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Abstract. Although deep networks achieve strong accuracy on a range
of computer vision benchmarks, they remain vulnerable to adversarial
attacks, where imperceptible input perturbations fool the network. We
present both theoretical and empirical analyses that connect the adver-
sarial robustness of a model to the number of tasks that it is trained
on. Experiments on two datasets show that attack difficulty increases as
the number of target tasks increase. Moreover, our results suggest that
when models are trained on multiple tasks at once, they become more
robust to adversarial attacks on individual tasks. While adversarial de-
fense remains an open challenge, our results suggest that deep networks
are vulnerable partly because they are trained on too few tasks.

Keywords: Multi-task Learning, Adversarial Robustness

1 Introduction

Deep networks obtain high performance in many computer vision tasks [20, 59,
33, 19], yet they remain brittle to adversarial examples. A large body of work has
demonstrated that images with human-imperceptible noise [36, 4, 12, 41] can be
crafted to cause the model to mispredict. This pervasiveness of adversarial ex-
amples exposes key limitations of deep networks, and hampers their deployment
in safety-critical applications, such as autonomous driving.

A growing body of research has been dedicated to answering what causes deep
networks to be fragile to adversarial examples and how to improve robustness
[48, 14, 37, 36, 22, 56, 51, 43, 8, 50]. The investigations center around two factors:
the training data and the optimization procedure. For instance, more training
data – both labeled and unlabeled – improves robustness [44, 53]. It has been
theoretically shown that decreasing the input dimensionality of data improves
robustness [48]. Adversarial training [36] improves robustness by dynamically
augmenting the training data using generated adversarial examples. Similarly,
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Fig. 1: We find that multitask models are more robust against adversarial attacks.
Training a model to solve multiple tasks improves the robustness when one task
is attacked. The middle and right column show predictions for single-task and
multitask models when one task is adversarially attacked.

optimization procedures that regularize the learning specifically with robustness
losses have been proposed [57, 8]. This body of work suggests that the fragility
of deep networks may stem from the training data and optimization procedure.

In this paper, we pursue a new line of investigation: how learning on multiple
tasks affects adversarial robustness. While previous work shows that multitask
learning can improve the performance of specific tasks [5, 49], we show that it
increases robustness too. See Figure 1. Unlike prior work that trades off per-
formance between natural and adversarial examples [52], our work improves
adversarial robustness while also maintaining performance on natural examples.

Using the first order vulnerability of neural networks [48], we theoretically
show that increasing output dimensionality – treating each output dimension as
an individual task – improves the robustness of the entire model. Perturbations
needed to attack multiple output dimensions cancel each other out. We formally
quantify and upper bound how much robustness a multitask model gains against
a multitask attack with increasing output dimensionality.

We further empirically show that multitask learning improves the model
robustness for two classes of attack: both when a single task is attacked or several
tasks are simultaneously attacked. We experiment with up to 11 vision tasks on
two natural image datasets, Cityscapes [9] and Taskonomy [61]. When all tasks
are under attack, multitask learning increases segmentation robustness by up
to 7 points and reduces the error of other tasks up to 60% over baselines. We
compare the robustness of a model trained for a main task with and without an
auxiliary task. Results show that, when the main task is under attack, multitask
learning improves segmentation overlap by up to 6 points and reduces the error
of the other tasks by up to 23%. Moreover, multitask training is a complementary
defense to adversarial training, and it improves both the clean and adversarial
performance of the state-of-the-art, adversarially trained, single-task models.
Code is available at https://github.com/columbia/MTRobust.

Overall, our experiments show that multitask learning improves adversarial
robustness while maintaining most of the the state-of-the-art single-task model
performance. While defending against adversarial attacks remains an open prob-

https://github.com/columbia/MTRobust
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lem, our results suggest that current deep networks are vulnerable partly because
they are trained for too few tasks.

2 Related Work

We briefly review related work in multitask learning and adversarial attacks.

Multitask Learning: Multitask learning [5, 16, 11, 26, 49] aims to solve
several tasks at once, and has been used to learn better models for semantic
segmentation [29], depth estimation [54], key-point prediction [24], and object
detection [30]. It is hypothesized that multitask learning improves the perfor-
mance of select tasks by introducing a knowledge-based inductive bias [5]. How-
ever, multi-objective functions are hard to optimize, where researchers design
architectures [21, 25, 35, 39, 31] and optimization procedures [6, 13, 46, 60] for
learning better multitask models. Our work complements this body of work by
linking multitask learning to adversarial robustness.

Adversarial Attacks: Current adversarial attacks manipulate the input
[50, 12, 10, 3, 7, 47, 55, 38] to fool target models. While attacking single output
models [18, 27] is straightforward, Arnab et. al. [3] empirically shows the inher-
ent hardness of attacking segmentation models with dense output. Theoretical
insight of this robustness gain, however, is missing in the literature. While past
theoretical work showed the hardness of multi-objective optimization [17, 45],
we leverage this motivation and prove that multitask models are robust when
tasks are simultaneously attacked. Our work contributes both theoretical and
empirical insights on adversarial attacks through the lens of multitask learning.

Adversarial Robustness: Adversarial training improves models’ robust-
ness against attacks, where the training data is augmented using adversarial sam-
ples [18, 36]. In combination with adversarial training, later works [22, 37, 62, 56]
achieve improved robustness by regularizing the feature representations with ad-
ditional loss, which can be viewed as adding additional tasks. Despite the im-
provement of robustness, adversarially trained models lose significant accuracy
on clean (unperturbed) examples [36, 62, 52]. Moreover, generating adversarial
samples slows down training several-fold, which makes it hard to scale adversar-
ial training to large datasets.

