
Lambdata: Optimizing Serverless Computing by Making Data Intents Explicit

Yang Tang
Department of Computer Science

Columbia University
New York, NY, USA

Email: ty@cs.columbia.edu

Junfeng Yang
Department of Computer Science

Columbia University
New York, NY, USA

Email: junfeng@cs.columbia.edu

Abstract—Serverless computing emerges as a new paradigm
to build cloud applications, in which developers write small
functions that react to cloud infrastructure events, and cloud
providers maintain all resources and schedule the functions
in containers. Serverless computing thus enables developers to
focus on their core business logic and leave server management
and scaling to cloud providers.

Unfortunately, existing serverless computing systems suffer
from a key limitation that deprives them of enjoying significant
speedups. Specifically, they treat each cloud function as a black
box and are blind to which data the function reads or writes,
therefore missing potentially huge optimization opportunities,
such as caching data and colocating functions.

We present Lambdata, a novel serverless computing system
that enables developers to declare a cloud function’s data
intents, including both data read and data written. Once data
intents are made explicit, Lambdata performs a variety of
optimizations to improve speed, including caching data locally
and scheduling functions based on code and data locality.

Our evaluation of Lambdata shows that it achieves an
average speedup of 1.51x on the turnaround time of practical
workloads and reduces monetary cost by 16.5%.

Keywords-serverless computing; cloud function; cloud stor-
age.

Serverless computing emerges as a new paradigm to build
cloud applications, where developers write small functions,
called cloud functions, that react to cloud infrastructure
events, while the cloud provider maintains all resources
and schedules the functions in containers. Thus, developers
can focus on their core business logic and leave server
management and scaling to cloud providers.

Besides ease of programming, serverless computing pro-
vides more efficient and fine-grained scaling than traditional
clouds because containers are more lightweight than virtual
machines. It adjusts to dynamic workload at a per-function
level and scales up or down in a second.

As a result, many companies, including Netflix, Coca-
Cola, and the New York Times, are adopting serverless
computing [1]. A 2018 survey of 600 IT decision-makers
shows that 61% of respondents are already using or plan to
use serverless computing by 2020 [2]. Practically, all ma-
jor cloud providers provide serverless computing services,
namely AWS Lambda, Google Cloud Functions, Microsoft
Azure Functions, and IBM Cloud Functions. Unfortunately,
existing serverless computing systems suffer from a crit-

thumbnail(params={
"get_data": ["pic/1.jpg"],
"put_data": ["thumb/1.jpg"]

})

Figure 1. Example of specifying data intent for a cloud function that
generates the thumbnail of an image. It reads input from pic/1.jpg and
writes output to thumb/1.jpg.

ical limitation that deprives them of enjoying significant
speedups. Specifically, they treat each cloud function as a
black box, and they are blind to which data the function
reads or writes. Therefore, they miss potentially huge opti-
mization opportunities. For instance, they schedule multiple
functions working on the same data to run on different
machines, neglecting data locality. Thus, each machine has
to fetch a copy of the data, resulting in a 42% slowdown
and 19.2% more monetary cost (see §II-C).

We present LAMBDATA, a novel serverless computing
system that enables developers to declare a cloud function’s
data intents, including both data read and data written.
Figure 1 shows an example that a thumbnail function intents
to read pic/1.jpg and write thumb/1.jpg. Once data
intents are made explicit, LAMBDATA performs a variety of
optimizations to improve speed, such as colocating functions
working on the same data. These intents are hints only: if
a developer misses an intent or specifies an incorrect one,
performance may be affected but not correctness.

Our design of LAMBDATA is strongly motivated by two
key insights in serverless computing. First, a cloud func-
tion is almost always small doing a single task; therefore,
developers can easily specify its inputs and outputs before
executing it, as illustrated in Figure 1. In other words, the
paths to input and output data are typically not calculated on
the fly amid the execution of a cloud function. While current
serverless clouds allow a developer to write a large mono-
lithic function that dynamically computes data locations and
accesses the data, such use would defeat the main benefit of
serverless computing.

Second, based on our study of open-source serverless ap-
plicants and our own experience building such applications,
a cloud function tends to be functional in the sense that it
outputs an immutable object: once the object is written, the

application does not mutate it. If an update is needed, the
application simply writes a new object under a new path.
This approach avoids complicating cloud functions with
tricky concurrent and partial update handling logic, and it is
a natural fallout from the idempotency requirement of the
underlying serverless cloud (the cloud may kill and restart
a cloud function without notification due to resource con-
straints or tail latencies). This insight enables LAMBDATA
to aggressively cache data objects throughout the system to
improve locality without concerning consistency issues.

