A Software Checking Framework Using Distributed Model Checking and
Checkpoint/Resume of Virtualized PrOcess Domains

Nageswar Keetha

Leon Wu

Gail Kaiser Junfeng Yang

Department of Computer Science, Columbia University
{nk2340@, leon@cs., kaiser @cs., junfeng @cs. }columbia.edu

Abstract

Complexity and heterogeneity of the deployed software
applications often result in a wide range of dynamic states
at runtime. The corner cases of software failure during ex-
ecution often slip through the traditional software check-
ing. If the software checking infrastructure supports the
transparent checkpoint and resume of the live application
states, the checking system can preserve and replay the live
states in which the software failures occur. We introduce
a novel software checking framework that enables appli-
cation states including program behaviors and execution
contexts to be cloned and resumed on a computing cloud.
It employs (1) EXPLODE’s model checking engine for a
lightweight and general purpose software checking (2) ZAP
system for faster, low overhead and transparent checkpoint
and resume mechanism through virtualized PODs (PrOcess
Domains), which is a collection of host-independent pro-
cesses, and (3) scalable and distributed checking infrastruc-
ture based on Distributed EXPLODE. Efficient and portable
checkpoint/resume and replay mechanism employed in this
framework enables scalable software checking in order to
improve the reliability of software products. The evaluation
we conducted showed its feasibility, efficiency and applica-

bility.

1 Introduction

Producing reliable software conforming to all specifi-
cations for a given software product is a challenging task.
Software quality assurance accounts for more than half the
cost of software production. Despite increasing reliance
on today’s computing platforms, large software systems re-
main buggy, and will continue so in the foreseeable future.
Software errors have been reported to take lives [28] and
cost billions of dollars annually [34]. Hence, the study of
techniques to produce quality software has been active for
decades and there have been a wide variety of approaches
and tools combining static and dynamic analysis. Tech-
niques based on model checking as a formal analysis of pro-

gram behavior have been promising for both finding errors
and ensuring program properties. Message passing style
distributed software checkers [2, 10, 12] speed-up the soft-
ware checking effort by distributing application states using
messaging APIs. Once software failures are detected these
tools either capture the execution traces [1] or dump the ex-
ecution contexts so that developers can inspect and fix the
errors. However, software checking systems may not have
enough contexts to find the errors as the execution traces
don’t contain the live context of the execution environment
such as file system state, code and data pages.

Several checkpoint/restart mechanisms [16, 17] exist,for
example, library based checkpoint-restart mechanisms[18]
attempt to replace standard message-passing middleware
such as MPI [21, 23]. The library based approaches may
be used for a narrow range of applications as they can-
not use common operating system services to preserve pro-
cess level characteristics. However, ZAP and ZAPC [5] pro-
vide transparent Operating System level checkpoint-restart
mechanisms using kernel-level support and do not require
changes to code and allow a checkpoint at any time for the
distributed network applications. Capturing partial or full
live virtualized states has the following advantages for soft-
ware checking and error reporting 1) provides fault recov-
ery, 2) enables migration and dynamic load balancing and
3) while checking long running applications, it enables to
checkpoint/fork the states for checking and capturing the
buggy states.

This framework is implemented by utilizing the follow-
ing techniques:

Utilizing Distributed EXPLODE’s software checking:
EXPLODE’s engine [1] decides when to fork an execu-
tion of a general system to enable execution of different
checking paths, and provides techniques for collecting er-
ror traces and reproducing errors at developers’ sites. EX-
PLODE allows efficient scheduling of the forked executions,
and simplifies creating new checking techniques and com-
bining existing ones into more powerful techniques that find
software failures. Distributed EXPLODE [2] infrastruc-

