustrated
by the first three steps:

Pri(tbug [0]) > Pri(tbug [1]) > Pri(tbug [2]) > Pri(tbug [4])

that happens in the probability of 1/24. However, on the other hand, ran-
dom walk can sample these three steps in the probability of 1/8.

4.2 POS
We will now show how to improve BasicPOS by eliminating the propagation of
priority constraints. Consider the situation when an event e (delayed at some
trace t) becomes eligible to schedule right after scheduling some e′, i.e.,

t ≃ E ∧ {e, e′} ⊆ En(t) ∧ t • e ̸≃ E ∧ t • e′ • e ≃ E

If we reset the priority of e right after scheduling e′, all the constraints causing
the delay of e will not be propagated to the event e′′ such that e ∈ PSE(e

′′).



However, there is no way for us to know which e should be reset after e′ during
the sampling, since E is unknown and not provided. Notice that

t ≃ E ∧ {e, e′} ⊆ En(t) ∧ t • e ̸≃ E ∧ t • e′ • e ≃ E =⇒ e.obj = e′.obj

If we reset the priority of all the events that access the same object with e′, the
propagation of priority constraints will also be eliminated.

To analyze how POS works to follow E under the reassignment scheme, we
have to model how many priorities need to be reset at each step. Note that
blindly reassigning priorities of all delayed events at each step would be sub-
optimal, which degenerates the algorithm to random walk. To give a formal and
more precise analysis, we introduce the object index functions for trace t and
partial order E :

I(t, e) := | {e′ | e′ ∈ t ∧ e.obj = e′.obj} |
IE(e) := | {e′ | e′ ⊏E e ∧ e.obj = e′.obj} |

Intuitively, when e ∈ En(t), scheduling e on t will operate e.obj after I(t, e)
previous events. A trace t follows E if every step (indicated by t[i]) operates the
object t[i].obj after IE(t[i]) previous events in the trace.

We then index (or version) the priority of event e using the index function
as Pri(e, I(t, e)) and introduce POS shown in Algorithm 3. By proving that

∀e′, I(t, e) ≤ I(t • e′, e) ∧ (I(t, e) = I(t • e′, e) ⇐⇒ e.obj ̸= e′.obj)

we have that scheduling an event e will increase the priority version of all the
events accessing e.obj, resulting in the priority reassignment.

We can then prove that the following statements hold:

∀t e, t ≃ E ∧ e ∈ En(t) =⇒ (t • e ≃ E ⇐⇒ I(t, e) = IE(e))
∀t e, t ≃ E ∧ e ∈ En(t) ∧ t • e ̸≃ E =⇒ I(t, e) < IE(e)

To ensure that the selection of e∗ on trace t follows E at the line 4 of Algorithm 3,
any e satisfying I(t, e) < IE(e) has to have a smaller priority than some e′

satisfying I(t, e′) = IE(e) and such e′ must exist by Lemma 1. In this way, the
priority constraints for POS to sample E are as below:∧

Pri(e, i) < Pri(e′, IE(e
′)) for some i < IE(e)

which is bipartite and the propagation of priority constraints is eliminated. The
effectiveness of POS is guaranteed by Theorem 1.

Theorem 1. Given any partial order E of a program with P > 1 processes. Let

DE := | {(e, e′) | e ⊏E e′ ∧ e ̸⊥ e′ ∧ e ▷◁E e′} |

be the number of races in E, we have that

1. DE ≤ |VE | × (P − 1), and



Algorithm 3 Sample a trace with POS under versioned priority map Pri

1: procedure SamplePOS(Pri) ▷ Pri ∼ U(0, 1)
2: t← [ ]
3: while En(t) ̸= ∅ do
4: e∗ ← argmaxe∈En(t) Pri(e, I(t, e))
5: t← t.e∗

6: end while
7: return t
8: end procedure

2. POS has at least the following probability to sample a trace t ≃ E:(
1

P

)|VE |

RU

where R = P × |VE |/(|VE |+DE) ≥ 1 and U = (|VE | − ⌈DE/(P − 1)⌉)/2 ≥ 0

Please refer to the technical report [33] for the detailed proof and the construc-
tion of priority constraints.

