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Abstract

Multithreaded programs are hard to get right. A key rea-

son is that the contract between developers and runtimes

grants exponentially many schedules to the runtimes.

We present PARROT, a simple, practical runtime with a

new contract to developers. By default, it orders thread

synchronizations in the well-defined round-robin order,

vastly reducing schedules to provide determinism (more

precisely, deterministic synchronizations) and stability

(i.e., robustness against input or code perturbations, a

more useful property than determinism). When default

schedules are slow, it allows developers to write intu-

itive performance hints in their code to switch or add

schedules for speed. We believe this “meet in the mid-

dle” contract eases writing correct, efficient programs.

We further present an ecosystem formed by integrat-

ing PARROT with a model checker called DBUG. This

ecosystem is more effective than either system alone:

DBUG checks the schedules that matter to PARROT, and

PARROT greatly increases the coverage of DBUG.

Results on a diverse set of 108 programs, roughly 10×

more than any prior evaluation, show that PARROT is

easy to use (averaging 1.2 lines of hints per program);

achieves low overhead (6.9% for 55 real-world pro-

grams and 12.7% for all 108 programs), 10× better than

two prior systems; scales well to the maximum allowed

cores on a 24-core server and to different scales/types

of workloads; and increases DBUG’s coverage by 106–

1019734 for 56 programs. PARROT’s source code, en-

tire benchmark suite, and raw results are available at

github.com/columbia/smt-mc.

Categories and Subject Descriptors: D.4.5 [Operating Sys-

tems]: Threads, Reliability; D.2.4 [Software Engineering]:

Software/Program Verification;

General Terms: Algorithms, Design, Reliability, Performance
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1 Introduction

1.1 Background

Our accelerating computational demand and the rise of

multicore hardware have made multithreaded programs

pervasive and critical. Yet, these programs remain ex-

tremely difficult to write, test, analyze, debug, and ver-

ify. A key reason is that, for decades, the contract be-

tween developers and thread runtimes has favored per-

formance over correctness. In this contract, developers

use synchronizations to coordinate threads, while thread

runtimes can use any of the exponentially many thread

interleavings, or schedules, compliant with the synchro-

nizations. This large number of possible schedules make

it more likely to find an efficient schedule for a work-

load, but ensuring that all schedules are free of con-

currency bugs is extremely challenging, and a single

missed schedule may surface in the least expected mo-

ment, causing critical failures [33, 37, 52, 68].

Several recent systems aim to flip this performance vs

correctness tradeoff by reducing the number of allowed

schedules. Among them, deterministic multithreading

(DMT) systems [6, 9, 11, 12, 16–18, 34, 43] reduce

schedules by mapping each input to only one schedule,

so that executions of the same program on the same input

always show the same behavior. DMT is commonly be-

lieved to simplify testing, debugging, record-replay, and

replication of multithreaded programs.

However, we argue that determinism is not as useful

as commonly perceived: it is neither sufficient nor nec-

essary for reliability [69, 70]. It is not sufficient because

it is quite narrow (“same input + same program = same

behavior”) and has no jurisdiction if the input or pro-

gram changes however slightly. For instance, a perfectly

deterministic system can map each input to an arbitrary

schedule, so that flipping an input bit or adding a line

of debug code leads to vastly different schedules, arti-

ficially reducing the program’s robustness against input

and program perturbations, or stability. Yet stability is

crucial for reliability (e.g., after testing some inputs, de-

velopers often anticipate that the program work on many

similar inputs). Determinism is not necessary for relia-

bility because a nondeterministic system with a small

set of schedules for all inputs can be made reliable by

exhaustively checking all schedules.

We propose a better approach we call stable multi-

github.com/columbia/smt-mc


threading (StableMT) [69, 70] that reuses each schedule

on a wide range of inputs, mapping all inputs to a dra-

matically reduced set of schedules. For instance, under

most setups, StableMT reduces the number of schedules

needed by parallel compression utility PBZip2 down to

two schedules for each different number of threads, re-

gardless of the file contents [17]. By vastly shrinking the

set of schedules, StableMT makes it extremely easy to

find the schedules that cause concurrency bugs. Specif-

ically, StableMT greatly increases the coverage of tools

that systematically test schedules for bugs [22, 41, 57,

67]. It also greatly improves the precision and simplic-

ity of program analysis [63], verification [63], and de-

bugging, which can now focus on a much smaller set of

schedules. Moreover, StableMT makes programs robust

against small input or program perturbations, bringing

stability into multithreading.

StableMT is not mutually exclusive with DMT.

Grace [12], TERN [16], Determinator [6], PERE-

GRINE [17], and DTHREADS [34] may all be classified

as both deterministic and stable. Prior work [6, 16, 17,

34], including ours [16, 17], conflated determinism and

stability, but they are actually separate properties.

Figure 1 compares traditional multithreading, DMT,

and StableMT. Figure 1a depicts traditional multithread-

ing, a conceptual many-to-many mapping between in-

puts and schedules. Figure 1b depicts a DMT system

that maps each input to an arbitrary schedule, artificially

destabilizing program behaviors. Figures 1c and 1d de-

pict two StableMT systems: the many-to-one mapping in

Figure 1c is deterministic, while the many-to-few map-

ping in Figure 1d is nondeterministic. A many-to-few

mapping improves performance by giving the runtime

choices, but it increases the checking effort needed for

reliability. Fortunately, the choice of schedules is mini-

mal, so that tools can easily achieve high coverage.

1.2 Challenges

Although the latest advances are promising, two im-

portant challenges remain unaddressed. First, can the

DMT and StableMT approaches consistently achieve

good performance on a wide range of programs? For in-

stance, we observed that a prior system, DTHREADS,

had 5× to 100× slowdown on some programs. Second,

can they be made simple and adoptable? These chal-

lenges are not helped much by the limited evaluation

of prior systems which often used (1) synthetic bench-

marks, not real-world programs, from incomplete bench-

mark suites; (2) one workload per program; and (3) at

most 8 cores (with three exceptions; see §8).

These challenges are intermingled. Reducing sched-

ules improves correctness but trades performance be-

cause the schedules left may not balance each thread’s

load well, causing some threads to idle unnecessarily.

Our experiments show that ignoring load imbalance as

in DTHREADS can lead to pathological slowdown if the

order of operations enforced by a schedule serializes the

intended parallel computations (§7.3). To recover perfor-

mance, one method is to count the instructions executed

by each thread and select schedules that balance the in-

struction counts [9, 18, 43], but this method is not stable

because input or program perturbations easily change

the instruction counts. The other method (we proposed)

lets the nondeterministic OS scheduler select a reason-

ably fast schedule and reuses the schedule on compati-

ble inputs [16, 17], but it requires sophisticated program

analysis, complicating deployment.

1.3 Contributions

This paper makes three contributions. First, we present

PARROT,1 a simple, practical runtime that efficiently

makes threads deterministic and stable by offering a new

contract to developers. By default, it schedules synchro-

nizations in each thread using round-robin, vastly reduc-

ing schedules and providing broad repeatability. When

default schedules are slow, it allows advanced develop-

ers to add intuitive performance hints to their code for

speed. Developers discover where to add hints through

profiling as usual, and PARROT simplifies performance

debugging by deterministically reproducing the bottle-

necks. The hints are robust to developer mistakes as they

can be safely ignored without affecting correctness.

Like prior systems, PARROT’s contract reduces sched-

ules to favor correctness over performance. Unlike prior

systems, it allows advanced developers to optimize per-

formance. We believe this practical “meet in the middle”

contract eases writing correct, efficient programs.