ture frees tool builders from re-implementing capabilities
of EXPLODE’s engine, tool builders focus on the check-
ing logic and may employ a cloud of hosts on demand and
check the application states concurrently. EXPLODE takes
a lightweight snapshot of the state consisting of state’s sig-
nature (a hash compaction of an actual state), the trace (the
sequence of return values from its path decision function).
To restore the state, it replays the sequence of choices from
the initial state, however, when the traces are deeper, re-
constructing states is a slow, CPU intensive process and in
addition, reconstructed states don’t constitute their comput-
ing environments in which they are incubated. However,
utilizing checkpoint/resume technique now allows distribut-
ing checkpoints as live OS processes that retain their actual
computing environments. It also facilitates the use of dis-
tributed hash tables [15, 14] to achieve fair load balancing
and avoid redundant checking of the same executions on
different machines.

Utilizing the ZAP for Software Checking: Fast, effi-
cient and portable checkpoint/resume and replay mecha-
nisms are needed to capture and replay the live snapshots
of application states. In this framework, we implemented
these mechanisms through the use of an OS virtualization
layer [4] that handles group of OS processes with persistent
file system states,network sessions, and device inputs and
outputs. By checkpointing the forked executions and re-
suming them when/where there is an idle resource, we gain
flexibility in scheduling. Checkpointing should be faster to
clone application states within the normal execution context
and ZAP System [6, 5] demonstrates that its checkpoint and
resume mechanism is 3 to 55 times faster than OpenVZ and
5 to 1100 times faster than Xen project.

Software checking involves several active states at any
point in time, and pulling/migrating of states as POD im-
ages on a network file system is expensive, however, in
this framework instead of having one EXPLODE process per
POD we group several states into a POD so that the migra-
tion cost is reduced and distribution of states is faster. The
proposed mechanisms will also isolate the side-effects of
the executions forked by checking tools from the outside
world, and provide application developers the ability to de-
terministically replay error states since it distributes the ap-
plication states as live OS processes by forking, cloning and
resuming from within the POD. This paper is organized
as follows. Section 2 depicts architecture of distributed
software checking based on checkpoint/resume of PODs.
Section 3 presents implementation and preliminary results.
Section 4 discusses related work. Section 5 discusses limi-
tations of current version. Section 6 concludes.

2 Architecture

Software developers and tool builders can leverage this
framework by creating test drivers to verify the targeted ap-

plications. These drivers specify various choice points via
forking using the interface function choose(N) [1, 2]. Once
the checking engine attaches to the application at runtime,
it creates an initial state of the targeted application and in-
vokes the application in that state. At every choice point
where the checked system could perform one of N differ-
ent actions, it forks N child executions to explore each ac-
tion; each child action is treated as application state and an
optional call-back method is provided by tool builders to
compute a signature of the forked execution. These signa-
tures form a seen-set (a Distributed Hash Table) and this
set is used to discard the executions if their signatures are
already in the seen-set. These forking actions make rare ex-
ecutions appear as often as common ones, thereby quickly
driving the checked system into corner cases where subtle
bugs surface. Checking massive numbers of executions is
likely beyond the capability of any single host, however,
checking is a search over forked executions, and this search
is extremely parallelizable. In addition, EXPLODE performs
depth bound search to avoid explosive growth, however, a
variety of reduction techniques[27] and heuristics are avail-
able to make this search process less expensive.

When an error occurs, system provides a full or partial
snapshot of the execution context, so that developers can
reliably reproduce the error. Application states can be rep-
resented in three variants as 1) a lightweight state consisting
of a trace of recorded choices from the initial state, so that
system reconstructs the original state by replaying the se-
quence of recorded choices 2) a data only state consisting
of the snapshot of application’s data for the system to re-
store the state by copying the data back 3) a cloned state
consisting of the live checkpoint, to restore this state sys-
tem resumes the checkpoint. Hence in order to cloudify the
EXPLODE’s software checking infrastructure, if states are
represented as traces or data snapshots, then states are dis-
tributed via messaging. However, if states are captured as
live checkpoints of forked execution contexts then check-
point/resume mechanism provided by ZAP is used to dis-
tribute the cloned states. Moreover, users can adapt this
general and unified checking system to enable easy con-
structions of a stack of new checking schemes and drivers
that create opportunities to find more bugs and bugs that
cannot be found with each individual checking driver.