Here, we show how POS improves BasicPOS over the example in §2. Tne
priority constraints for POS to sample the partial order of tbug are as below:

Pri(tbug [0] , 0) > Pri(tbug [1] , 0)
Pri(tbug [1] , 1) > Pri(tbug [2] , 1)
Pri(tbug [2] , 2) > Pri(tbug [4] , 0)
Pri(tbug [3] , 0) > Pri(tbug [4] , 0)
Pri(tbug [6] , 1) > Pri(tbug [9] , 0)
Pri(tbug [7] , 2) > Pri(tbug [9] , 0)
Pri(tbug [8] , 0) > Pri(tbug [9] , 0)

Since each Pri(e, i) is independently random following U(0, 1), the proba-
bility of Pri satisfying the constraints is 1/2× 1/2× 1/3× 1/4 = 1/48.

4.3 Probability Guarantee of POS on General Programs

We now analyze how POS performs on general programs compared to random
walk and PCT. Consider a program with P processes and N total events. It
is generally common for a program have substantial non-racing events, for ex-
ample, accessing shared variables protected by locks, semaphores, and condition
variables, etc. We assume that there exists a ratio 0 ≤ α ≤ 1 such that in any
partial order there are at least αN non-racing events.

Under this assumption, for random walk, we can construct an adversary
program with the worst case probability as 1/PN for almost any α [33]. For



PCT, since only the order of the (1 − α)N events may affect the partial order,
the number of preemptions needed for a partial order in the worst case becomes
(1 − α)N , and thus the worst case probability bound is 1/N (1−α)N . For POS,
the number of races DE is reduced to (1 − α)N × (P − 1) in the worst case,
Theorem 1 guarantees the probability lower bound as

1

PN

(
1

1− (1− 1/P )α

)αN/2

Thus, POS advantages random walk when α > 0 and degenerates to random
walk when α = 0. Also, POS advantages PCT if N > P (when α = 0) or
N 1/α−1 > P1/α

√
1 + α/P − α (when 0 < α < 1). For example, when P = 2

and α = 1/2, POS advantages PCT if N > 2
√
3. In other words, in this case,

POS is better than PCT if there are at least four total events.

5 Implementation
The algorithm of POS requires a pre-determined priority map, while the imple-
mentation could decide the event priority on demand when new events appear.
The implementation of POS is shown in Algorithm 4, where lines 14-18 are for
the priority reassignment. Variable s represents the current program state with
the following interfaces:

– s.Enabled() returns the current set of enabled events.
– s.Execute(e) returns the resulting state after executing e in the state of s.
– s.IsRacing(e, e′) returns if there is a race between e and e′.

In the algorithm, if a race is detected during the scheduling, the priority of the
delayed event in the race will be removed and then be reassigned at lines 6-9.
Relaxation for Read-only Events. The abstract interface s.IsRacing(. . .) allows
us to relax our model for read-only events. When both e and e′ are read-only
events, s.IsRacing(e, e′) returns false even if they are accessing the same object.
Our evaluations show that this relaxation improves the execution time of POS.

Fairness Workaround. POS is probabilistically fair. For an enabled event e with
priority p > 0, the cumulative probability for e to delay by k → ∞ steps without
racing is at most (1−pP)k → 0. However, it is possible that POS delays events for
prolonged time, slowing down the test. To alleviate this, the current implemen-
tation resets all event priorities for every 103 voluntary context switch events,
e.g., sched_yield() calls. This is only useful for speeding up few benchmark
programs that have busy loops (sched_yield() calls were added by SCTBench
creators) and has minimal impact on the probability of hitting bugs.

6 Evaluation
To understand the performance of POS and compare with other sampling meth-
ods, we conducted experiments on both micro benchmarks (automatically gen-
erated) and macro benchmarks (including real-world programs).