PARROT provides two performance hint abstractions.

A soft barrier encourages the scheduler to coschedule a

group of threads at given program points. It is for perfor-

mance only, and operates as a barrier with deterministic

timeouts in PARROT. Developers use it to switch to faster

schedules without compromising determinism when the

default schedules serialize parallel computations (§2.1).

A performance critical section informs the scheduler

that a code region is a potential bottleneck, encourag-

ing the scheduler to get through the region fast. When

a thread enters a performance critical section, PARROT

delegates scheduling to the nondeterministic OS sched-

uler for speed. Performance critical sections may trade

some determinism for performance, so they should be

applied only when the schedules they add are thoroughly

checked by tools or advanced developers. These simple

abstractions let PARROT run fast on all programs evalu-

ated, and may benefit other DMT or StableMT systems

and classic nondeterministic schedulers [5, 19, 46].

Our PARROT implementation is Pthreads-compatible,

1We name our system after one of the most trainable birds.
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Figure 1: Different multithreading approaches. Stars in red represent schedules that cause concurrency bugs.

simplifying deployment. It handles many diverse con-

structs real-world programs depend upon such as net-

work operations and timeouts. PARROT makes synchro-

nizations outside performance critical sections determin-

istic but allows nondeterministic data races. Although

it is straightforward to make data races deterministic in

PARROT, we deemed it not worthwhile because the cost

of doing so outweighs the benefits (§6). PARROT’s de-

terminism is similar to Kendo’s weak determinism [43],

but PARROT offers stability which Kendo lacks.

Our second contribution is an ecosystem formed by

integrating PARROT with DBUG [57], an open source

model checker for distributed and multithreaded Linux

programs that systematically checks possible sched-

ules for bugs. This PARROT-DBUG ecosystem is more

effective than either system alone: DBUG checks the

schedules that matter to PARROT and developers (e.g.,

schedules added by performance critical sections), and

PARROT greatly increases DBUG’s coverage by reduc-

ing the schedules DBUG has to check (the state space).

Our integration is transparent to DBUG and requires only

minor changes to PARROT. It lets PARROT effectively

leverage advanced model checking techniques [21, 23].

Third, we quantitatively show that PARROT achieves

good performance and high model checking coverage on

a diverse set of 108 programs. The programs include 55

real-world programs, such as Berkeley DB [13], OpenL-

DAP [45], Redis [54], MPlayer [39], all 33 parallel

C++ STL algorithm implementations [59] which use

OpenMP, and all 14 parallel image processing utilities

(also OpenMP) in the ImageMagick [26] software suite.

Further, they include all 53 programs in four widely

used benchmark suites: PARSEC [2], Phoenix [53],

SPLASH-2x [58], and NPB [42]. We used complete

software or benchmark suites to avoid biasing our re-

sults. The programs together cover many different par-

allel programming models and idioms such as threads,

OpenMP [14], fork-join, map-reduce, pipeline, and

workpile. To our knowledge, our evaluation uses roughly

10× more programs than any prior DMT or StableMT

evaluation, and 4× more than all prior evaluations com-

bined. Our experiments show:

1. PARROT is easy to use. It averages only 1.2 lines

of hints per program to get good performance, and

adding hints is fast. Of all 108 programs, 18 need no

hints, 81 need soft barriers which do not affect deter-

minism, and only 9 programs need performance crit-

ical sections to trade some determinism for speed.

2. PARROT has low overhead. At the maximum allowed

(16–24) cores, PARROT’s geometric mean overhead

is 6.9% for 55 real-world programs, 19.0% for the

other 53 programs, and 12.7% for all.

3. On 25 programs that two prior systems

DTHREADS [34] and COREDET [9] can both

handle, PARROT’s overhead is 11.8% whereas

DTHREADS’s is 150.0% and COREDET’s 115.1%.

4. PARROT scales well to the maximum allowed cores

on our 24-core server and to at least three different

scales/types of workloads per program.

5. PARROT-DBUG offers exponential coverage increase

compared to DBUG alone. PARROT helps DBUG re-

duce the state space by 106–1019734 for 56 pro-

grams and increase the number of verified programs

from 43 to 99 under our test setups. These verified

programs include all 4 real-world programs out of

the 9 programs that need performance critical sec-

tions, so they enjoy both speed and reliability. These

quantitative reliability results help potential PARROT

adopters justify the overhead.

We have released PARROT’s source code, entire

benchmark suite, and raw results [1]. In the remaining of

this paper, §2 contrasts PARROT with prior systems on

an example and gives an overview of PARROT’s archi-

tecture. §3 describes the performance hint abstractions

PARROT provides, §4 the PARROT runtime, and §5 the

PARROT-DBUG ecosystem. §6 discusses PARROT’s de-

terminism, §7 presents evaluation results, §8 discusses

related work, and §9 concludes.

2 Overview

This section first compares two prior systems and

PARROT using an example (§2.1), and then describes

PARROT’s architecture (§2.2).

2.1 An Example

Figure 2 shows the example, a simplified version of

the parallel compression utility PBZip2 [3]. It uses the

common producer-consumer idiom: the producer (main)



1 : int main(int argc, char *argv[ ]) {
2 : . . .
3 : soba init(nthreads); /* performance hint */

4 : for (i = 0; i < nthreads; ++i)
5 : pthread create(. . ., NULL, consumer, NULL);
6 : for (i = 0; i < nblocks; ++i) {
7 : char *block = read block(i);
8 : pthread mutex lock(&mu);
9 : enqueue(q, block);
10: pthread cond signal(&cv);
11: pthread mutex unlock(&mu);
12: }
13: . . .
14: }
15: void *consumer(void *arg) {
16: while(1) {
17: pthread mutex lock(&mu);
18: while (empty(q)) // termination logic elided for clarity

19: pthread cond wait(&cv, &mu);
20: char *block = dequeue(q);
21: pthread mutex unlock(&mu);
22: . . .
23: soba wait(); /* performance hint */

24: compress(block);
25: }
26: }

Figure 2: Simplified PBZip2. It uses the producer-consumer

idiom to compress a file in parallel.

producer

pthread_mutex_lock

pthread_cond_signal

pthread_mutex_unlock

read_block()

(IDLE)

consumer 1

pthread_cond_wait returns

pthread_mutex_unlock

compress()

consumer 2

pthread_mutex_lock

pthread_cond_wait

(WAITING)

global barrier

global barrier

S
e

ri
a

l
P

a
ra

lle
l

…
…

…
…
…

Figure 3: A DTHREADS schedule. All compress calls are

serialized. read block runs much faster than compress.

thread reads file blocks, and multiple consumer threads

compress them in parallel. Once the number of threads

and the number of blocks are given, one synchronization

schedule suffices to compress any file, regardless of file

content or size. Thus, this program appears easy to make

deterministic and stable. However, prior systems suffer

from various problems doing so, illustrated below using

two representative, open-source systems.

COREDET [9] represents DMT systems that balance

load by counting instructions each thread has run [9, 10,

18, 25, 43]. While the schedules computed may have

reasonable overhead, minor input or program changes

perturb the instruction counts and subsequently the

schedules, destabilizing program behaviors. When run-

ning the example with COREDET on eight different files,

we observed five different synchronization schedules.

This instability is counterintuitive and raises new reli-

ability challenges. For instance, testing one input pro-

vides little assurance for very similar inputs. Reproduc-
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Figure 4: A PARROT schedule with performance hints.

ing a bug may require every bit of the bug-inducing in-

put, including the data a user typed, environment vari-

ables, shared libraries, etc. Missing one bit may deter-

ministically hide the bug. COREDET also relies on static

analysis to detect and count shared memory load and

store instructions, but the inherent imprecision of static

analysis causes it to instrument unnecessary accesses,

resulting in high overhead. On this example, COREDET

causes a 4.2× slowdown over nondeterministic execu-

tion with a 400 MB file and 16 threads.