2.1 Checkpoint/Resume and Replay Mechanism

Checkpoint/resume and replay mechanisms must sup-
port several requirements for software checking: (1) check-
point and resume must be transparent, i.e., they should not
require end-user intervention or application changes; (2)
they must handle practical cases such as multiple processes
and persistent storage; (3) the checkpointing operation must
be fast, because it occurs within the normal execution of
a checked system; (4) checkpoint images must be serializ-

able, so our checking framework can migrate them to other
machines to balance load, or store them to disk to execute
later; and (5) since forked executions are “fake” executions
just for checking, they must be sandboxed to avoid any vis-
ible side-effects.

In order to meet the above requirements ZAP is an ef-
fective tool for checkpoint/resume and replay mechanisms.
Fundamental to ZAP’s design is the POD abstraction that
provides a collection of processes with a host-independent
virtualized view of the operating system. PODs have their
own private, virtual namespace, and are self-contained units
that can be suspended to secondary storage, migrated, and
transparently resumed. ZAP checkpoints, resumes PODs
without modification or limitations on the use of underlying
existing operating system. ZAP does stop the source process
for memory migration while pages are copied for check-
pointing to destination POD, however, it’s a low-overhead
mechanism since it occurs in the normal execution context
of the source POD. ZAP provides faster checkpointing func-
tionality and PODs decouple the capture of application states
from actually checking them; in our framework, we need
only make checkpointing fast, and can afford to slow down
the migration and resuming of states. ZAP also assumes that
commodity operating systems offer loadable kernel mod-
ules. However, ZAP doesn’t leave any residual dependen-
cies for cloning and migration of POD sessions.

2.2 Distributed Software
PODs

Checking through

A new initial POD is transparently constructed each time
an application is installed or run. When model check-
ing process within a POD generates a new state, a call is
made to ZapService, a RPC daemon that runs in user space,
from within the model checking process, then ZapService
issues commands to ZAP System to clone a new pod by
checkpointing and branching from the current state. Since
pPODs(potentially with multiple processes) can be suspend-
ed/resumed, branched and migrated across hosts, PODs are
resumed later by available resources. Checking becomes a
search over forked executions; this search is extremely par-
allelizable by adding several hosts. PODs isolate processes
from all other applications in user spaces, including other
instances of the same application, with its own view of OS
services, devices and the file system, preventing conflicts.
Figure 1 depicts the overview of the deployment architec-
ture on each host.

Names of the PODs are not unique and to make a
POD’s name unique, checking framework appends applica-
tion state’s unique identifier to the POD’s name when a new
state is generated, assigns this POD to a host so that we can
resume and run suspended states later by the host. POD con-
tains application-state as well as an instance of EXPLODE’s
model-checker; however, future implementations may run

User space processes

System Calls

Kernel

Figure 1. Architecture overview.

model checking engine in user space and actual application
states in POD to drive/fork the states while application is
being used.

For state distribution this framework, shown in figure 1,
uses ZapService, Queuing Service and the Seen-Set: 1) Zap
Service is installed on each host and redirects calls to Zap
System. EXPLODE processes in the POD issue commands
from within the model checking process to ZapService. The
cloned PODs can be resumed later by available resources
on the same host or can be migrated to distributed hosts,
2) Queuing Service is installed on each host and is a dis-
tributed service which runs in user space. Framework drives
the state space either in DFS or BFS manner, and assigns
each new state randomly to one of the active hosts by send-
ing the POD’s reference to a queue on the host for which
POD is assigned. An entry in a queue consists of POD’s
synthesized unique name and its location so that the system
can pull the POD and resume it, 3) Seen-Set is maintained
in the publicly available OpenDHT storage. Maintaining
and updating the visited states (Seen-Set) can slow down the
scalability of state exploration because the number of states
grows too fast. Hence, for scalability we partition this set
based on a DHT so that whenever a host generates a new
state it consults the seen-set to avoid duplicate effort. This
framework uses OpenDHT’s [15] Sun RPC put/get inter-
face over TCP for key and value pairs to be stored, it treats
state’s signature obtained by MDS5 or SHA1 as the key and
POD’s synthesized unique name as the value.