Past work revealed that model robustness is strongly connected to the gra-
dient of the input, where models’ robustness is improved by regularizing the
gradient norm [42, 57, 8]. Parseval [8] regularizes the Lipschitz constant—the
maximum norm of gradient—of the neural network to produce a robust clas-
sifier, but it fails in the presence of batch-normalization layers. [42] decreases
the input gradients norm. These methods can improve the model’s robustness
without compromising clean accuracy. Simon-Gabriel et al. [48] conducted a the-
oretical analysis of the vulnerability of neural network classifiers, and connected
gradient norm and adversarial robustness. Our method enhances robustness by
training a multitask model, which complements both adversarial training [36, 62]
and existing regularization methods [40, 42, 57, 8].
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3 Adversarial Setting

The goal of an adversary is to “fool” the target model by adding human-
imperceptible perturbations to its input. We focus on untargeted attacks, which
are harder to defend against than targeted attacks [15]. We classify adversarial
attacks for a multitask prediction model into two categories: adversarial attacks
that fool more than one task at once (multitask attacks), and adversarial attacks
that fool a specific task (single-task attacks).

3.1 Multitask Learning Objective

Notations. Let x denote an input example, and yc denote the corresponding
ground-truth label for task c. In this work, we focus on multitask learning with
shared parameters [25, 49, 34, 32, 28], where all the tasks share the same “back-
bone network” F (·) as a feature extractor with task-specific decoder networks
Dc(·). The task-specific loss is formulated as:

Lc(x,yc) = `(Dc(F (x)),yc), (1)

where ` is any appropriate loss function. For simplicity, we denote (y1, ...,yM )
as y, where M is the number of tasks. The total loss for multitask learning is a
weighted sum of all the individual losses:

Lall(x,y) =

M∑
c=1

λcLc(x,yc) (2)

For the simplicity of theoretical analysis, we set λc = 1
M for all c = 1, ...,M , such

that
∑M
c=1 λc = 1. In our experiments on real-world datasets, we will adjust the

λc accordingly, following standard practice [49, 28].

3.2 Adversarial Multitask Attack Objective

The goal of a multitask attack is to change multiple output predictions together.
For example, to fool an autonomous driving model, the attacker may need to
deceive both the object classification and depth estimation tasks. Moreover, if we
regard each output pixel of a semantic segmentation task as an individual task,
adversarial attacks on segmentation models need to flip multiple output pixels,
so we consider them as multitask attacks. We also consider other dense output
tasks as a variant of multitask, such as depth estimation, keypoints estimation,
and texture prediction.

In general, given an input example x, the objective function for multitask
attacks against models with multiple outputs is the following:

argmax
xadv

Lall(xadv,y) s.t. ||xadv − x||p ≤ r (3)
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where the attacker aims to maximize the joint loss function by finding small
perturbations within a p-norm bounded distance r of the input example. Intu-
itively, a multitask attack is not easy to perform because the attacker needs to
optimize the perturbation to fool each individual task simultaneously. The ro-
bustness of the overall model can be a useful property - for instance, consider an
autonomous-driving model trained for both classification and depth estimation.
If either of the two tasks is attacked, the other can still be relied on to prevent
accidents.

3.3 Adversarial Single-Task Attack Objective

In contrast to a multitask attack, a single-task attack focuses on a selected
target task. Compared with attacking all tasks at once, this type of attack is
more effective for the target task, since the perturbation can be designed solely
for this task without being limited by other considerations. It is another realistic
type of attack because some tasks are more important than the others for the
attacker. For example, if the attacker successfully subverts the color prediction
for a traffic light, the attacker may cause an accident even if the other tasks
predict correctly. The objective function for single-task attack is formulated as:

argmax
xadv

Lc(xadv,yc), s.t.||xadv − x||p ≤ r (4)

For any given task, this single-task attack is more effective than jointly attacking
the other tasks. We will empirically demonstrate that multitask learning also
improves model robustness against this type of attack in Section 5.

4 Theoretical Analysis

We present theoretical insights into the robustness of multitask models. A preva-
lent formulation of multitask learning work uses shared backbone network with
task-specific branches [34, 32, 28]. We denote the multitask predictor as F and
each individual task predictor as Fc. Prior work [48] showed that the norm of
gradients captures the vulnerability of the model. We thus measure the multi-
task models’ vulnerability with the same metric. Since we are working with deep
networks, we assume all the functions here are differentiable. Details of all proofs
are in the supplementary material.

Definition 1. Given classifier F , input x, output target y, and loss L(x,y) =
`(F (x),y), the feasible adversarial examples lie in a p-norm bounded ball with
radius r, B(x, r) := {xadv, ||xadv − x||p < r}. Then adversarial vulnerability of
a classifier over the whole dataset is

Ex[∆L(x,y, r)] = Ex[ max
||δ||p<r

|L(x,y)− L(x + δ,y)|]
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∆L captures the maximum change of the output loss from arbitrary input change
δ inside the p-norm ball. Intuitively, a robust model should have smaller change
of the loss given any perturbation of the input. Given the adversarial noise is
imperceptible, i.e., r → 0, we can approximate ∆L with a first-order Taylor
expansion [48].

Lemma 1. For a given neural network F that predicts multiple tasks, the ad-
versarial vulnerability is

Ex[∆L(x,y, r)] ≈ Ex [||∂xLall(x,y)||q] · ||δ||p ∝ Ex [||∂xLall(x,y)||q]

where q is the dual norm of p, which satisfies 1
p + 1

q = 1 and 1 ≤ p ≤ ∞.
Without loss of generality, let p = 2 and q = 2. Note that from equation 2, we
get Lall(x,y) =

∑M
c=1

1
MLc(x,yc). Thus we get the following equation:

∂xLall(x,y) = ∂x

M∑
c=1

1

M
Lc(x,yc) =

1

M

M∑
c=1

∂xLc(x,yc) (5)

We denote the gradient for task c as rc, i.e., rc = ∂xLc(x,yc). We propose the
following theory for robustness of different numbers of randomly selected tasks.