DTHREADS [34] represents StableMT systems that

ignore load imbalance among threads. It works by alter-

nating between a serial and a parallel phase, separated

by global barriers. In a serial phase, it lets each thread

do one synchronization in order. In a parallel phase, it

lets threads run until all of them are about to do syn-

chronizations. A parallel phase lasts as long as the slow-

est thread, and is oblivious to the execution times of

the other threads. When running the example with two

threads, we observed the DTHREADS schedule in Fig-

ure 3. This schedule is stable because it can compress

any file, but it is also very slow because it serializes all

compress calls. We observed 7.7× slowdown with 16

threads; and more threads give bigger slowdowns.

This serialization problem is not specific to only

DTHREADS. Rather, it is general to all StableMT sys-

tems that ignore load imbalance.

Running the example with PARROT is easy; users do

$ LD_PRELOAD=./parrot.so program args...

During the execution, PARROT intercepts Pthreads syn-

chronizations. Without the hints at lines 3 and 23,

PARROT schedules the synchronizations using round-

robin. This schedule also serializes the compress calls,

yielding the same slowdown as DTHREADS. Develop-

ers can easily detect this performance problem with sam-

ple runs, and PARROT simplifies performance debugging

by deterministically reproducing the problem and re-

porting synchronizations excessively delayed by round-

robin (e.g., the return of pthread cond wait here).

To solve the serialization problem, we added a soft

barrier at lines 3 and 23. Line 3 informs PARROT that the

program has a coscheduling group involving nthreads
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threads, and line 23 is the starting point of coschedul-

ing. With these hints, PARROT switched to the schedule

in Figure 4 which ran compress in parallel, achieving

0.8% overhead compared to nondeterministic execution.

A soft barrier is different from classic synchronizations

and can be safely ignored without affecting correctness.

For instance, if the file blocks cannot be evenly divided

among the threads, the soft barrier will time out on the

last round of input blocks. Moreover, for reasonable per-

formance, we need to align only time-consuming com-

putations (e.g., compress, not read block).

2.2 Architecture

Figure 5 shows PARROT’s architecture. We designed

PARROT to be simple and deployable. It consists of

a deterministic user-space scheduler, implementation

of hints, a set of wrapper functions for intercepting

Pthreads, network, and timeout operations. For simplic-

ity, the scheduler schedules only synchronizations, and

delegates everything else, such as assigning threads to

CPU cores, to the OS scheduler. The wrapper functions

typically call into the scheduler for round-robin schedul-

ing, then delegate the actual implementation to Pthreads

or the OS. Synchronizations in performance critical sec-

tions and inherently nondeterministic operations (e.g.,

recv) are scheduled by the OS scheduler.

3 Performance Hint Abstractions

PARROT provides two performance-hint abstractions: a

soft barrier and a performance critical section. This sec-

tion describes these abstractions and their usage.

3.1 Soft Barrier

A soft barrier encourages the scheduler to coschedule a

group of threads at given program points. It is for per-

formance only, and a scheduler can ignore it without af-

fecting correctness. It operates as a barrier with deter-

ministic timeouts in PARROT, helping PARROT switch

to faster schedules that avoid serializing parallel compu-

tations. The interface is

void soba init(int group size, void *key, int timeout);

void soba wait(void *key);

One thread calls soba init(N, key, timeout) to

initialize the barrier named key, logically indicating

that a group of N threads will be spawned. Subse-

quently, any thread which calls soba wait(key) will

block until either (1) N-1 other threads have also called

soba wait(key) or (2) timeout time has elapsed since

the first thread arrived at the barrier. This timeout is

made deterministic by PARROT (§4.1). soba init can

be called multiple times: if the number of cosched-

uled threads varies but is known at runtime, the soft

barrier can be initialized before each use. Both key

and timeout in soba init are optional. An absent

key refers to a unique anonymous barrier. An absent

timeout initializes the barrier with the default timeout.

A soft barrier may help developers express coschedul-

ing intent to classic nondeterministic schedulers [46].

One advantage is that it makes the group of threads and

program points explicit. It is more robust to developer

mistakes than a real barrier [19] for coscheduling pur-

poses because schedulers cannot ignore a real barrier.

3.2 Performance Critical Section

A performance critical section identifies a code region

as a potential bottleneck and encourages the scheduler to

get through the region fast. When a thread enters a per-

formance critical section, PARROT removes the thread

from the round-robin scheduling and delegates it to the

OS scheduler for nondeterministic execution. PARROT

thus gains speed from allowing additional schedules.

The interface is

void pcs enter();

void pcs exit();

The pcs enter function marks the entry of a perfor-

mance critical section and pcs exit the exit.

3.3 Usage of the Two Hints

Soft barrier. Developers should generally use soft bar-

riers to align high-level, time-consuming parallel com-

putations, such as the compress calls in PBZip2. A

generic method is to use performance debugging tools

or PARROT’s logs to detect synchronizations exces-

sively delayed by PARROT’s round-robin scheduling,

then identify the serialized parallel computations.

A second method is to add soft barriers based on paral-

lel computation patterns. Below we describe how to do

so based on four parallel computation patterns we ob-

served from the 108 evaluated programs.

• Data partition. Data is partitioned among worker

threads, and each worker thread computes on a par-

tition. This pattern is the most common; 86 out

of the 108 programs follow this pattern, including

the programs with fork-join parallelism. Most pro-

grams with this pattern need no soft barriers. In rare

cases when soft barriers are needed, developers can

add soba wait before each worker’s computation.



These soft barriers often work extremely well.

• Pipeline. The threads are split into stages of a

pipeline, and each item in the workload flows

through the pipeline stages. ferret, dedup, vips,

and x264 from PARSEC [2] follow this pattern.

These programs often need soft barriers because

threads have different roles and thus do different syn-

chronizations, causing default schedules to serialize

computations. The methodology is to align the most

time-consuming stages of the pipeline.

• Map-reduce. Programs with this pattern use both

data partition and pipeline, so the methodology fol-

lows both: align the map function and, if the reduce

function runs for roughly the same amount of time

as the map function, align reduce with map.

• Workpile. The workload consists of a pile of inde-

pendent work items, processed by worker threads

running in parallel. Among the programs we evalu-

ated, Berkeley DB, OpenLDAP, Redis, pfscan, and

aget fall in this category. These programs often need

no soft barriers because it typically takes similar

times to process most items.

Performance critical section. Unlike a soft barrier, a

performance critical section may trade some determin-

ism for performance. Consequently, it should be ap-

plied with caution, only when (1) a code region imposes

high performance overhead on deterministic execution

and (2) the additional schedules have been thoroughly

checked by tools or advanced developers. Fortunately,

both conditions are often easy to meet because the syn-

chronizations causing high performance overhead are

often low-level synchronizations (e.g., lock operations

protecting a shared counter), straightforward to analyze

with local reasoning or model checkers.

Of all 108 evaluated programs, only 9 need perfor-

mance critical sections for reasonable performance; all

other 99 programs need not trade determinism for per-

formance. Moreover, PARROT-DBUG verified all sched-

ules in all 4 real-world programs that need performance

critical sections, providing high assurance.

Developers can identify where to add performance

critical sections also using performance debugging tools.