Operationally, LAMBDATA works as follows. It leverages
existing cloud object storage (e.g., AWS S3) to store data.
LAMBDATA adds a caching layer, where each computing
node has its own object cache. LAMBDATA schedules cloud
functions based on both code and data locality. Given
multiple function invocations on the same data, LAMBDATA
schedules them on the same computing node when possible
so they can reuse data.

Compared with Pocket [3], we choose to build LAMB-
DATA on top of existing cloud object storage. The benefits
are two folds. First, using cloud storage is the best practice
recommended by Amazon [4] and Google [5], since data
objects enjoy the high durability they offer. Second, devel-
opers are familiar with this programming model, since they
do not need to decide what data should be durable and what
data should be on ephemeral storage.

Our evaluation of LAMBDATA on an Instagram-like ap-
plication and an online classroom application shows that
on average, LAMBDATA achieves 1.51× speedup on the
turnaround time of practical workloads and reduces mon-
etary cost by 16.5%. All source code of LAMBDATA and
benchmarking applications we wrote are at https://columbia.
github.io/lambdata.

I. BACKGROUND: SERVERLESS COMPUTING

In serverless computing, the basic building block is a
function. A cloud function is similar to a function in a com-
puter program, in that it takes some parameters, performs a
task, and returns a result. A cloud function can be triggered
by another function, by a RESTful API, or by a cloud event,
such as when the cloud storage receives a new file or a
database gets a new entry.

With serverless computing, developers need not manage
any infrastructure. The cloud service provider handles all
resource management. It runs a function in a container, and
each container is isolated from one another. When a function
ends, its container is paused for a few minutes before being
terminated. If the same function gets invoked again while
the container is paused, the same container will be resumed,
which we call a warm start. Otherwise, it is a cold start.

Cloud functions cannot rely on containers to persist
any state, because containers are ephemeral. Cloud service
providers also limit the size of function parameters and re-
turn values to a few hundred kilobytes, making it impossible

Controller

Invoker

Container Container …

…

Pub-sub
messaging

Invocation
message

Acknowledgment
message

Cloud
storage

Figure 2. Overview of serverless architecture.

to pass large data this way. As a result, cloud functions have
to leverage cloud storage services (e.g., AWS S3) to store
or pass any non-trivial data.

The price for using serverless computing services typ-
ically consists of two parts: a flat-rate cost per function
invocation (“request cost”), plus a cost proportional to the
function’s run time (“duration cost”). The request cost is
typically a tiny fraction of the duration cost. Hence, it is
desirable to minimize the function run time.

A. Overview of serverless architecture

A typical serverless cloud (e.g., Apache OPENWHISK [6],
[7]) consists of two fundamental entities: one Controller
and multiple Invokers (Figure 2). The Controller is
the orchestrator of the system, and the Invokers are the
executors. They communicate through a publish-subscribe
messaging system (e.g., Apache KAFKA [8]).

To invoke a function, the Controller schedules the
invocation to run on an Invoker and publishes an invocation
message. When the Invoker receives an invocation message,
it publishes an acknowledgment message, and starts or
resumes a container to run the function.

B. Life of a cloud function

A typical lifecycle of a cloud function consists of four
phases: start, get, compute, and put.

The start phase is starting up the function. For a
cold start, the cloud starts a new container, downloads the
function code to the container, and invokes the function. The
function may then install additional packages (e.g., OpenCV,
FFmpeg, or LATEX) or make one-time network connections
(e.g., to a database). For a warm start, the cloud resumes an
existing container and invokes the function. A warm start
takes less than 20ms, while a cold start usually takes more
than one second, depending on the function.

The get phase is getting the input data from the cloud
storage service. The typical time spent on getting the data
is between 100ms and 5s, depending on the data size.

The compute phase is performing the actual computation
on the data. Although different functions have vastly differ-
ent computations, most functions are quick tasks that finish
within 3 seconds, the default time limit on AWS Lambda.

The put phase is putting the output data back to the cloud
storage. Different functions generate different sizes of data,
which usually takes between 100ms and 5s to upload. If a

malware

compress thumbnail

collage

Upload

Make
collage

Triggers
Data flows

Cloud
storage

Figure 3. A photo-sharing application example. Solid arrows indicate
triggers. Dashed arrows represent data flows.

function’s output is small (e.g., malware detection or image
recognition), it may leverage the function’s return value or
use a database service (e.g.. DYNAMODB) instead, without
putting data back to the cloud storage.