Theorem 1. (Adversarial Vulnerability of Model for Multiple Corre-
lated Tasks) If the selected output tasks are correlated with each other such that
the covariance between the gradient of task i and task j is Cov(ri, rj), and the
gradient for each task is i.i.d. with zero mean (because the model is converged),
then adversarial vulnerability of the given model is proportional to√

1 + 2
M

∑M
i=1

∑i−1
j=1

Cov(ri,rj)
Cov(ri,ri)

M

where M is the number of output tasks selected.

The idea is that when we select more tasks as attack targets, the gradients
for each of the individual tasks on average cancels out with each other. We define
the joint gradient vector R as follows:

R = ∂xLall(x,y) =
1

M

M∑
c=1

∂xLc(x,yc)

The joint gradient is the sum of gradients from each individual task. We then
obtain the expectation of the L2 norm of the joint gradient:

E(‖R‖22) = E

[
‖ 1

M

M∑
i=1

ri‖22

]
=

1

M2
E

 M∑
i=1

‖ri‖2 + 2

M∑
i=1

i∑
j=1

rirj


=

1

M2

 M∑
i=1

E[Cov(ri, ri)] + 2

M∑
i=1

i∑
j=1

E[Cov(ri, rj)]


The last equation holds due to the 0 mean assumption of the gradient. For
further details of the proof, please see the supplementary material.
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Corollary 1. (Adversarial Vulnerability of Model for Multiple Inde-
pendent Tasks) If the output tasks selected are independent of each other, and
the gradient for each task is i.i.d. with zero mean, then the adversarial vulnerabil-
ity of given model is proportional to 1√

M
, where M is the number of independent

output tasks selected.

Based on the independence assumption, all covariances becomes zero. Thus
Theorem 2 can be simplified as:

E[‖∂xLall(x,y)‖22] = E(‖R‖22) =
1

M
E‖ri‖2 =

σ2

M
∝ 1

M
(6)

Remark 1. By increasing the number of output tasks M , the first order vulner-
ability [48] of network decreases. In the ideal case, if the model has an infinite
number of uncorrelated tasks, then it is impossible to find an adversarial exam-
ples that fools all the tasks.

Remark 2. Theorem 1 studies the robustness for multiple correlated tasks,
which is true for most computer vision tasks. The independent tasks assump-
tion in Corollary 1 is a simplified, idealistic instance of Theorem 1 that upper-
bounds the robustness of models under multitask attacks. Together, Theorem 1
and Corollary 1.1 demonstrate that unless the tasks are 100% correlated (the
same task), multiple tasks together are more robust than each individual one.

Our theoretical analysis shows that more outputs, especially if they are less
correlated, improve the model’s robustness against multitask attacks. Past work
shows that segmentation is inherently robust [3, 7] compared to classification.
Our analysis provides a formal explanation to this inherent robustness because
a segmentation model can be viewed as a multitask model (one task per pixel).

5 Experiments

We validate our analysis with empirical results on the Cityscapes and the Taskon-
omy datasets. We evaluate the robustness of multitask models against two types
of attack: multitask attack (Section 5.3) and single-task attacks (Section 5.4). We
also conduct multitask learning experiments on adversarial training and show
that they are complementary (Section 5.5).

5.1 Datasets

Cityscapes. The Cityscapes dataset [9] consists of images of urban driving
scenes. We study three tasks: semantic segmentation, depth estimation, and
image reconstruction. We use the full resolution (2048×1024) for analyzing pre-
trained state-of-the-art models. We resize the image to 680 × 340 to train our
single task (baseline) and multitask models.1



8 C. Mao et al.

Ground TruthAttacked Input Images Single-Task (s) Multi-Task (s, d) Multi-Task (s, d, A)

Road Road RoadSidewalk

People People PeopleTree

Road
Sidewalk

RoadRoadSidewalk

Fig. 2: We show model predictions on Cityscapes under multitask attack. The
single-task segmentation model misclassifies the ‘road’ as ‘sidewalk’ under attack,
while the multitask model can still segment it correctly. The multitask models
are more robust than the single-task trained model.

Ground TruthAttacked Input Images Single-Task (d) Multi-Task (s, d) Multi-Task (s, d, A)

Fig. 3: We show depth predictions of multitask models under multitask attacks.
To emphasize the differences, we annotated the figure with red boxes where the
errors are particularly noticeable. The multitask trained model outperforms the
single-task trained model under attack.

Taskonomy. The Taskonomy dataset [61] consists of images of indoor scenes.
We train on up to 11 tasks: semantic segmentation (s), depth euclidean esti-
mation (D), depth zbuffer estimation (d), normal (n), edge texture (e), edge
occlusion (E), keypoints 2D (k), keypoints 3D (K), principal curvature (p), re-
shading (r), and image reconstruction (A). We use the “tiny” version of their
dataset splits [1]. We resize the images to 256× 256.

5.2 Attack Methods

We evaluate the model robustness with L∞ bounded adversarial attacks, which
is a standard evaluation metric for adversarial robustness [36]. We evaluate with
four different attacks:

FGSM: We evaluate on the Fast Gradient Sign Method (FGSM) [18], which
generates adversarial examples xadv by xadv = x + ε · sign(∇x`(F (x), y)). It is a
single step, non-iterative attack.

PGD: Following the attack setup for segmentation in [3], we use the widely
used attack PGD (Iteratively FGSM with random start [36]), set the number
of iterations of attacks to min(ε + 4, d1.25εe) and step-size α = 1. We choose

1 We use the same dimension for baselines and ours during comparison because input
dimension impacts robustness [48].
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Fig. 4: The effect of output dimensionality and number of tasks on adversarial robust-
ness. We analyzed the pre-trained DRN model on Cityscapes (a,b), and a multitask
model trained on Taskonomy (c). The x-axis of (a,b) represents the output dimension-
ality, the x-axis of (c) shows the combination of multiple tasks. The y-axis of (a,c) is
the L2 norm of the joint gradient and is proportional to the model’s adversarial vul-
nerability. The y-axis of (b) is classification accuracy. The robust performances for (c)
are shown in Fig 5. Increasing the output dimensionality or number of tasks improves
the model’s robustness.

the L∞ bound ε from {1, 2, 4, 8, 16} where noise is almost imperceptible. Under
ε = 4, we also evaluate the robustness using PGD attacks with {10, 20, 50, 100}
steps, which is a stronger attack compared to 5 steps attack used in [3].