For instance, frequent synchronizations with medium

round-robin delays are often good candidates for a per-

formance critical section. Developers can also focus

on such patterns as synchronizations in a tight loop,

synchronizations inside an abstraction boundary (e.g.,

lock() inside a custom memory allocator), and tiny

critical sections (e.g., “lock(); x++; unlock();”).

4 PARROT Runtime

The PARROT runtime contains implementation of the

hint abstractions (§4.3) and a set of wrapper functions

that intercept Pthreads (§4.2), network (§4.4), and time-

void get turn(void);
void put turn(void);
int wait(void *addr, int timeout);

void signal(void *addr);
void broadcast(void *addr);
void nondet begin(void);
void nondet end(void);

Table 1: Scheduler primitives.

out (§4.5) operations. The wrappers interpose dynam-

ically loaded library calls via LD PRELOAD and “trap”

the calls into PARROT’s deterministic scheduler (§4.1).

Instead of reimplementing the operations from scratch,

these wrappers leverage existing runtimes, greatly sim-

plifying PARROT’s implementation, deployment, and

inter-operation with code that assumes standard run-

times (e.g., debuggers).

4.1 Scheduler

The scheduler intercepts synchronization calls and re-

leases threads using the well-understood, deterministic

round-robin algorithm: the first thread enters synchro-

nization first, the second thread second, ..., and repeat.

It does not control non-synchronization code, often the

majority of code, which runs in parallel. It maintains a

queue of runnable threads (run queue) and another queue

of waiting threads (wait queue), like typical schedulers.

Only the head of the run queue may enter synchroniza-

tion next. Once the synchronization call is executed,

PARROT updates the queues accordingly. For instance,

for pthread create, PARROT appends the new thread

to the tail of the run queue and rotates the head to the tail.

By maintaining its own queues, PARROT avoids nonde-

terminism in the OS scheduler and the Pthreads library.

To implement operations in the PARROT runtime,

the scheduler provides a monitor-like internal interface,

shown in Table 1. The first five functions map one-to-one

to functions of a typical monitor, except the scheduler

functions are deterministic. The last two are for selec-

tively reverting to nondeterministic execution. The rest

of this subsection describes these functions.

The get turn function waits until the calling thread

becomes the head of the run queue, i.e., the thread gets

a “turn” to do a synchronization. The put turn func-

tion rotates the calling thread from the head to the tail

of the run queue, i.e., the thread gives up a turn. The

wait function is similar to pthread cond timedwait.

It requires that the calling thread has the turn. It records

the address the thread is waiting for and the timeout

(see next paragraph), and moves the calling thread to

the tail of the wait queue. The thread is moved to the

tail of the run queue when (1) another thread wakes it

up via signal or broadcast or (2) the timeout has

expired. The wait function returns when the calling

thread gets a turn again. Its return value indicates how

the thread was woken up. The signal(void *addr)



int wrap mutex lock(pthread mutex t *mu){
scheduler.get turn();
while(pthread mutex trylock(mu))

scheduler.wait(mu, 0);
scheduler.put turn();
return 0; /* error handling is omitted for clarity. */

}
int wrap mutex unlock(pthread mutex t *mu){

scheduler.get turn();
pthread mutex unlock(mu);
scheduler.signal(mu);
scheduler.put turn();
return 0; /* error handling is omitted for clarity. */

}

Figure 6: Wrappers of Pthreads mutex lock&unlock.

function appends the first thread waiting for addr to the

run queue. The broadcast(void *addr) function ap-

pends all threads waiting for addr to the run queue in

order. Both signal and broadcast require the turn.

The timeout in the wait function does not specify

real time, but relative logical time that counts the number

of turns executed since the beginning of current execu-

tion. In each call to the get turn function, PARROT in-

crements this logical time and checks for timeouts. (If all

threads block, PARROT keeps the logic time advancing

with an idle thread; see §4.5.) The wait function takes

a relative timeout argument. If current logical time is tl ,

a timeout of 10 means waking up the thread at logical

time tl +10. A wait(NULL, timeout) call is a logical

sleep, and a wait(addr, 0) call never times out.

The last two functions in Table 1 support perfor-

mance critical sections and network operations. They set

the calling thread’s execution mode to nondeterminis-

tic or deterministic. PARROT always schedules synchro-

nizations of deterministic threads using round-robin,

but it lets the OS scheduler schedule nondeterministic

threads. Implementation-wise, the nondet begin func-

tion marks the calling thread as nondeterministic and

simply returns. This thread will be lazily removed from

the run queue by the thread that next tries to pass the

turn to it. (Next paragraph explains why the lazy update.)

The nondet end function marks the calling thread as

deterministic and appends it to an additional queue. This

thread will be lazily appended to the run queue by the

next thread getting the turn.

We have optimized the multicore scheduler imple-

mentation for the most frequent operations: get turn,

put turn, wait, and signal. Each thread has an inte-

ger flag and condition variable. The get turn function

spin-waits on the current thread’s flag for a while be-

fore block-waiting on the condition variable. The wait

function needs to get the turn before it returns, so it

uses the same combined spin- and block-wait strategy as

the get turn function. The put turn and the signal

functions signal both the flag and the condition variable

of the next thread. In the common case, these operations

int wrap cond wait(pthread cond t *cv,pthread mutex t *mu){
scheduler.get turn();
pthread mutex unlock(mu);
scheduler.signal(mu);
scheduler.wait(cv, 0);
while(pthread mutex trylock(mu))

scheduler.wait(mu, 0);
scheduler.put turn();
return 0; /* error handling is omitted for clarity. */

}

Figure 7: Wrapper of pthread cond wait.

acquire no lock and do not block-wait. The lazy updates

above simplify the implementation of this optimization

by maintaining the invariant that only the head of the run

queue can modify the run and wait queues.

4.2 Synchronizations

PARROT handles all synchronizations on Pthreads mu-

texes, read-write locks, condition variables, semaphores,

and barriers. It also handles thread creation, join, and

exit. It need not implement the other Pthreads func-

tions such as thread ID operations, another advantage of

leveraging existing Pthreads runtimes. In total, PARROT

has 38 synchronization wrappers. They ensure a total

(round-robin) order of synchronizations by (1) using the

scheduler primitives to ensure that at most one wrapper

has the turn and (2) executing the actual synchroniza-

tions only when the turn is held.

Figure 6 shows the pseudo code of our Pthreads mu-

tex lock and unlock wrappers. Both are quite simple; so

are most other wrappers. The lock wrapper uses the try-

version of the Pthreads lock operation to avoid deadlock:

if the head of run queue is blocked waiting for a lock be-

fore giving up the turn, no other thread can get the turn.

Figure 7 shows the pthread cond wait wrapper. It

is slightly more complex than the lock and unlock wrap-

pers for two reasons. First, there is no try-version of

pthread cond wait, so PARROT cannot use the same

trick to avoid deadlock as in the lock wrapper. Sec-

ond, PARROT must ensure that unlocking the mutex

and waiting on the conditional variable are atomic (to

avoid the well-known lost-wakeup problem). PARROT

solves these issues by implementing the wait with the

scheduler’s wait which atomically gives up the turn and

blocks the calling thread on the wait queue. The wrapper

of pthread cond signal (not shown) calls the sched-

uler’s signal accordingly.

Thread creation is the most complex of all wrappers

for two reasons. First, it must deterministically assign

a logical thread ID to the newly created thread because

the system’s thread IDs are nondeterministic. Second, it

must also prevent the new thread from using the logical

ID before the ID is assigned. PARROT solves these issues

by synchronizing the current and new threads with two

semaphores, one to make the new thread wait for the



current thread to assign an ID, and the other to make the

current thread wait until the child gets the ID.