II. A MOTIVATING EXAMPLE

A. Example and insights

We motivate the design of LAMBDATA through an exam-
ple of an Instagram-like photo-sharing application with two
workflows, handling user upload and making collage, using
four cloud functions (malware, compress, thumbnail, and
collage). Figure 3 shows the triggering of functions and
how the data flows in and out of the cloud storage.

Handling user upload. The user uploads an image using a
front-end app (e.g., a smartphone app), which puts the image
on the cloud storage. As the cloud storage receives the data,
it automatically triggers malware for next-stage processing.

Function malware is triggered by a file-upload event of the
cloud storage service. When triggered, this function fetches
the data from the cloud storage and runs a malware-detection
program. If the file is clean, then it triggers both compress
and thumbnail simultaneously for next-stage processing.
Otherwise, it discards the file.

Function compress gets an image file from the cloud
storage, compresses it, and puts it back to the cloud storage.
Similarly, function thumbnail gets an image from the cloud
storage, generates a thumbnail, and puts it back to the cloud.

Making collage. The user can also make a collage out of
several existing images. The front-end app sends a REST
request to the cloud gateway, which triggers collage with
a list of image keys. Function collage gets each image file
from the cloud storage, generates a collage image, and puts it
back to the cloud. It also triggers compress and thumbnail
to compress the collage and generate a thumbnail of it.

Insights. From the example, we observe two key insights
in serverless computing. We have also studied the top 12
practical, real-world open-source serverless applications on
Github and built two serverless applications ourselves.1 We
find that our insights are valid on all these applications.

1Because serverless computing is a relatively new paradigm, we could
only find a few real-world open-source serverless projects beyond proof-
of-concept demos and tutorials at the time of writing.

Table I
INPUTS AND OUTPUTS OF EACH FUNCTION.

Input Output

Workflow: handle user upload
malware pic/1.jpg none (return value only)
compress pic/1.jpg small/1.jpg
thumbnail pic/1.jpg thumb/1.jpg

Workflow: make collage
collage pic/1.jpg—pic/5.jpg collage/col1.jpg
compress collage/col1.jpg small/col1.jpg
thumbnail collage/col1.jpg thumb/col1.jpg

Our first insight is that a cloud function is almost always
small doing a single task; therefore, developers can easily
determine its inputs and outputs before executing it, rather
than calculate the object names on the fly. Table I shows an
example of inputs and outputs of each function.

If a function is triggered by a cloud storage event, then
the input is just the object that emits the event. For example,
in the Upload workflow, malware is triggered by the cloud
storage when it receives a new image (e.g., pic/1.jpg), so
the input is just pic/1.jpg. The developer can easily cal-
culate the output objects deterministically before executing
the function. Function malware only appends an entry in
the database and does not generate new data objects, so the
output is empty. If the function wrote to the cloud storage
instead of the database, then it would specify something like
result/1.txt as the output.

If a function is triggered by another function or a REST
request, then the developer can specify the inputs and outputs
based on her intent of invoking the function. For example,
in the Collage-making workflow, the front-end application
invokes collage via a REST request to combine a list of im-
ages into a collage. So the inputs are the list of image objects
(pic/1.jpg. . .pic/5.jpg), and the output is the intended
filename of the collage object (collage/collage1.jpg).
Function collage further invokes compress and thumbnail
to compress the image and generate a thumbnail, so it
specifies the collage file as the input, and the outputs are
just the same filename prepended with buckets small/ and
thumb/, respectively.

Our second insight is that a cloud function tends to be
functional in the sense that it outputs an immutable object:
once the object is written, the application does not mutate
it. Because the serverless computing providers may kill a
function or run a function more than once without any no-
tice, they require that all functions be idempotent. Therefore,
most developers write functions in a purely functional way
with regard to the data objects, so that it is much easier to
reason about the behaviors and handle failures.

For example, all of our four functions are purely func-
tional, in that they never mutate data, and always generate
the same output for the same input. Specifically, the image-
compression function does not modify the input object in-

place but rather writes the result as a new object. Otherwise,
if the function is invoked twice, it would end up with double-
compressing the image.

These two insights enable LAMBDATA to cache data
aggressively without worrying about data inconsistency, and
schedule function invocations by considering both code and
data locality.

B. Inefficiencies with existing serverless clouds

Existing serverless clouds regard a function as a black
box, treating all invocations of a function in the same way.
When scheduling functions, they consider only the function
code, but not the data that the function computes. As a
result, they tend to schedule multiple invocations of the same
function on the same Invoker. For example, we ran the
workload of handling user uploads on two images, using
OPENWHISK with two Invokers. We found that Invoker1
handles all invocations of malware, and Invoker2 handles
all invocations of compress and thumbnail, because this
schedule is optimized for reusing warm containers.