MIM: We also evaluate on MIM attack [12], which adds momentum to
iterative attacks to escape local minima and won the NeurIPS 2017 Adversarial
Attack Competition.

Houdini: We evaluate the semantic segmentation task with the state-of-the-
art Houdini attack [7], which directly attacks the evaluation metric, such as the
non-differentiable mIoU criterion (mean Intersection over Union).

We do not use the DAG [55] attack for segmentation because it is an unre-
stricted attack without controlling L∞ bound. For all the iterative attacks, the
step size is 1.

5.3 Multitask Models Against Multitask Attack

High Output Dimensionality as Multitask. Our experiment first studies
the effect of a higher number of output dimensions on adversarial robustness. As
an example, we use semantic segmentation. The experiment uses a pre-trained
Dilated Residual Network (DRN-105) [58, 59] model on the Cityscapes dataset.
To obtain the given output dimensionality, we randomly select a subset of pix-
els from the model output. We mitigate the randomness of the sampling by
averaging the results over 20 random samples. Random sampling is a general
dimension reduction method, which preserves the correlation and structure for
high dimensional, structured data [23]. Figure 4a shows that the model’s vul-
nerability (as measured by the norm of the gradients) decreases as the number
of output dimension increases, which validates Theorem 2.
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Fig. 5: Adversarial robustness against multitask attack on Taskonomy dataset. The
x-axis is the attack strength, ranging from no attack (clean) to the strongest attack
(ε = 16 PGD). For each subfigure, the y-axis shows the performance of one task under
multitask attack. ↑ means the higher, the better. ↓ means the lower, the better. The
multitask model names are in the legend, we refer to the task by their initials, e.g.,
‘sde’ means the model is trained on segmentation, depth, and edge simultaneously.
The blue line is the single-task baseline performance, the other lines are multitask
performance. The figures show that it is hard to attack all the tasks in a multitask model
simultaneously. Thus multitask models are more robust against multitask attacks.

Besides the norm of gradient, we measure the performance under FGSM
[18] and PGD [36] adversarial attacks, and show that it improves as output
dimensionality increases (Figure 4b). Notice when few pixels are selected, the
robustness gains are faster. This is because with fewer pixels: (1) the marginal
gain of the inverse function is larger; and (2) the select pixels are sparse and
tend to be far away and uncorrelated to each other. The correlation between
the output pixels compounds as more nearby pixels are selected, which slows
down the improvements to robustness. The results demonstrate that models with
higher output dimension/diversity are inherently more robust against adversarial
attacks, consistent with the observation in [3, 7] and our Theorem 2.

Number of Tasks. We now consider the case where the number of tasks
increases, which is a second factor that increases output dimensionality. We
evaluate the robustness of multitask models on the Cityscapes and Taskonomy
datasets. We equally train all the tasks with the shared backbone architecture
mentioned in Section 3. On Cityscapes, we use DRN-105 model as the architec-
ture for encoder and decoder; on Taskonomy, we use Resnet-18 [61]. Each task
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Ground 
Truth

Attacked Input 
Images Single-Task (s) Multi-Task (s, d) Multi-Task (s, A) Multi-Task (s, d, A)

Fig. 6: Performance of single-task attack for multitask models trained on Cityscapes.
We show segmentation under attack for single-task and three multitask models. The
multitask trained model out-performs the single-task trained model.

has its own decoder. For the Cityscapes dataset, we start with training only the
semantic segmentation task, then add the depth estimation and input recon-
struction task. For the Taskonomy dataset, following the setup in [49], we start
with only semantic segmentation, and add depth estimation, normal, keypoints
2D, edge texture, and reshading tasks to the model one by one. In our figures
and tables, we refer to these tasks by the task’s first letter.

Figure 4c shows the L2 norm of the joint gradient for many tasks, which
measures the adversarial vulnerability. Overall, as we add more tasks, the norm
of the joint gradient decreases, indicating improvement to robustness [48]. The
only exception is the depth estimation task, which we believe is due to the large
range of values (0 to +∞) that its outputs take. Empirically, a larger output
range leads to a larger loss, which implies a larger gradient value.

We additionally measure the robust performance on different multitask mod-
els under multitask attacks. Following the setup in [3], we enumerate the ε of the
L∞ attack from 1 to 16. Figure 5 shows the robustness of multitask models us-
ing Taskonomy, where the adversarial robustness of multitask models are better
than single-task models, even if the clean performance of multitask models may
be lower. We also observe some tasks gain more robustness compared to other
tasks when they are attacked together, which suggests some tasks are inherently
harder to attack. Overall, the attacker cannot simultaneously attack all the tasks
successfully, which results in improved overall robustness of multitask models.

Baseline Multitask
Training Tasks s sd sdA

Clean SemSeg ↑ 44.77 46.53 45.82
PGD SemSeg ↑ 15.75 16.01 16.36

Baseline Multitask
Training Tasks d sd sdA

Clean Depth ↓ 1.82 1.780 1.96
PGD Depth ↓ 6.81 6.08 5.81

Table 1: The models’ performances under multitask PGD attack and clean images on
Cityscapes using DRN-D-105 [59] . The bold demonstrate the better performance for
each row, underline shows inferior results of multitask learning. The results show that
multitask models are overall more robust under multitask attack.
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In Table 1, we observe the same improvement on Cityscapes. Qualitative results
are shown in Figure 2 and Figure 3. Please see the supplemental material for
additional results.