4.3 Performance Hints

PARROT implements performance hints using the sched-

uler primitives. It implements the soft barrier as a

reusable barrier with a deterministic timeout. It imple-

ments the performance critical section by simply calling

nondet begin() and nondet end().

One tricky issue is that deterministic and nondeter-

ministic executions may interfere. Consider a determin-

istic thread t1 trying to lock a mutex that a nondetermin-

istic t2 is trying to unlock. Nondeterministic thread t2 al-

ways “wins” because the timing of t2’s unlock directly

influences t1’s lock regardless of how hard PARROT

tries to run t1 deterministically. An additional concern

is deadlock: PARROT may move t1 to the wait queue but

never wake t1 up because it cannot see t2’s unlock.

To avoid the above interference, PARROT requires that

synchronization variables accessed in nondeterministic

execution are isolated from those accessed in determin-

istic execution. This strong isolation is easy to achieve

based on our experiments because, as discussed in §3,

the synchronizations causing high overhead on deter-

ministic execution tend to be low-level synchronizations

already isolated from other synchronizations. To help

developers write performance critical sections that con-

form to strong isolation, PARROT checks this property at

runtime: it tracks two sets of synchronization variables

accessed within deterministic and nondeterministic exe-

cutions, and emits a warning when the two sets overlap.

Strong isolation is considerably stronger than necessary:

to avoid interference, it suffices to forbid deterministic

and nondeterministic sections from concurrently access-

ing the same synchronization variables. We have not im-

plemented this weak isolation because strong isolation

works well for all programs evaluated.

4.4 Network Operations

To handle network operations, PARROT leverages the

nondet begin and nondet end primitives. Before a

blocking operation such as recv, it calls nondet begin

to hand the thread to the OS scheduler. When the opera-

tion returns, PARROT calls nondet end to add the thread

back to deterministic scheduling. PARROT supports 33

network operations such as send, recv, accept, and

epoll wait. This list suffices to run all evaluated pro-

grams that require network operations (Berkeley DB,

OpenLDAP, Redis, and aget).

4.5 Timeouts

Real-world programs frequently use timeouts (e.g.,

sleep, epoll wait, and pthread cond timedwait)

for periodic activities or timed waits. Not handling

them can lead to nondeterministic execution and dead-

locks. One deadlock example in our evaluation was

running PBZip2 with DTHREADS: DTHREADS ignores

the timeout in pthread cond timedwait, but PBZip2

sometimes relies on the timeout to finish.

PARROT makes timeouts deterministic by proportion-

ally converting them to a logical timeout. When a thread

registers a relative timeout that fires ∆tr later in real time,

PARROT converts ∆tr to a relative logical timeout ∆tr/R

where R is a configurable conversion ratio. (R defaults

to 3 µs, which works for all evaluated programs.) Pro-

portional conversion is better than a fixed logical time-

out because it matches developer intents better (e.g.,

important activities run more often). A nice fallout is

that it makes some non-terminating executions terminate

for model checking (§7.6). Of course, PARROT’s logical

time corresponds loosely to real time, and may be less

useful for real-time applications.2

When all threads are on the wait queue, PARROT

spawns an idle thread to keep the logical time flowing.

The thread repeatedly gets the turn, sleeps for time R,

and gives up the turn. An alternative to idling is fast-

forwarding [10, 67]. Our experiments show that using an

idle thread has better performance than fast-forwarding

because the latter often wakes up threads prematurely

before the pending external events (e.g., receiving a net-

work packet) are done, wasting CPU cycles.

PARROT handles all common timed operations such as

sleep and pthread cond timedwait, enough for all

five evaluated programs that require timeouts (PBZip2,

Berkeley DB, MPlayer, ImageMagick, and Redis).

Pthreads timed synchronizations use absolute time, so

PARROT provides developers a function set base time

to pass in the base time. It uses the delta between the

base time and the absolute time argument as ∆tr.

5 PARROT-DBUG Ecosystem

Model checking is a formal verification technique that

systematically explores possible executions of a pro-

gram for bugs. These executions together form a state

space graph, where states are snapshots of the run-

ning program and edges are nondeterministic events that

move the execution from one state to another. This state

space is typically very large, impossible to completely

explore—the so-called state-space explosion problem.

To mitigate this problem, researchers have created many

heuristics [31, 40, 65] to guide the exploration to-

ward executions deemed more interesting, but heuris-

tics have a risk of missing bugs. State-space reduction

techniques [21–23] soundly prune executions without

missing bugs, but the effectiveness of these techniques

is limited. They work by discovering equivalence: given

that execution e1 is correct if and only if e2 is, we need

2 dOS [10] discussed the possibility of converting real time to log-

ical time but did not present how.



check only one of them. Unfortunately, equivalence is

rare and extremely challenging to find, especially for

implementation-level model checkers which check im-

plementations directly [22, 31, 40, 57, 65, 66]. This diffi-

culty is reflected in the existence of only two main reduc-

tion techniques [21, 23] for these implementation-level

model checkers. Moreover, as a checked system scales,

the state space after reduction still grows too large to

fully explore. Despite decades of efforts, state-space ex-

plosion remains the bane of model checking.

As discussed in §1, integrating StableMT and model

checking is mutually beneficial. By reducing schedules,

StableMT offers an extremely simple, effective way to

mitigate and sometimes completely solve the state-space

explosion problem without requiring equivalence. For

instance, PARROT enables DBUG to verify 99 programs,

including 4 programs containing performance critical

sections (§7.6). In return, model checking helps check

the schedules that matter for PARROT and developers.

For instance, it can check the default schedules chosen

by PARROT, the faster schedules developers choose us-

ing soft barriers, or the schedules developers add using

performance critical sections.

5.1 The DBUG Model Checker

In principle, PARROT can be integrated with many model

checkers. We chose DBUG [57] for three reasons. First,

it is open source, checks implementations directly, and

supports Pthreads synchronizations and Linux socket

calls. Second, it implements one of the most advanced

state-space reduction techniques—dynamic partial order

reduction (DPOR) [21], so the further reduction PARROT

achieves is more valuable. Third, DBUG can estimate the

size of the state space based on the executions explored,

a technique particularly useful for estimating the reduc-

tion PARROT can achieve when the state space explodes.

Specifically, DBUG represents the state space as an ex-

ecution tree where nodes are states and edges are choices

representing the operations executed. A path leading

from the root to a leaf encodes a unique test execution

as a sequence of nondeterministic operations. The total

number of such paths is the state space size. To estimate

this size based on a set of explored paths, DBUG uses the

weighted backtrack estimator [30], an online variant of

Knuth’s offline technique for tree size estimation [32]. It

treats the set of explored paths as a sample of all paths

assuming uniform distribution over edges, and computes

the state space size as the number of explored paths di-

vided by the aggregated probability they are explored.

5.2 Integrating PARROT and DBUG

A key integration challenge is that both PARROT and

DBUG control the order of nondeterministic operations

and may interfere, causing difficult-to-diagnose false

positives. A naı̈ve solution is to replicate PARROT’s

scheduling algorithm inside DBUG. This approach is not

only labor-intensive, but also risky because the repli-

cated algorithm may diverge from the real one, deviating

the checked schedules from the actual ones.