3 Implementation and Preliminary Results

We have implemented a version of our framework on
Linux, we created host machines through VM player to
mimic several hosts, we deployed dejaview [7] that imple-
ments Zap interface on each VM. In addition, we deployed
ZapService, local queuing service (stores the pointer refer-
ences of cloned and suspended PODs) and used OpenDHT
for the Seen-Set (which stores the signatures). We cre-
ated a sample application driver that attaches to EXPLODE’s

Figure 2. A screen-shot of running services
on a single host

model checking engine. To start generating the state space,
we created a POD session called eXplode_0 and attached the
EXPLODE model checking process(eXplode_proc) which
starts in initial state; once this process starts running in the
initial POD it triggers the state space generation and ex-
ploration, states automatically clone themselves into other
PODs upon encountering new states. As shown in the

2R root@apw-user: zap R |

Figure 3. All running pods exploring different
states in parallel. Implicitly forms Reachable
Graph as a pod tree

left terminal screen in figure 2, “dejaview add_proc eX-
plode_0 tmp/eXplode_proc” will trigger the state explo-
ration, ZapService daemon shown in the center screen (fig-
ure 2) receives commands from within the PODs and exe-
cutes commands to checkpoint, branch and resume PODs.
Once all the states are explored, part of the generated tree
of the states is displayed on the right screen in figure 2.
eXplode_ 0 generates two new states eXplode_1 and eX-
plode_2. eXplode_1 generates eXplode_3, eXplode_2 gen-
erates eXplode_4 and eXplode_5, this process continues and
we can visually note from the figure 3 that it forms the state
search graph consisting of PODs. In figure 3 while PODs

are running, using a client utility provided by ZAP system,
“thinc_client djvw-user 20002”, when remotely logged into
the explode_1 POD, figure 4 displays all the processes within
the POD. Figure 5 displays the processes in two POD ses-
sions running concurrently and shows running processes of
EXPLODE.

Systemanikar ==
Monitor Edit View Help

System [processes | Resources File Systems

Load averages fer the last 1, 5, 15 minutes: 1.66, 1.01, 0,61

Process Name A Status % CPU | Nice |ID Memory o
[gnome-panel sleeping 0 1 609 20068
&} gnormne-keyring-daemon Sleeping [} 1 585 3468
%) gconfd-2 sleeping (4] 1 502 335.2 MB
527 336.8 MB
518 361.0MB|
599 739.2 MB i
534 23GB ‘
342.0 MB ||
565 3420 MB ‘
576 19684
573 agcallv

A LB Slesping o
) djuw_runatk Slesping o
58 djvw_capture Sleeping o
) djvw_capture Sleeping 10
2 dbus-launch Sleeping
) dbus-daemon Slesping
& bonobo-activation-servel Sleeping

[SAENIE CFERNC AR A
il
-4
2

&2} at-spi-reqistrvd Sleepina

End Process

Figure 4. A cloned POD with EXPLODE pro-
cess inside

o tsting 4 8 4w sy 35, 112s 0 (9]

thin cliont
@O & B9 tion tay 25, 1130 8

Figure 5. Live PODs with EXPLODE processes

4 Related Work

Resource intensive and time-consuming software appli-
cations are generally distributed and utilize multiple hosts
in a cluster or over a cloud. Software checking tools for for-
mal verification are resource intensive. For Software check-
ing tools, a checkpoint/resume mechanism that is faster and
consistent and which runs on commodity operating sys-
tems is highly useful. There are several existing approaches
[8, 9, 18] for checkpoint, resume functionality. However
ZAP ZAPC [5] is more suitable for software checking as it
provides low overhead, fast and consistent checkpoint/re-
sume functionality on commodity operating systems. EX-
PLODE stores states explicitly for checking, checkpoint/re-