Algorithm 4 Testing a program with POS
1: procedure POS(s) ▷ s: the initial state of the program
2: pri← [ϵ 7→ −∞] ▷ Initially, no priority is assigned except the special symbol ϵ
3: while s.Enabled() ̸= ∅ do
4: e∗ ← ϵ ▷ Assume ϵ /∈ s.Enabled()
5: for each e ∈ s.Enabled() do
6: if e /∈ pri then
7: newPriority ← U(0, 1)
8: pri← pri[e 7→ newPriority]
9: end if

10: if pri(e∗) < pri(e) then
11: e∗ ← e
12: end if
13: end for
14: for each e ∈ s.Enabled() do ▷ Update priorities
15: if e ̸= e∗ ∧ s.IsRacing(e, e∗) then
16: pri← pri \ {e} ▷ The priority will be reassigned in the next step
17: end if
18: end for
19: s← s.Execute(e∗)
20: end while
21: return s
22: end procedure

6.1 Micro Benchmark

We generated programs with a small number of static events as the micro bench-
marks. We assumed multi-threaded programs with t threads and each thread
executes m events accessing o objects. To make the program space tractable, we
chose t = m = o = 4, resulting 16 total events. To simulate different object ac-
cess patterns in real programs, we chose to randomly distribute events accessing
different objects with the following configurations:

– Each object has respectively {4,4,4,4} accessing events. (Uniform)
– Each object has respectively {2,2,6,6} accessing events. (Skewed)

The results are shown in Table 1. The benchmark columns show the char-
acteristics of each generated program, including (1) the configuration used for
generating the program; (2) the number of distinct partial orders in the program;
(3) the maximum number of preemptions needed for covering all partial orders;
and (4) the maximum number of races in any partial order. We measured the
coverage of each sampling method on each program by the minimum hit ratio on
any partial order of the program. On every program, we ran each sampling meth-
ods for 5×107 times (except for random walk, for which we calculated the exact
probabilities). If a program was not fully covered by an algorithm within the sam-
ple limit, the coverage is denoted as “0(x)”, where x is the number of covered
partial orders. We let PCT sample the exact number of the preemptions needed



Benchmark Coverage

Conf.
PO.

count
Max

prempt.
Max
races RW PCT RAPOS BasicPOS POS

Uniform

4478 6 19 2.65e-08 0(4390) 1.84e-06 0(4475) 7.94e-06
7413 6 20 3.97e-08 0(7257) 3.00e-07 2.00e-08 5.62e-06
1554 5 19 8.37e-08 0(1540) 1.78e-06 4.00e-08 8.54e-06
6289 6 20 1.99e-08 0(6077) 1.34e-06 0(6288) 6.62e-06
1416 6 21 1.88e-07 0(1364) 1.99e-05 1.80e-07 4.21e-05

Skewed

39078 7 27 5.89e-09 0(33074) 0(39044) 0(38857) 1.20e-07
19706 7 24 4.97e-09 0(18570) 0(19703) 0(19634) 5.00e-07
19512 6 27 2.35e-08 0(16749) 1.00e-07 0(19502) 1.36e-06
8820 6 23 6.62e-09 0(8208) 1.00e-07 0(8816) 1.20e-06
7548 7 25 1.32e-08 0(7438) 1.30e-06 2.00e-08 3.68e-06

Geo-mean* 2.14e-08 2.00e-08 4.11e-07 2.67e-08 2.87e-06
Table 1. Coverage on the micro benchmark programs. Columns under “benchmark”
are program characteristics explained in §6.1. “0(x)” represents incomplete coverage.

Benchmark Coverage

Conf.
PO.

count
Max

prempt.
Max
races RW PCT RAPOS BasicPOS POS POS∗

Uniform

896 6 16 7.06e-08 0(883) 9.42e-06 2.00e-08 9.32e-06 1.41e-05
1215 6 18 3.53e-08 0(1204) 8.70e-06 6.00e-08 1.22e-05 1.51e-05
1571 7 17 8.83e-09 0(1523) 4.22e-06 0(1566) 7.66e-06 1.09e-05
3079 6 15 1.99e-08 0(3064) 8.20e-07 1.20e-07 7.08e-06 7.68e-06
1041 4 18 2.51e-07 0(1032) 3.05e-05 2.20e-06 3.32e-05 4.85e-05

Skewed

3867 6 19 6.62e-09 0(3733) 1.24e-06 8.00e-08 4.04e-06 4.24e-06
1057 6 20 2.12e-07 0(1055) 4.68e-06 2.08e-06 2.79e-05 2.80e-05
1919 6 20 2.09e-07 0(1917) 2.02e-06 3.80e-07 1.48e-05 1.48e-05