SemSeg mIoU Score ↑ Depth Abs Error ↓

Baseline Multitask Learning Baseline Multitask Learning
Training Tasks −→ s sd sA sdA d ds dA dAs
λa 0.001 0.001 0.001 0.1 0.1 0.01

Clean 48.58 48.61 49.61 48.19 1.799 1.792 1.823 1.798

A
tt
a
ck

s

FGSM 26.35 26.28 26.79 26.71 3.16 3.01 3.00 3.24
PGD10 13.04 13.64 14.76 14.48 6.96 6.15 6.03 6.59
PGD20 11.41 11.98 12.79 12.73 8.81 7.70 7.64 8.38
PGD50 10.49 10.95 11.68 11.86 10.23 9.07 9.12 9.81
PGD100 10.15 10.51 11.22 11.52 10.8 9.69 9.74 10.41
MIM100 9.90 10.17 10.93 11.24 12.04 10.72 10.97 11.69
Houdini100 5.04 5.14 6.24 6.21 - - - -

Table 2: Model’s robust performance under L∞ = 4 bounded single-task attacks on
Cityscapes. Each column is a DRN-22 model trained on a different combination of
tasks, where “s,”“d,”and“A”denote segmentation, depth, and auto-encoder, respec-
tively. ↑ means the higher, the better. ↓ means the lower, the better. Bold in each
row, shows the best performance under the same attack. Multitask learning models
out-perform single-task models except for the underlined ones. While nearly maintain-
ing the performance on clean examples, multitask models are consistently more robust
under strong adversarial attacks.

5.4 Multitask Models Against Single-Task Attacks

Following the setup for multitask learning in [34, 32, 28], we train the multitask
models using a main task and auxiliary tasks, where we use λ = 1 for the main
task and λa for the auxiliary tasks. We then evaluate the robustness of the
main task under single-task attacks. On Cityscapes, the main and the auxiliary
tasks share 16 layers of an encoding backbone network. The decoding network for
each individual task has 6 layers. For all the models, we train for 200 epochs. For
adversarial robustness evaluation, we use strong attacks including PGD100 and
MIM100 for attacking the segmentation accuracy2, and use 100 steps Houdini
[7] to attack the non-differentiable mIoU of the Segmentation model directly.
We do not use Houdini to attack the depth because the L1 loss for depth is
differentiable and does not need any surrogate loss. The results in Table 2 show
that multitask learning improves the segmentation mIoU by 1.2 points and the
performance of depth estimation by 11% under attack, while maintaining the
performance on most of the clean examples. Qualitative results are in Figure 6.

On the Taskonomy dataset, we conduct experiments on 11 tasks. Following
the setup in [49], we use ResNet-18 [20] as the shared encoding network, where

2 Suffixed number indicates number of steps for attack
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(b) Performance on Clean Examples

Fig. 7: We consider models trained on two tasks. In each matrix, the rows show the first
training task and the testing task. The columns show the auxiliary training task. The
first column without color shows the absolute value for the baseline model (single-task).
The middle colored columns show the relative improvement of multitask models over
the single-task model in percentage. The last colored column shows the average relative
improvement. We show results for both (a) adversarial and (b) clean performance.
Multitask learning improves the performance on clean examples for 70/110 cases, and
the performance on adversarial examples for 90/110 cases. While multitask training
does not always improve clean performance, we show multitask learning provides more
gains for adversarial performance.

each individual task has its own prediction network using the encoded represen-
tation. We train single-task models for each of the 11 tasks as baselines. We train
a total of 110 multitask models — each main task combined with 10 different
auxilliary tasks — for 11 main tasks. We evaluate both the clean performance
and adversarial performance. λa is either 0.1 or 0.01 based on the tasks. We use
PGD attacks bounded with L∞ = 4 with 50 steps, where the step size is 1. The
attack performance plateaus for more steps. Figure 7 shows the performance
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of the main task on both clean and adversarial examples. While maintaining
the performance on clean examples (average improvement of 4.7%), multitask
learning improves 90/110 the models’ performance under attacks, by an average
of 10.23% relative improvement. Our results show that one major advantage of
multitask learning, which to our knowledge is previously unknown, is that it
improves the model’s robustness under adversarial attacks.

5.5 Multitask Learning Complements Adversarial Training

SemSeg mIoU Score ↑ Depth Abs Error ↓

Baseline Multitask Learning Baseline Multitask Learning
Training Tasks −→ s sd sA sdA d ds dA dAs

Clean 41.95 43.27 43.65 43.26 2.24 2.07 2.15 2.15

A
tt
a
ck

s PGD50 19.73 22.08 20.45 21.93 2.85 2.61 2.75 2.67
PGD100 19.63 21.96 20.31 21.83 2.85 2.61 2.75 2.67
MIM100 19.54 21.89 20.20 21.74 2.85 2.61 2.75 2.67
Houdini100 17.05 19.45 17.36 19.16 - - - -

Table 3: Adversarial robustness of adversarial training models under L∞ = 4 bounded
attacks on Cityscapes. Each column is a model trained on a different combination
of tasks. “s,”“d,”and“A”denote segmentation, depth, and auto-encoder respectively. ↑
indicates the higher, the better. The ↓ indicates the lower, the better. Bold shows the
best performance of the same task for each row. Multitask learning improves both the
clean performance and robustness upon single-task learning.

We study whether multitask learning helps adversarial robust training. We
use DRN-22 on the Cityscapes dataset, and train both single-task and multitask
models for 200 epoch under the same setup. The single-task model follows the
standard adversarial training algorithm, where we train the model on the gener-
ated single-task (segmentation) adversarial attacks. For the multitask adversarial
training, we train it on the generated multitask attack images for both semantic
segmentation and the auxiliary task. Details are in the supplementary material.
Table 3 shows that multitask learning improves the robust performance of both
clean examples and adversarial examples, where segmentation mIoU improves
by 2.40 points and depth improves by 8.4%.