sume can be used for distributed checking and error report-
ing. In general, the stateless model checkers don’t explicitly
store the states and stateful model checkers store states ex-
plicitly. VeriSoft [27] and CHESS [19] are stateless model
checkers and consume more CPU cycles. EXPLODE [1],
CMCJ33], Java Path Finder(JPF), Murphi [12] are explicit
state enumerating model checkers and can utilize check-
point/resume mehanism. The fundamental problem faced
by all model checkers is very large number of reachable
states (state explosion). Model checkers apply state re-
duction techniques, apply depth bound on the reachability
graph in terms of context switches, path length, number of
bugs and exploration time. Murphi, SPIN [10] are also par-
allelized using message passing style interfaces where the
states are distributed as part of messages and reconstructed
as approximation to the original state, however, Distributed
EXPLODE now supports checkpointing of live states. The
in-vivo testing method [32] employs continuously executed
tests in the deployment environment. The Skoll project [31]
has extended the idea of “continuous” round-the-clock test-
ing [37] into the deployment environment by carefully man-
aged facilitation of the execution of tests at distributed in-
stallation sites, and then gathering the results back at a cen-
tral server. Their principal concern is that there are sim-
ply too many possible configurations and options to test in
the development environment, so tests are run on-site to
ensure proper quality assurance. Whereas the Skoll work
has mostly focused on acceptance testing of compilation
build and installation on different target platforms, and thus
runs when the application is first deployed at each site, this
framework seeks to execute software checking perpetually
in the application states including on production operation.

Other approaches include the monitoring, analysis and
profiling of deployed software. For example, the Gamma
system [36] introduces “software tomography” for dividing
monitoring tasks and reassembling gathered information;
this can then be used for on-site modification of the code
to fix defects. The principle difference is that Gamma is a
monitoring tool that passively measures path or data access
coverage, or memory access, and expects users to report
bugs. However, this framework checks the applications of
interest and automatically report any failures found along
with their traces or live checkpoints. Liblit’s work on Co-
operative Bug Isolation [29] enables large numbers of appli-
cation instances in the field to analyze themselves with low
performance impact, and then report their findings to a cen-
tral server, where statistical debugging is then used to help
developers isolate and fix bugs. Clause [26] has looked at
methods of recording, reproducing and minimizing failures
to enable and support in-house debugging, and Baah [22]
uses machine learning approaches to detect anomalies in
deployed software. All of these strategies could take ad-
vantage of our framework to enhance their implementation

and spread overhead across the clouds.

5 Limitations

In distributing forked executions, security and privacy
concerns are more important issues in a wide-area setting,
which future versions should improve on it. We plan to ex-
plore BambooDHT [15] in our lab for more reliable DHT
interface. Error reporting in the framework is not robust as
we have not compiled with ZAP API rather we have used
dejaview [7] interface for this implementation. The imple-
mentation details of synchronization among model check-
ing instances is not fully addressed, this is important since
resuming a checkpoint happens at the next instruction af-
ter the instruction from where it was branched. Some level
of synchronization may be needed to control the execution.
Since it’s not addressed, there may be some duplicate effort
by model checker, and however, we plan to address this in
future versions. Checking engine is also made part of POD
and cloned along with application state which is not neces-
sary and we plan to decouple this functionality to keep the
checking engine out of POD session.