Unfortunately, this scheduling is inefficient because func-
tions in both Invokers need to get both images from the
cloud storage. As cloud functions are typically small, the
time a function spends on getting data is significant. Table II
shows that the functions in our example spend 40% of the
time getting duplicate data from the cloud storage. Besides
wasting time, it also costs more money because the cloud
storage charges for each request.

The fundamental cause of this inefficiency is that existing
serverless clouds have no way of knowing a function’s data
intents (i.e., what data the function reads and writes); there-
fore, they cannot leverage such information for scheduling.

C. LAMBDATA’s optimizations

LAMBDATA optimizes for this inefficiency by making a
cloud function’s data intents explicit. Developers or cloud
events can easily annotate the input and output data when
invoking a function, using two special fields in the func-
tion’s parameter list: get data for input and put data
for output. These annotations enable the serverless cloud’s
Controller to see through the black box when scheduling
a function invocation. For example, the previous two invo-
cations of thumbnail now look different with LAMBDATA:� �
thumbnail(params={

"get_data": ["pic/1.jpg"],
"put_data": ["thumb/1.jpg"]

})
thumbnail(params={

"get_data": ["pic/2.jpg"],
"put_data": ["thumb/2.jpg"]

})� �
Under the hood, LAMBDATA securely caches data locally

on each Invoker, and the Controller takes into account
both code and data locality when scheduling function invoca-
tions. We noticed three common data usage patterns of cloud

Table II
TIME SPENT ON EACH PHASE OF THE FUNCTIONS, IN MILLISECONDS.

Function start get compute put %(get)

malware 402 208 69 n/a 44%
compress 132 216 117 83 39%
thumbnail 137 201 79 48 40%

start get compute put

start

collage

thumbnail get compute put

Figure 4. Dependency between collage and thumbnail.

functions while studying open-source serverless applications
and writing our own applications, and designed LAMBDATA
accordingly.

Temporal locality of data. A data is often reused by mul-
tiple functions within a short period of time. For example,
in the workflow of handling user upload, immediately after
malware finishes computation on a file, both compress
and thumbnail perform computations on the same file
concurrently. LAMBDATA securely caches the file locally on
the Invoker, and schedules all three function invocations on
the same Invoker according to their data intents (if it deems
worthy, see §V). Therefore, only malware needs to get the
data from the cloud, while compress and thumbnail read
the cached data, reducing both time and monetary costs.

Spatial locality of data. Many tasks or workflows involve
multiple functions computing on a small set of closely-
related data. For example, a user often uploads several im-
ages in a row and then creates a collage from these images.
Therefore, even a small cache provides many benefits.

Data pipelining. Multiple functions often process data as
a pipeline. For example, in the collage-making workflow,
functions collage and thumbnail form a pipeline, i.e.,
collage triggers thumbnail, and the output of collage
directly becomes the input of thumbnail. With existing
serverless clouds, thumbnail cannot start until collage
finishes putting the data to the cloud storage. However,
the real dependency between the two functions only lies in
the actual computation of the data (the compute phase), as
shown in Figure 4. Because LAMBDATA caches both input
and output data, it schedules the next-stage function on the
same Invoker as soon as the previous function enters the
put phase (if worthy, see §V), effectively overlapping func-
tions in a pipeline. Figure 5 shows LAMBDATA’s scheduling
for this example: thumbnail starts when collage finishes
computing, and it gets the collage output from the cache
rather than going through the cloud storage.

In the rare case, if LAMBDATA schedules thumbnail on
a different Invoker but thumbnail enters the get phase
before collage finishes the put (Figure 6), then LAMBDATA
would fail this invocation and retry it. Because serverless

start get compute put

start compute put

collage

thumbnail

Figure 5. Overlapping functions in a pipeline.

start get compute put

start

collage

thumbnail get

Figure 6. A rare case of overlapping functions in a pipeline.

computing providers may kill and restart a function without
notice, and thus require all cloud functions to be idempotent,
LAMBDATA’s behavior does not impose any new limitations.

We ran the same workload from §II-B on LAMBDATA,
and got the scheduling shown in Figure 7: the first Invoker
handles all invocations related to 1.jpg, and the second
Invoker handles those related to 2.jpg. As a result, LAMB-
DATA reduced the overall turnaround time by 29.6%, a
1.42× speedup, and reduced the monetary cost by 19.2%.
We show more case studies in §VI.