6 Conclusion

The widening deployment of machine learning in real-world applications calls for
versatile models that solve multiple tasks or produce high-dimensional outputs.
Our theoretical analysis explains that versatile models are inherently more ro-
bust than models with fewer output dimensions. Our experiments on real-world
datasets and common computer vision tasks measure improvements in adversar-
ial robustness under attacks. Our work is the first to connect this vulnerability
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with multitask learning and hint towards a new direction of research to under-
stand and mitigate this fragility.
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51. Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P.D.: Ensemble ad-
versarial training: Attacks and defenses. arXiv:1705.07204 (2017)

52. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be
at odds with accuracy. In: International Conference on Learning Representations
(2019)

53. Uesato, J., Alayrac, J., Huang, P., Stanforth, R., Fawzi, A., Kohli, P.: Are labels
required for improving adversarial robustness? CoRR (2019)

54. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene
understanding. CoRR (2018)

55. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples
for semantic segmentation and object detection. In: ICCV (Oct 2017)

56. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for
improving adversarial robustness. CoRR (2018)

57. Yan, Z., Guo, Y., Zhang, C.: Deep defense: Training dnns with improved adver-
sarial robustness. In: Proceedings of the 32Nd International Conference on Neural
Information Processing Systems. pp. 417–426. NIPS’18 (2018)

58. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
International Conference on Learning Representations (ICLR) (2016)

59. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Computer Vision
and Pattern Recognition (CVPR) (2017)

60. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery
for multi-task learning (2020)

61. Zamir, A.R., Sax, A., , Shen, W.B., Guibas, L., Malik, J., Savarese, S.: Taskon-
omy: Disentangling task transfer learning. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE (2018)

62. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically
principled trade-off between robustness and accuracy. arXiv abs/1901.08573 (2019)



Multitask Learning Strengthens Adversarial Robustness 19

1.A Proof for Theoretical Analysis

We present theoretical analysis to quantify how much multi-task learning
improves model’s overall adversarial robustness.

Definition 2. Given classifier F , input x, output target y, and loss L(x,y) =
`(F (x),y), the feasible adversarial examples lie in a p-norm bounded ball with
radius r, B(x, r) := {xadv, ||xadv − x||p < r}. Then adversarial vulnerability of
a classifier over the whole dataset is

Ex[∆L(x,y, r)] = Ex[ max
||δ||p<r

|L(x,y)− L(x + δ,y)|].

∆L captures the change of output loss given a change in input. Intuitively,
a robust model should have a smaller change in loss given a perturbation of
the input. Given the adversarial noise is imperceptible, i.e., r → 0, we can
approximate ∆L with a first-order Taylor expansion, where

|L(x,y)− L(x + δ,y)| = |∂xL(x,y)δ +O(δ)|

Lemma 2. For a given neural network F that predicts multiple tasks, the ad-
versarial vulnerability is

Ex[∆L(x,y, r)] ≈ Ex [||∂xLall(x,y)||q] · ||δ||p ∝ Ex [||∂xLall(x,y)||q]

Proof. According to the definition of dual norm:

∆L ≈ max
||δ||p<r

|∂xL(x,y)δ| = ||∂xLall(x,y)||q · ||δ||p

Ex[∆L] ≈ Ex [||∂xLall(x,y)||q] · ||δ||p
where q is the dual norm of p, which satisfies 1

p + 1
q = 1 and 1 ≤ p ≤ ∞.

Once given the p-norm bounded ball, i.e., ||δ||p is constant, we get

Ex[∆L] ∝ Ex [||∂xLall(x,y)||q]

Theorem 2. (Adversarial Vulnerability of Model for Multiple Corre-
lated Tasks) If the selected output tasks are correlated with each other such that
the covariance between the gradient of task i and task j is Cov(ri, rj), and the
gradient for each task is i.i.d. with zero mean (because the model is converged),
then adversarial vulnerability of the given model is proportional to√

(1 + 2
M

∑M
i=1

∑i−1
j=1

Cov(ri,rj)
Cov(ri,ri)

)
√
M

where M is the number of output tasks selected.
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Proof. Denote the gradient for task c as rc, i.e.,

rc = ∂xLc(x,yc)

We define the joint gradient vector R as follows:

R = ∂xLall(x,y) = ∂x

(
1

M

M∑
c=1

Lc(x,yc)

)
=

1

M

M∑
c=1

∂xLc(x,yc) =

M∑
c=1

rc

As we can see, the joint gradient is the sum of gradients from each individual
task. Then we consider the expectation of the square of the L2 norm of the joint
gradient:

E(‖R‖22) = E

(
‖ 1

M

M∑
c=1

rc‖22

)
=

1

M2
E

 M∑
c=1

‖rc‖2 + 2

M∑
i=1

i−1∑
j=1

rirj



E(‖R‖22) =
1

M2

 M∑
i=1

E‖ri‖2 + 2

M∑
i=1

i∑
j=1

E(rirj)


Since

Cov(ri, rj) = E(rirj)− E(ri)E(rj)

According to the assumption
E(rj) = 0

We know
Cov(ri, rj) = E(rirj)

Then we get

E(‖R‖22) =
1

M2

(
M∑
i=1

E(Cov(ri, ri)

)
+2

M∑
i=1

i∑
j=1

E(Cov(ri, rj)) =
1

M2

 M∑
i=1

σ2 + 2

M∑
i=1

i∑
j=1

E[Cov(ri, rj)]


where σ2 = Cov(ri, ri)

Thus, the adversarial vulnerability is:

Ex[∆L] ∝ Ex [‖∂xLall(x,y)‖2] =

√
(1 + 2

M

∑M
i=1

∑i−1
j=1

Cov(ri,rj)
Cov(ri,ri)

)
√
M

For a special case where all the tasks are independent of each other, inde-
pendent gradients with respect to the input are produced, we have the following
corollary:
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Corollary 2. (Adversarial Vulnerability of Model for Multiple Inde-
pendent Tasks) If the output tasks selected are independent of each other, and
the gradient for each task is i.i.d. with zero mean, then the adversarial vulnerabil-
ity of given model is proportional to 1√

M
, where M is the number of independent

output tasks selected.