6 Conclusion and Future Work

A number of recent techniques and tools have combined
ideas from program analysis and formal methods to make
software reliable. We have designed, implemented and
evaluated a framework for software checking via PODs on
Linux using ZAP and Distributed EXPLODE. This frame-
work utilizes, a thin virtualization layer to decouple appli-
cations from the underlying operating system instances, en-
abling them to checkpoint/migrate across different hosts. It
uses scalable and distributed checking infrastructure based
on Distributed EXPLODE. We demonstrated the feasibility
of checkpointing and resuming live states as part of model
checking effort. An application state per POD is expensive
while migration due to very large number of sates, how-
ever, in our system we can easily group several states or
processes per POD and migrate in order to reduce the net-
work overhead. We currently bound depth on the search
graph or bound the max number of states/bugs to avoid
state explosion. We’ll also employ techniques such as par-
tial order reductions to reduce the number of states to be
checked. However, this framework transparently and effi-
ciently checks the software using powerful yet easy-to-use
unified checking interface, checkpoint and replay checking
infrastructure and distributed checking infrastructure. The
future evaluation of this system involves building a collec-
tion of real checking tools using the framework infrastruc-
ture, applying the checking tools on real applications to see
their effectiveness, efficiency, performance overhead, and
scalability, and comparing these results with other tools.

7 Acknowledgments

We thank Jason Nieh and Oren Laadan for their help on

pod.

Keetha, Wu and Kaiser are members of the Program-

ming Systems Laboratory, funded in part by NSF CNS-
0717544, CNS-0627473, CNS-0426623, EIA-0202063,
and NIH 1 U54 CA121852-01A1. Yang is a member of
the Reliable Computer Systems Laboratory.

References

(1]
(2]

(3]

[4

[5

[6

[7

(8]

[9

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23

J. Yang, C. Sar, and D. Engler. Explode: a lightweight, general system for
finding serious storage system errors.

N. Keetha, L. Wu, G. Kaiser, and J. Yang. Distributed explode: A high-
performance model checking engine to scale up state-space coverage. Tech-
nical Report CUCS-051-08, Columbia University, 2008. In OSDI ’06.
USENIX, 2006.

S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and implementa-
tion of zap: A system for migrating computing environments. In OSDI "02.
USENIX, 2002.

S. Potter and J. Nieh. Reducing downtime due to system maintenance and
upgrades. In 19th Large Installation System Administration Conference, page
4762, 2005.

Oren Laadan, Dan Phung and Jason Nieh Transparent Checkpoint/Restart of
Distributed Applications on Commodity Clusters In PE International Con-
ference on Cluster Computing (Cluster 2005). Boston, MA, September 2005
Oren Laadan and Jason Nieh Transparent Checkpoint/Restart of Multiple Pro-
cesses on Commodity Operating Systems In Proceedings of the 2007 USENIX
Annual Technical Conference (USENIX 2007). Santa Clara, CA, June 2007
Oren Laadan, Ricardo A. Baratto, Dan Phung, Shaya Potter and Jason Nieh
“DejaView: A Personal Virtual Computer recorder” Proceedings of the 21th
ACM Symposium on Operating Systems Principles (SOSP 2007). Stevenson,
WA, October

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. C3: A System
for Automating Application-Level Checkpointing of MPI Programs In Pro-
ceedings of the 16th International Workshop on Languages and Compilers for
Parallel Computers (LCPC03), Oct. 2003

Y. Chen, J. S. Plank, and K. Li. CLIP - A Checkpointing Tool for Message-
Passing Parallel Programs In Proceedings of the Supercomputing, San Jose,
California, Nov. 1997

G. Holzmann and D. Bosnacki Multi-Core Model Checking with SPIN In
Proceedings of HIPS-TOPMoDRS. Long Beach, CA, 2007. IEEE.

U. Stern and D. L. Dill Improved Probabilistic Verification by Hash Com-
paction In Correct Hardware Design and Verification Methods volume 987,
pages 206-224, Stanford University, USA, 1995. Springer-Verlag

U. Stern and D. L. Dill Parallelizing the Murphi verifier. pages 256-278, 1997
R. Kumar and E. G. Mercer Load balancing parallel explicit state model
checking In Proceedings of the 3rd International Workshop on Parallel and
Distributed Methods in Verification pages 19-34, Apr. 2005.