11148 7 21 4.71e-08 0(10748) 4.00e-08 0(11128) 1.58e-06 3.02e-06
4800 7 19 3.97e-08 0(4421) 5.00e-07 0(4778) 1.58e-06 4.80e-06

Geo-mean* 4.77e-08 2.00e-08 2.14e-06 1.05e-07 7.82e-06 1.08e-05
Table 2. Coverage on the micro benchmark programs - 50% read

for each case. We tweaked PCT to improve its coverage by adding a dummy
event at the beginning of each thread, as otherwise PCT cannot preempt the
actual first event of each thread. The results show that POS performed the best
among all algorithms. For each algorithm, we calculated the overall performance
as the geometric mean of the coverage.1 POS overall performed ∼ 7.0× better
compared to other algorithms. (∼ 134.1× excluding RAPOS and BasicPOS)

To understand our relaxation of read-only events, we generated another set of
programs with the same configurations, but with half of the events read-only. The
results are shown in Table 2, where the relaxed algorithm is denoted as POS∗.
Overall, POS∗ performed roughly ∼ 1.4× as good as POS and ∼ 5.0× better
compared to other algorithms. (∼ 226.4× excluding RAPOS and BasicPOS)
1 For each case that an algorithm does not have the full coverage, we conservatively

account the coverage as 1
5×107

into the geometric mean.



6.2 Macro Benchmark

We used SCTBench [24], a collection of concurrency bugs on multi-threaded
programs, to evaluate POS on practical programs. SCTBench collected 49 con-
currency bugs from previous parallel workloads [3, 27] and concurrency test-
ing/verification work [18, 4, 21, 6, 31]. SCTBench comes with a concurrency
testing tool, Maple [32], which intercepts pthread primitives and shared mem-
ory accesses, as well as controls their interleaving. When a bug is triggered, it
will be caught by Maple and reported back. We implemented POS with the re-
laxation of read-only events in Maple. Each sampling method was evaluated in
SCTBench by the ratio of tries and hits of the bug in each case. For each case,
we ran each sampling method on it until the number of tries reaches 104. We
recorded the bug hit count h and the total runs count t, and calculated the ratio
as h/t.

Two cases in SCTBench are not adopted: parsec-2.0-streamcluster2 and
radbench-bug1. Because neither of the algorithms can hit their bugs once, which
conflicts with previous results. We strengthened the case safestack-bug1 by
internally repeating the case for 104 times (and shrunk the run limit to 500). This
amortizes the per-run overhead of Maple, which could take up to a few seconds.
We modified PCT to reset for every internal loop. We evaluated variants of PCT
algorithms of PCT-d, representing PCT with d−1 preemption points, to reduce
the disadvantage of a sub-optimal d. The results are shown in Table 3. We ignore
cases in which all algorithms can hit the bugs with more than half of their tries.
The cases are sorted based on the minimum hit ratio across algorithms. The
performance of each algorithm is aggregated by calculating the geometric mean
of hit ratios2 on every case. The best hit ratio for each case is marked as blue.

The results of macro benchmark experiments can be highlighted as below:

– Overall, POS performed the best in hitting bugs in SCTBench. The geomet-
ric mean of POS is ∼ 2.6× better than PCT and ∼ 4.7× better than random
walk. Because the buggy interleavings in each case are not necessarily the
most difficult ones to sample, POS may not perform overwhelmingly better
than others, as in micro benchmarks.

– Among all 32 cases shown in the table, POS performed the best among all
algorithms in 20 cases, while PCT variants were the best in 10 cases and
random walk was the best in three cases.

– POS is able to hit all bugs in SCTBench, while all PCT variants missed one
case within the limit (and one case with hit ratio of 0.0002), and random
walk missed three cases (and one case with hit ratio of 0.0003).

7 Conclusion

We have presented POS, a concurrency testing approach to sample the partial
order of concurrent programs. POS’s core algorithm is simple and lightweight:
2 For each case that an algorithm cannot hit once within the limit, we conservatively

account the hit ratio as 1/t in the calculation of the geometric mean.