Proof. According to the independent assumption, we have

Cov(ri, rj) = 0

Let σ2 = Cov(ri, ri). Thus we get the adversarial vulnerability to be:

Ex[∆L] ∝ Ex [||∂xLall(x,y)||2] =

√
σ2

M
∝ 1√

M

1.B Experimental Setup

1.B.1 Cityscapes

We train DRN-105 model and evaluate against multi-task attack. We follow the
original architecture setup of the original DRN paper [59]. We used 93 layers in
the shared backbone encoder network, and 13 layers in the decoder branch for
individual task prediction. We use a batch size of 24. We start with a learning
rate of 0.01 and decrease the learning rate by a factor of 10 after every 100
epochs. We trained the model for 250 epochs.

We train multi-task model against single task attack using DRN-22 model.
We use 18 layers in the shared backbone encoder network, and 9 layers in the
decoder branch for individual task prediction. We use batch size of 32. We op-
timize with SGD, with learning rate of 0.01, then decrease it to 0.001 at 180
epoch. We train model for 200 epoch in total. We applied a weight decay of
0.0001 for all the models.

1.B.2 Taskonomy

Taskonomy dataset [61] consists of millions of indoor scenes with labels for
multiple tasks, we use 11 tasks including semantic segmentation, depth estima-
tion, 2D and 3D edge detection, normal vector estimation, reshading, 2D and
3D keypoint detection, Euclidean depth, auto-encoding, and principal curvature
estimation. We use the publicly available Tiny version of dataset, which consists
of 9464 images from 1500 rooms. We use examples from 80% of the rooms as
training data and examples from 20% of the rooms as test data. Images from
the same room are only contained in either the training set or the test set, and
not in both. The quality of the model is measured by its ability to generalize to
new rooms.
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For learning a multi-task model for joint robustness, we follow the set up
described in [49]. We train a ResNet-18 as the shared backbone encoder network
for all the tasks. Each multi-task model consists of 1 to 6 different tasks. We use
an input size of 512 × 512. We use an 8 layer decoder for each individual task
prediction. Following the data preprocessing of [49], we apply equal weights to
all the tasks. Start from task ”semantic segmentation” (s), we add tasks ”depth”
(d), ”edge texture” (e), ”keypoints 2d” (k), ”normal” (n), and ”reshading” (r).
Thus we train 6 models ‘s,’ ‘sd,’ ‘sde,’ ‘sdek,’ ‘sdekn,’ ‘sdeknr.’ We also train
‘d,’ ‘e,’ ‘er,’ ‘k,’ ‘ks,’ ‘ksd’ tasks, so that we can analysis the trend of 4 tasks’
performance after multitask learning. We use the same learning rate schedule
for all the models — SGD with learning rate 0.01 and momentum 0.99. We
decrease the learning rate at 100 epoch by 10 times. We train all the models for
150 epoch. Results are shown in Figure 5 in the main paper.

For training robust models on select tasks, we use ResNet-18 as the shared
encoder network. We select 11 tasks trained in pairs with each other, which
results in 110 models. We study their robustness under a single-task attack. We
follow the data processing in [61]. For each task we considered, we try weights of
0.1 and 0.01 for the auxiliary task, and choose the weight that produces higher
robust accuracy. The chosen λa for the auxiliary tasks are shown in Table 5. The
selection of weights is important due to the complex interactions of different
tasks [2]. We follow the setup in [61], and subsample the image from 512 to
256 using linear interpolation. For segmentation, reshading, keypoint 3D, depth
Euclidean, Auto Encoder, principle curvature, we use SGD, with learning rate
0.01 and decrease by 10 times at 140 epoch. For the other tasks we use adam,
with learning rate 0.001 and decrease by 10 times at 120 and 140 epoch. Due
to the inherent difference between different tasks, we use different optimizer for
different tasks for better convergence. All the models are trained for 150 epoch.
All the results are shown in Table 4. As we can see, learning versatile, multi-task
models improves adversarial robustness on 90/110 tasks.

1.B.3 Adversarial Training

We present the details for multi-task adversarial training in Algorithm 1. For
single task model, we choose S = {{Tm}}. The algorithm is the same as the
adversarial training procedure of Madry et. al. [36]. For multi-task model, we

set S = {{Tm}, {Tm, T (1)
a , ..., }}, thus the generated adversarial images under

multi-task are more diversified compared with single-task models. In addition,
all the adversarial examples are trained on multi-task loss function, where the
auxiliary task can introduce useful knowledge for learning the robust main task.
We use λ = 0.01 for the auxiliary task. For all the task, we train using SGD
optimizer with batch size of 32, for 200 epoch. We start with learning rate of
0.01, and decrease the learning rate by 10 times at 180 epoch. The experiment
are conducted on Cityscapes dataset.
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PGD Adversarial
Baseline SemSeg DepthZ Edge2D Normal Reshad Key2D Key3D DepthE AutoE Edge3D PCurve

Semseg * 13.360 — 19.320 13.950 16.630 14.580 15.700 13.780 14.910 14.110 14.720 14.900

DepthZ (10−2) 11.491 4.712 — 6.780 11.617 12.412 11.120 8.358 10.498 4.981 12.230 5.035

Edge2D (10−2) 10.672 9.841 9.363 — 9.546 9.943 9.732 9.654 9.714 9.941 9.978 10.095

Normal (10−2) 40.926 35.171 42.871 39.335 — 40.501 39.462 39.930 42.071 35.726 37.070 41.212

Reshad (10−2) 57.900 48.800 57.800 55.000 56.500 — 55.900 53.300 60.000 61.000 49.300 57.600

Key2D (10−2) 11.700 10.900 10.900 10.700 10.500 10.900 — 11.000 10.600 11.000 10.800 10.600

Key3D (10−2) 49.700 31.000 49.600 50.800 45.900 42.200 43.800 — 51.200 32.600 53.400 52.900