ITon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-
cations In the Proceedings of ACM SIGCOMM 2001 San Deigo, CA, August
2001

Sean Rhea, P. Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Rat-
nasamy, Scott Shenker, Ion Stoica, and Harlan Yu OpenDHT: A Public DHT
Service and Its Uses In Proceedings of ACM SIGCOMM’05 Philadelphia,
PA, August 2005.

J. C. Sancho, F. Petrini, K. Davis, and R. Gioiosa Current Practice and a Di-
rection Forward in Checkpoint/Restart Implementations for Fault Tolerance
In Proceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS05) Denver, Colorado, Apr. 2005.

E. Roman A Survey of Checkpoint/Restart Implementations Technical report,
Berkeley Lab, 2002. Publication LBNL-54942.

T. Tannenbaum and M. Litzkow The Condor Distributed Processing System.
Dr. Dobbs Journal, (227):4048, Feb. 1995.

Madanlal Musuvathi, Shaz Qadeer, Tom Ball, Gerard Basler, P. Arumuga
Nainar, Iulian Neamtiu Finding and Reproducing Heisenbugs in Concurrent
Programs, OSDI 08.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
1. Stoica, and H. Yu. Opendht: a public dht service and its uses. In Proceed-
ings of the 2005 conference on Applications, technologies, architectures, and
protocols for computer communications. ACM, 2005.
Message Passing Interface [Online].
http://www.mcs.anl.gov/mpich

G. K. Baah, A. Gray, and M. J. Harrold. On-line anomaly detection of de-
ployed software: a statistical machine learning approach. In Proceedings of
the 3rd international workshop on Software quality assurance. ACM, 2006.
PVM: Parallel Virtual Machine. MIT Press, 2002.

Available:

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In Proceedings
of the Eighth Symposium on Operating Systems Design and Implementation,
2008.

M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with better pri-
vacy. In ASPLOS XIII: Proceedings of the 13th international conference
on Architectural support for programming languages and operating systems,
pages 319-328, Seattle, WA, USA, 2008. ACM.

J. Clause and A. Orso. A technique for enabling and supporting debugging of
field failures. In Proceedings of the 29th international conference on Software
Engineering. IEEE Computer Society, 2007.

P. Godefroid. Model checking for programming languages using verisoft. In
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 1997.

N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18—41, 1993.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation. ACM, 2003.

M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Software self-healing
using collaborative application communities. In Proc. of the Internet Soci-
ety (ISOC) Symposium on Network and Distributed Systems Security (NDSS
2006), 2006.

A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and
B. Natarajan. Skoll: Distributed continuous quality assurance. Microsoft.
http://support.microsoft.com/kb/283768/,2009.

C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of software
applications using the in vivo testing approach.

In 2nd IEEE International Conference on Software Testing, Verification and
Validation, 2009.

M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. Cmc:
a pragmatic approach to model checking real code. SIGOPS Oper. Syst. Rev.,
36(SI):75-88, 2002.

M. Newman. The economic impacts of inadequate infrastructure for software
testing. Technical report, National Institute of Standards and Technology,
2002.

U. of California at Berkeley. Open-source software for volunteer computing
and grid computing. http://boinc.berkeley.edu/, 2009.

A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma system: continuous
evolution of software after deployment. In Proceedings of the 2005 confer-
ence on Applications, technologies, architectures, and protocols for computer
communications. ACM, 2005.

D. Saff and M. D. Ernst. An experimental evaluation of continuous testing
during development. In Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. ACM, 2004.

L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in
the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev.,
39(1):50-55, 2009.

Wikipedia. Guanyin. http://en.wikipedia.org/wiki/Guan_Yin,
2009.

J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automatically generating
malicious disks using symbolic execution. pages 243-257, 2006.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking to
find serious file system errors. ACM Trans. Comput. Syst., 24(4):393-423,
2006.