Fortunately, the integration is greatly simplified be-

cause performance critical sections make nondeter-

minism explicit, and DBUG can ignore operations

that PARROT runs deterministically. PARROT’s strong-

isolation semantics further prevent interference between

PARROT and DBUG. Our integration uses a nested-

scheduler architecture similar to Figure 5 except the

nondeterministic scheduler is DBUG. This architec-

ture is transparent to DBUG, and requires only mi-

nor changes (243 lines) to PARROT. First, we modified

nondet begin and nondet end to turn DBUG on and

off. Second, since DBUG explores event orders only af-

ter it has received the full set of concurrent events, we

modified PARROT to notify DBUG when a thread tran-

sitions between the run queue and the wait queue in

PARROT. These notifications help DBUG accurately de-

termine when all threads in the system are waiting for

DBUG to make a scheduling decision.

We found two pleasant surprises in the integration.

First, soft barriers speed up DBUG executions. Second,

PARROT’s deterministic timeout (§4.5) prevents DBUG

from possibly having to explore infinitely many sched-

ules. Consider the “while(!done) sleep(30);” loop

which can normally nondeterministically repeat any

number of times before making progress. This code

has only one schedule with PARROT-DBUG because

PARROT makes the sleep return deterministically.

6 Determinism Discussion

PARROT’s determinism is relative to three factors: (1)

external input (data and timing), (2) performance critical

sections, and (3) data races w.r.t. the enforced synchro-

nization schedules. Factor 1 is inherently nondetermin-

istic, and PARROT mitigates it by reusing schedules on

inputs. Factor 2 is developer-intended. Factor 3 can be

easily eliminated, but we deemed it not worthwhile. Be-

low we explain how to make data races deterministic in

PARROT and why it is not worthwhile.

We designed a simple memory commit protocol to

make data races deterministic in PARROT, similar to

those in previous work [6, 12, 34]. Each thread main-

tains a private, copy-on-write mapping of shared mem-

ory. When a thread has the turn, it commits updates

and fetches other threads’ updates by merging its private

mapping with shared memory. Since only one thread has

the turn, all commits are serialized, making data races

deterministic. (Threads running nondeterministically in

performance critical sections access shared memory di-

rectly as intended.) This protocol may also improve



speed by reducing false sharing [34]. Implementing it

can leverage existing code [34].

We deemed the effort not worthwhile for three rea-

sons. First, making data races deterministic is often

costly. Second, many races are ad hoc synchronizations

(e.g., “while(flag);”) [64] which require manual an-

notations anyway in some prior systems that make races

deterministic [12, 34]. Third, most importantly, we be-

lieve that stability is much more useful for reliability

than full determinism: once the set of schedules is much

reduced, we can afford the nondeterminism introduced

by a few data races. Specifically, prior work has shown

that data races rarely occur if a synchronization sched-

ule is enforced. For instance, PEREGRINE [17] reported

at most 10 races in millions of shared memory accesses

within an execution. To reproduce failures caused by the

few races, we can search through a small set of sched-

ules (e.g., fewer than 96 for an Apache race caused by a

real workload [49]). Similarly, we can detect the races by

model checking a small set of schedules [41]. In short,

by vastly reducing schedules, StableMT makes the prob-

lems caused by nondeterminism easy to solve.

7 Evaluation

We evaluated PARROT on a diverse set of 108 pro-

grams. This set includes 55 real-world programs: Berke-

ley DB, a widely used database library [13]; OpenL-

DAP, a server implementing the Lightweight Directory

Access Protocol [45]; Redis, a fast key-value data store

server [54]; MPlayer, a popular media encoder, decoder,

and player [39]; PBZip2, a parallel compression util-

ity [3]; pfscan, a parallel grep-like utility [51]; aget, a

parallel file download utility [4]; all 33 parallel C++ STL

algorithm implementations [59] which use OpenMP;

all 14 parallel image processing utilities (which also

use OpenMP) in the ImageMagick software suite [26]

to create, edit, compose, or convert bitmap images.

The set also includes all 53 programs in four widely

used benchmark suites including 15 in PARSEC [2],

14 in Phoenix [53], 14 in SPLASH-2x [58], and 10

in NPB [42]. The Phoenix benchmark suite provides

two implementations per algorithm, one using regu-

lar Pthreads (marked with -pthread suffix) and the

other using a map-reduce library atop Pthreads. We used

complete software or benchmark suites to avoid bias-

ing our results. The programs together cover a good

range of parallel programming models and idioms such

as threads, OpenMP, data partition, fork-join, pipeline,

map-reduce, and workpile. To the best of our knowl-

edge, our evaluation of PARROT represents 10× more

programs than any prior DMT or StableMT evaluation,

and 4× more than all prior evaluations combined.

Our evaluation machine was a 2.80 GHz dual-socket

hex-core Intel Xeon with 24 hyper-threading cores and

64 GB memory running Linux 3.2.14. Unless otherwise

specified, we used the maximum number of truly con-

current threads allowed by the machine and programs.

For 83 out of the 108 programs, we used 24. For 13 pro-

grams, we used 16 because they require the number of

threads be a power of two. For ferret, we used 18 be-

cause it requires the number of threads to be 4n+2. For

MPlayer, we used 8, the max it takes. For the other 10

programs, we used 16 because they reach peak perfor-

mance with this thread count. In scalability experiments,

we varied the number of threads from 4 to the max.

Unless otherwise specified, we used the following

workloads. For Berkeley DB, we used a popular bench-

mark bench3n [8], which does fine-grained, highly con-

current transactions. For both OpenLDAP and Redis,

we used the benchmarks the developers themselves use,

which come with the code. For MPlayer, we used its util-

ity mencoder to transcode a 255 MB video (OSDI ’12

keynote) from MP4 to AVI. For PBZip2, we compressed

and decompressed a 145 MB binary file. For pfscan,

we searched for the keyword return in all 16K files in

/usr/include on our evaluation machine. For aget,

we downloaded a 656 MB file. For all ImageMagick pro-

grams, we used a 33 MB JPG. For all 33 parallel STL

algorithms, we used integer vectors with 4G elements.

For PARSEC, SPLASH-2x, and Phoenix, we used the

largest workloads because they are considered “real” by

the benchmark authors. For NPB, we used the second

largest workloads because the largest workloads are in-

tended for supercomputers. In workload sensitivity ex-

periments, we used workloads of 3 or 4 different scales

per program, typically with a 10× difference between

scales. We also tried 15 different types of workloads for

Redis and 5 for MPlayer. All workloads ran from a few

seconds to about 0.5 hour, using 100 or 10 repetitions

respectively to bring the standard error below 1%. All

overhead means are geometric.

We compiled all programs using gcc -O2. To sup-

port OpenMP programs such as parallel STL algo-

rithms, we used the GNU libgomp. When evaluating

PARROT on the client program aget and the server pro-

grams OpenLDAP and Redis, we ran both endpoints

on the same machine to avoid network latency. 5 pro-

grams use ad hoc synchronization [64], and we added a

sched yield to the busy-wait loops to make the pro-

grams work with PARROT. 5 programs use Pthreads

timed operations, and we added set base time (§4.5)

to them. We set the spin-wait of PARROT’s scheduler to

105 cycles. We used the default soft barrier timeout of 20

except 3,000 for ferret. Some Phoenix programs read

large files, so we ran them with a warm file cache to fo-

cus on measuring their computation time. (Cold-cache

results are unusable due to large variations [1].)

The rest of this section focuses on six questions:



Program Lines

mencoder, vips, swaptions, freqmine, facesim, 2 each

x264, radiosity, radix, kmeans,

linear-regression-pthread, linear-regression,

matrix-multiply-pthread, matrix-multiply,

word-count-pthread, string-match-pthread,

string-match, histogram-pthread, histogram

PBZip2, ferret, 3 each

kmeans-pthread, pca-pthread, pca, word-count

libgomp, bodytrack 4 each

ImageMagick (12 programs) 25 total

Table 2: Stats of soft barrier hints. 81 programs need soft

barrier hints. The hints in libgomp benefit all OpenMP

programs including ImageMagick, STL, and NPB.