DepthE (10−3) 4.850 3.530 3.390 3.250 4.270 5.670 3.670 3.730 — 3.700 3.330 2.930

AutoE (10−2) 59.300 57.800 60.300 58.300 62.300 59.400 59.300 60.700 58.200 — 60.500 61.500

Edge3D (10−2) 15.900 14.600 15.300 16.300 15.400 15.200 15.600 16.900 15.400 12.600 — 14.800

PCurve (10−4) 11.500 8.920 8.900 10.400 9.230 9.620 8.900 10.400 11.100 9.190 10.400 —

Clean

SemSeg * 43.190 — 46.300 46.180 46.350 46.240 45.440 45.620 44.690 44.500 45.320 44.490

DepthZ (10−2) 2.852 2.734 — 3.880 2.846 2.505 2.874 3.562 3.339 3.171 3.088 4.690

Edge2D (10−2) 3.384 3.922 3.382 — 3.507 3.435 3.330 3.522 3.433 3.574 3.569 3.454

Normal (10−2) 6.997 7.181 7.093 7.006 — 6.989 6.990 7.182 6.940 6.864 6.931 7.141

Reshad (10−2) 8.027 7.985 8.103 7.941 7.901 — 8.041 7.957 7.940 7.890 8.065 8.150

Key2D (10−2) 4.156 4.116 3.897 3.795 3.865 4.147 — 3.944 3.857 3.823 3.850 3.878

Key3D (10−2) 8.771 8.445 8.686 8.514 8.610 8.318 8.703 — 8.492 8.366 8.362 8.578

DepthE (10−3) 6.373 6.575 5.946 6.350 6.236 5.802 6.418 6.470 — 5.948 5.715 6.251

AutoE (10−2) 3.470 3.616 3.709 3.548 3.587 3.540 3.780 3.761 3.542 — 3.530 3.553

Edge3D (10−2) 4.649 4.695 4.608 4.727 4.562 4.725 4.364 4.635 4.611 4.210 — 3.703

PCurve (10−4) 8.017 8.360 8.184 8.353 8.541 7.232 7.733 7.725 8.153 7.854 7.732 —

Table 4: The absolute performance of all models trained on two tasks (Rela-
tive are shown in Figure 7 in the main paper). Each row in the first column
lists the name of the main task. The second column (baseline) shows the per-
formance of a model trained on a single task. The * in the row indicates the
mIoU score for semantic segmentation, for which higher is better. The values
in the other rows of the table show the l1 loss, for which lower is better. The
(10−n) in the first column indicates the unit for the error. ‘SemSeg’ denotes
‘semantic segmentation,’ ‘DepthZ’ denotes ‘depth estimation,’ ‘Edge2D’ denotes
‘2D edge detection,’ ‘Normal’ denotes ‘Normal Vector estimation’, ‘Reshad’ de-
notes ‘Reshading,’ ‘Key2D’ denotes ‘2D Keypoint detection,’ ‘Key3D’ denotes
‘3D Keypoint detection,’ ‘DepthE’ denotes ‘Euclidean depth,’ ‘AutoE’ denotes
‘Auto Encoder,’ ‘Edge3D’ denotes ‘3D Edge detection,’ ‘PCurve’ denotes ‘Cur-
vature estimation.’ Values superior to the baseline are bold, and the best per-
formance for each row is in a box. The table lists the IoU (large is better) for
the segmentation model, and error (small is better) for all the other tasks. We
pair each selected model with 11 other models. All the models converge after
training for 150 epochs. Overall, training on two tasks can help the individual
task’s adversarial robustness on 90/110 cases, while surpassing the baseline’s
performance on the clean examples on 70/110. For instance, the adversarial
robustness for the semantic segmentation and keypoints3D estimation is always
improved by multi-task learning while the clean accuracy also improves. The
results on 11 tasks support our claim that training on multiple tasks improves
adversarial robustness.
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λa

SemSeg DepthZ Edge2D Normal Reshad Key2D Key3D DepthE AutoE Edge3D PCurve

Semseg * 0 0.01 9.01 0.1 0.1 0.01 0.01 0.1 0.01 0.1 0.01
DepthZ 0.1 0 0.1 0.01 0.1 0.1 0.01 0.1 0.1 0.1 0.01
Edge2D 0.1 0.1 0 0.1 0.1 0.01 0.1 0.1 0.01 0.01 0.1
Normal 0.1 0.01 0.1 0 0.01 0.1 0.01 0.1 0.1 0.01 0.01
Reshad 0.01 0.1 0.01 0.01 0 0.1 0.01 0.01 0.1 0.01 0.1
Key2D 0.1 0.1 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0.1
Key3D 0.1 0.01 0.1 0.1 0.1 0.1 0 0.1 0.1 0.01 0.01
DepthE 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0 0.01 0.1 0.1
AutoE 0.1 0.01 0.01 0.1 0.01 0.1 0.01 0.1 0 0.01 0.1
Edge3D 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0.01 0.1 0 0.1
PCurve 0.1 0.01 0.1 0.01 0.01 0.1 0.01 0.1 0.01 0.01 0

Table 5: The λa value for the auxiliary task for Figure 7 in the main paper.

Algorithm 1 Adversarial Training with Multi-task Learning

Input: Initialized networks Fi, dataset D, main task Tm, auxiliary task T
(i)
a . Construct

multi-task combination set S = {{Tm}, {Tm, T
(1)
a , ..., }}

Output:

for number of training epochs do
for number of iterations in each epoch do

Sample minibatch of n images x from D.
for each task combination St in S do

Let Lt(x,y) =
∑

i λi`(Fi(x),yi), where i = 1, ...,#(St), Ti ∈ St.
Compute adversarial attack images xadv

argmax
xadv

Lt(xadv,y), s.t.||xadv − x||p ≤ r

Training the multi-task model using the generated attack image xadv by
optimizing the following loss function:

minLt(x,y)

end for
end for

end for
return Neural network model Fi
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