Case RW PCT-2 PCT-3 PCT-4 PCT-5 PCT-20 POS
01 stringbuffer-jdk1.4 0.0638 0.0000 0.0193 0.0420 0.0600 0.0332 0.0833
02 reorder_10_bad 0.0000 0.0007 0.0014 0.0017 0.0021 0.0000 0.0308
03 reorder_20_bad 0.0000 0.0015 0.0027 0.0040 0.0043 0.0021 0.1709
04 twostage_100_bad 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0047
05 radbench-bug2 0.0003 0.0000 0.0010 0.0030 0.0045 0.0000 0.0418
06 safestack-bug1×104 0.0480 0.0000 0.0000 0.0000 0.0000 0.0000 0.2440
07 WSQ 0.0002 0.0484 0.0813 0.1054 0.1190 0.1444 0.0497
08 WSQ-State 0.0092 0.0003 0.0015 0.0017 0.0019 0.0146 0.0926
09 IWSQ-State 0.0643 0.0006 0.0040 0.0073 0.0121 0.0618 0.1380
10 IWSQ 0.0010 0.0461 0.0775 0.0984 0.1183 0.1205 0.0500
11 reorder_5_bad 0.0018 0.0061 0.0110 0.0122 0.0126 0.0089 0.0668
12 queue_bad 0.9999 0.0068 0.1415 0.2621 0.3511 0.6176 0.9999
13 reorder_4_bad 0.0074 0.0118 0.0206 0.0263 0.0294 0.0294 0.0795
14 qsort_mt 0.0097 0.0117 0.0239 0.0328 0.0398 0.0937 0.0958
15 reorder_3_bad 0.0246 0.0255 0.0457 0.0580 0.0660 0.0920 0.0997
16 wronglock_bad 0.3272 0.0351 0.0630 0.0942 0.1142 0.2508 0.4227
17 bluetooth_driver_bad 0.0628 0.0390 0.0597 0.0778 0.0791 0.1334 0.0847
18 radbench-bug6 0.3026 0.0461 0.0748 0.1011 0.1220 0.1435 0.2305
19 wronglock_3_bad 0.3095 0.0683 0.1137 0.1454 0.1741 0.2689 0.3625
20 twostage_bad 0.0806 0.1213 0.1959 0.2448 0.2804 0.2579 0.1212
21 deadlock01_bad 0.3668 0.0904 0.1714 0.2468 0.3160 0.8363 0.3315
22 account_bad 0.1173 0.2140 0.1929 0.1748 0.1628 0.1189 0.3367
23 token_ring_bad 0.1245 0.1367 0.1717 0.1923 0.2021 0.2171 0.1724
24 circular_buffer_bad 0.9159 0.1301 0.2888 0.4226 0.5180 0.7114 0.9369
25 carter01_bad 0.4706 0.1591 0.2974 0.4043 0.5007 0.9583 0.4999
26 ctrace-test 0.2380 0.2755 0.3342 0.3459 0.3453 0.2099 0.4680
27 pbzip2-0.9.4 0.3768 0.2321 0.2736 0.3048 0.3245 0.3609 0.6268
28 stack_bad 0.6051 0.2800 0.4060 0.4811 0.5365 0.7352 0.6210
29 lazy01_bad 0.6089 0.5386 0.5645 0.5906 0.6112 0.6887 0.3313
30 streamcluster3 0.3523 0.4970 0.5020 0.4979 0.5009 0.4849 0.4421
31 aget-bug2 0.4961 0.3993 0.4691 0.5036 0.5285 0.6117 0.9395
32 barnes 0.5180 0.5050 0.5049 0.5048 0.5052 0.5043 0.4846
Geo-mean* 0.0380 0.0213 0.0459 0.0604 0.0692 0.0694 0.1795

Table 3. Bug hit ratios on macro benchmark programs

(1) assign a random priority to each event in a program; (2) repeatedly execute
the event with the highest priority; and (3) after executing an event, reassign
its racing events with random priorities. We have formally shown that POS has
an exponentially stronger probabilistic error-detection guarantee than existing
randomized scheduling algorithms. Evaluations have shown that POS is effective
in covering the partial-order space of micro-benchmarks and finding concurrency
bugs in real-world programs such as Firefox’s JavaScript engine SpiderMonkey.
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