§7.1: Is PARROT easy to use? How many hints are needed

to make the programs with PARROT fast?

§7.2: Is PARROT fast? How effective are the hints?

§7.3: How does it compare to prior systems?

§7.4: How does its performance vary according to core

counts and workload scales/types?

§7.5: Is it deterministic in the absence of data races?

§7.6: How much does it improve DBUG’s coverage?

7.1 Ease of Use

Of all 108 programs, 18 have reasonable overhead with

default schedules, requiring no hints. 81 programs need

a total of 87 lines of soft barrier hints: 43 need only 4

lines of generic soft barrier hints in libgomp, and 38

need program-specific soft barriers (Table 2). These pro-

grams enjoy both determinism and reasonable perfor-

mance. Only 9 programs need a total of 22 lines of per-

formance critical section hints to trade some determin-

ism for performance (Table 3). On average, each pro-

gram needs only 1.2 lines.

In our experience, adding hints was straightforward.

It took roughly 0.5–2 hours per program despite unfa-

miliarity with the programs. We believe the programs’

developers would spend much less time adding better

hints. PARROT helped us deterministically reproduce the

bottlenecks and identify the synchronizations delayed

by round-robin. We used Intel VTune [60] and Linux

perf [50] performance counter-based tools to identify

time-consuming computations, and usually needed to

align only the top two or three computations. For in-

stance, ferret uses a pipeline of six stages, all seri-

alized by the PARROT’s default schedules. We aligned

only two of them to bring the overhead down to a rea-

sonable level. Aligning more stages did not help.

7.2 Performance

Figure 8 compares PARROT’s performance to nondeter-

ministic execution. Even with the maximum number of

threads (16–24), the mean overhead is small: 6.9% for

real-world programs, 19.0% for benchmark programs,

and 12.7% for all programs. Only seven programs had

over 100% overhead. The ferret, freqmine, and is

Program Lines Nondet Sync Var

pfscan 2 matches lock

partition 2 result lock

fluidanimate 6 mutex[i][j]

fmm 2 lock array[i]

cholesky 2 tasks[i].taskLock

raytrace 2 ridlock

ua 6 tlock[i]

Table 3: Stats of performance critical section hints. 9

programs need performance critical section hints. The

hints in partition are generic for three STL programs

partition, nth element, and partial sort. The last col-

umn shows the synchronization variables whose operations

are made nondeterministic.

benchmarks had dynamic load imbalance even with the

starting points of the computations aligned with soft

barrier hints. ua also had load imbalance even after

performance critical section hints are added. x264 is

a pipeline program, and its overhead comes from the

soft barrier timeouts during the pipeline startup and

teardown. rtview raytrace and barnes have low-

level synchronizations in tight loops, and their overhead

may be further reduced with performance critical sec-

tions. Four programs, mencoder, bodytrack-openmp,

facesim, and linear-regression-pthread, en-

joyed big speedups, so we analyzed their executions

with profiling tools. We found that the number of

mencoder’s context switches due to synchronization

decreased from 1.9M with nondeterministic execu-

tions to 921 with PARROT. The reason of the context

switch savings was that PARROT’s round-robin schedul-

ing reduced contention and its synchronizations use

a more efficient wait that combines spin- and block-

waits (§4.1). bodytrack-openmp and facesim enjoyed

a similar benefit. So did another 19 programs which

had 10× fewer context switches with PARROT [1].

linear-regression-pthread’s stalled cycles were

reduced by 10× with PARROT, and we speculate that

PARROT’s scheduler improved its affinity. (See [1] for

all results on microarchitectural events.)

Figure 9 compares PARROT’s performance with and

without hints. For all the 90 programs that have hints,

their mean overhead was reduced from 510% to 11.9%

Program Success Timeout

convert shear 725 1

bodytrack 60,071 2,611

ferret 699 2

vips 3,311 6

x264 39,480 148,470

radiosity 200,316 7,266

histogram 167 1

kmeans 1,470 196

pca 119 2

pca-pthread 84 1

string-match 64 1

word-count 15,468 11

Table 4: Soft barrier successes and timeouts.
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Figure 8: PARROT’s performance normalized over nondeterministic execution. The patterns of the bars show the types of the

hints the programs need: no hints, generic soft barriers in libgomp, program-specific soft barriers, or performance critical

sections. The mean overhead is 12.7% (indicated by the horizontal line).
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Figure 9: Effects of performance hints. They reduced PARROT’s overhead from 510% to 11.9%.

after hints were added. The four lines of generic soft bar-

rier hints in libgomp (Table 2) reduced the mean over-

head from 500% to 0.8% for 43 programs, program-

specific soft barriers from 460% to 19.1% for 38 pro-

grams, and performance critical sections from 830% to

42.1% for 9 programs. Soft barriers timed out on 12 pro-

grams (Table 4), which affected neither determinism nor

correctness. The kmeans experienced over 10% time-

outs, causing higher overhead. x264 experienced many

timeouts but enjoyed partial coscheduling benefits (§3).

7.3 Comparison to Prior Systems

We compared PARROT’s performance to DTHREADS

and COREDET. We configured both to provide the same

determinism guarantee as PARROT,3 so their overhead

3While Kendo’s determinism guarantee is closest to PARROT’s, we

tried and failed to acquire its code.

measured only the overhead to make synchronizations

deterministic. One caveat is that neither system is spe-

cially optimized for this purpose. We managed to make

only 25 programs work with both systems because not

both of them support programming constructs such as

read-write locks, semaphores, thread local storage, net-

work operations, and timeouts. These programs are all

benchmarks, not real-world programs.

Figure 10 shows the comparison results. PARROT’s

mean overhead is 11.8%, whereas DTHREADS’s is

150.0% and COREDET’s is 115.1%. DTHREADS’s

overhead is mainly from serializing parallel compu-

tations. dedup, ferret, fluidanimate, barnes,

radiosity, and raytrace have over 500% overhead.

fluidanimate is the slowest, whose threads wasted

59.3% of their time waiting for the other threads

to do synchronizations. Without fluidanimate,
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Figure 10: PARROT, DTHREADS, and COREDET overhead.

DTHREADS’s overhead is still 112.5%. (Performance

hints may also help DTHREADS mitigate the seri-

alization problem.) COREDET’s overhead is mainly

from counting instructions. ferret, fluidanimate,

barnes, and raytrace have over 300% overhead.

7.4 Scalability and Sensitivity

We measured PARROT’s scalability on our 24-core ma-

chine. All programs varied within 40.0% from each pro-

gram’s mean overhead across different core counts ex-

cept ferret (57.4%), vips (46.7%), volrend (43.1%),

and linear-regression-pthread (57.1%). Some of

these four programs use pipelines, so more threads lead

to more soft barrier timeouts during pipeline startup and

teardown. We also measured PARROT’s scalability on

three or four different workload scales as defined by

the benchmark authors. All programs varied within 60%

from each program’s mean overhead across different

scales except 14 programs, of which 9 varied from 60%–

100%, 3 from 100%–150%, and 2 above 150%. The

2 programs, partition and radiosity, went above

150% because their smaller workloads run too short. For

instance, radiosity’s native workload runs for over

200s, but its large workload runs for less than 3s and

medium and small workloads for less than 0.4s. We

also ran Redis on 15 types of workloads, and mencoder

on 5. The overhead did not vary much. To summarize,

PARROT’s performance is robust to core count and work-

load scale/type. (See [1] for detailed scalability results.)

7.5 Determinism

We evaluated PARROT’s determinism by verifying that

it computed the same schedules given the same input.

For all programs except those with performance criti-

cal sections, ad hoc synchronizations, and network op-

erations, PARROT is deterministic. Our current way of

marking ad hoc synchronization causes nondetermin-

ism; annotations [64] can solve this problem. We also

evaluated PARROT’s determinism using a modified ver-

sion of racey [24] that protects each shared memory

Bin # of Programs State Space Size with DBUG

A 27 1 ∼ 14

B 18 28 ∼ 47,330

C 25 3.99×106 ∼ 1.06×10473

D 25 4.75×10511 ∼ 2.10×1019734

Table 5: Estimated DBUG’s state space sizes on programs

with no performance critical section nor network operation.

access with a lock. In racey, each different schedule

leads to a different result with high probability. We exe-

cuted our modified racey 1,000 times without PARROT,

and saw 1,000 different results. With PARROT, it always

computed the same result.

7.6 Model Checking Coverage

To evaluate coverage, we used small workloads and two

threads per workload. Otherwise, the time and space

overhead of DBUG, or model checking in general, be-

comes prohibitive. Consequently, PARROT’s reduction

measured with small state spaces is a conservative es-

timate of its potential. Two programs, volrend and ua,

were excluded because they have too many synchroniza-

tion operations (e.g., 132M for ua), causing DBUG to run

out of memory. Since model checking requires a closed

(no-input) system, we paired aget with lightweight

web server Mongoose [38]). We enabled state-of-the-art

DPOR [21] to evaluate how much more PARROT can re-

duce the state space. We checked each program for a

maximum of one day or until the checking session fin-

ished. We then compared the estimated state space sizes.

Table 5 bins all 95 programs that contain (1) no net-

work operations and (2) either no hints or only soft barri-

ers. For each program, PARROT-DBUG reduced the state

space down to just one schedule and finished in 2 sec-

onds. DBUG alone could finish only 43 (out of 45 in bin

A and B) within the time limit.

Table 6 shows the results for all 11 programs contain-

ing network operations or performance critical sections.

For all four real-world programs pfscan, partition,

nth element, and partial sort, PARROT-DBUG ef-

fectively explored all schedules in seven hours or less,

providing a strong reliability guarantee. These results

also demonstrate the power of PARROT: the programs

Program DBUG PARROT-DBUG Time

OpenLDAP 2.40×102795 5.70×101048 No

Redis 1.26×108 9.11×107 No

pfscan 2.43×102117 32,268 1,201s

aget 2.05×1017 5.11×1010 No

nth element 1.35×107 8,224 309s

partial sort 1.37×107 8,194 307s

partition 1.37×107 8,194 307s

fluidanimate 2.72×10218 2.64×10218 No

cholesky 1.81×10371 5.99×10152 No

fmm 1.25×1078 2.14×1054 No

raytrace 1.08×1013863 3.68×1013755 No

Table 6: Estimated state space sizes for programs contain-

ing performance critical sections. PARROT-DBUG finished 4

real-world programs (time in last column), and DBUG none.



can use the checked schedules at runtime for speed.

To summarize, PARROT reduced the state space by

106–1019734 for 56 programs (50 programs in Table 5, 6

in Table 6). It increased the number of verified programs

from 43 to 99 (95 programs in Table 5, 4 in Table 6).

8 Related Work

DMT and StableMT systems. Conceptually, prior

work [6, 16, 17, 34], including ours [16, 17], conflated

determinism and stability. To our knowledge, we are the

first to distinguish these two separate properties [69, 70].

Implementation-wise, several prior systems are not

backward-compatible because they require new hard-

ware [18], new language [15], or new programming

model and OS [6]. Among backward-compatible sys-

tems, some DMT systems, including Kendo [43], CORE-

DET [9], and COREDET-related systems [10, 25], im-

prove performance by balancing each thread’s load with

low-level instruction counts, so they are not stable.

Five systems can be classified as StableMT sys-

tems. Our TERN [16] and PEREGRINE [17] systems re-

quire sophisticated program analysis to determine input

and schedule compatibility, complicating deployment.

Bergan et al [11] built upon the ideas in TERN and

PEREGRINE to statically compute a small set of sched-

ules covering all inputs, an undecidable problem in gen-

eral. Grace [12] and DTHREADS [34] ignore thread load

imbalance, so they are prone to the serialization problem

(§2.1). Grace also requires fork-join parallelism.

Compared to PARROT’s evaluation, prior evaluations

have several limitations. First, prior work has reported

results on a narrow set of programs, typically less than

15. The programs are mostly synthetic benchmarks,

not real-world programs, from incomplete suites. Sec-

ond, the experimental setups are limited, often with one

workload per program and up to 8 cores.4

Lastly, little prior work except ours [63] has demon-

strated how the approaches benefit testing or reported

any quantitative results on improving reliability, making

it difficult for potential adopters to justify the overhead.

State-space reduction. PARROT greatly reduces the

state space of model checking, so it bears similarity to

state-space reduction techniques (e.g., [21–23]). Partial

order reduction [21, 22] has been the main reduction

technique for model checkers that check implementa-

tions directly [57, 67]. It detects permutations of inde-

pendent events, and checks only one permutation be-

cause all should lead to the same behavior. Recently, we

proposed dynamic interface reduction [23] that checks

loosely coupled components separately, avoiding expen-

sive global exploration of all components. However, this

4Three exceptions used more than 8 cores: [44] (ran a 12-line

program on 48 cores), [7] (ran 9 selected programs from PARSEC,

SPLASH-2x, and NPB on 32 cores), and [18] (emulated 16 cores).

technique has yet to be shown to work well for tightly

coupled components such as threads communicating via

synchronizations and shared memory.

PARROT offers three advantages over reduction tech-

niques (§5): (1) it is much simpler because it does not

need equivalence to reduce state space; (2) it remains ef-

fective as the checked system scales; and (3) it works

transparently to reduction techniques, so it can be com-

bined with them for further reduction. The disadvantage

is that PARROT has runtime overhead.

Concurrency. Automatic mutual exclusion (AME) [27]

assumes all shared memory is implicitly protected and

allows advanced developers the flexibility to remove

protection. It thus shares a similar high-level philos-

ophy with PARROT, but the differences are obvious.

We are unaware of any publication describing a fully

implemented AME system. PARROT is orthogonal to

much prior work on concurrency error detection [20,

35, 36, 55, 71, 72], diagnosis [47, 48, 56], and correc-

tion [28, 29, 61, 62]. By reducing schedules, it poten-

tially benefits all these techniques.

9 Conclusion

We have presented PARROT, a simple, practical

Pthreads-compatible system for making threads deter-

ministic and stable. It offers a new contract to devel-

opers. By default, it schedules synchronizations using

round-robin, vastly reducing schedules. When the de-

fault schedules are slow, it allows developers to write

performance hints for speed. We believe this contract

eases writing correct, efficient programs. We have also

presented an ecosystem formed by integrating PARROT

with model checker DBUG, so that DBUG can thoroughly

check PARROT’s schedules, and PARROT can greatly im-

prove DBUG’s coverage. Results on a diverse set of 108

programs, roughly 10× more than any prior evaluation,

show that PARROT is easy to use, fast, and scalable; and

it improves DBUG’s coverage by many orders of mag-

nitude. We have released PARROT’s source code, en-

tire benchmark suite, and raw results at github.com/

columbia/smt-mc.
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