III. LAMBDATA API

LAMBDATA exports a simple yet effective API for server-
less functions to deal with cloud storage systems.

Basic cloud storage methods. LAMBDATA’s API for basic
cloud storage methods resembles the cloud storage’s original
API, such as get and put.� �
object = get(bucket, key)
put(object, bucket, key)� �

Developers simply import the LAMBDATA library and use
these methods in the same familiar way.

Data intents. LAMBDATA lets a function specify in its
parameters what data it needs to get and put. A function
in current serverless computing services represents all pa-
rameters as a single JSON string. LAMBDATA inserts three
optional fields get data, put data, and num threads
into the JSON. The developer specifies by get data and
put data all data it needs to get and put, both as an
array of (bucket, key) pairs, and by num threads the
number of threads it uses to connect to the cloud storage for
parallel downloads. Figure 8 shows an example annotation of
invoking the collage function to make a collage from two
images, using up to 5 threads for getting the data. Therefore,
the scheduler knows each function’s data intents by peeking
at the JSON string, before running the function.

We note that many existing serverless functions already
include an equivalent of get data and put data in their
parameters, but there is no standard on how they would
name these fields. For those functions, developers simply
need to change the names of these fields to get data and
put data, and enjoy the benefits of LAMBDATA.

malware
get_data: [pic/1.jpg]
put_data: []

malware
get_data: [pic/2.jpg]
put_data: []

compress
get_data: [pic/1.jpg]
put_data: [small/1.jpg]

thumbnail
get_data: [pic/1.jpg]
put_data: [thumb/1.jpg]

compress
get_data: [pic/2.jpg]
put_data: [small/2.jpg]

thumbnail
get_data: [pic/2.jpg]
put_data: [thumb/2.jpg]

Invoker 1 Invoker 2

Figure 7. Optimized scheduling with LAMBDATA.

"get_data": [{"bucket": "pic", "key": "1.jpg"},
{"bucket": "pic", "key": "2.jpg"}],

"put_data": [{"bucket": "collage", "key": "col1.jpg"}],
"num_threads": 5

Figure 8. Example annotations for an invocation of collage.

All annotations are hints only. If a developer misses an
intent or specifies an incorrect one, performance may be
affected but not correctness. For example, if get data
is missing, LAMBDATA may not schedule the function on
the best Invoker, but the function can still opportunistically
benefit from cached data. If put data is missing (or if
the developer cannot determine put data ahead of time),
LAMBDATA can provide all benefits except that it would not
overlap functions in a pipeline. If num threads is missing,
LAMBDATA assumes the function gets data sequentially
when estimating the lead time for scheduling (see §V-A).

IV. LAMBDATA’S ARCHITECTURE

We modified OPENWHISK and added LAMBDATA to
several components. Figure 9 shows the architecture.

Controller. We implement a data-aware scheduler in the
Controller, which consists of a cache registry, a data size
registry, and some profiling results. The cache registry keeps
a list of cached data keys for each Invoker, possibly stale.
The data size registry maintains the size of all data objects.
The profiling results contain the recent performance of the
cloud, including the time to start a container, the time to
get and put a file from the cloud storage. The Controller
does not actively probe any information, but only bookkeeps
information sent by Invokers.

Invoker. Each Invoker independently manages its own
cache and sends a list of all currently cached data keys
and the size of each data object to the Controller by
piggybacking it with the acknowledgment message of each
function invocation. It also monitors the time to resume a
warm container or start a cold container for each function.
Whenever it gets or puts a data object to the cloud storage,
it monitors the time it takes, in order to estimate the time of
cloud storage operation for various data sizes. It sends these
profiling results to the Controller via the acknowledgment

Controller

Data-aware scheduler

Invoker 1

Container Container Container…

Lambdata service & API

Lambdata cache

Identity 1 Identity 2 Identity n…

mount

Invoker n

…

Invocation
message

Cache-aware
acknowledgment

message

Cloud
storagePub-sub

messaging

Cache registry
Invoker1: {obj1, obj2}
Invoker2: {obj3}
…

Data size registry
obj1: 12,345 bytes
obj2: 42 bytes
…

Profiling results
Container start time
Cloud storage performance
…

Profiler

get(), put()

Figure 9. LAMBDATA’s architecture. Components with italic font are
LAMBDATA-specific.

message, too.
Each Invoker exports the LAMBDATA API via the Unix

domain socket. Each container on the Invoker has access to
the API socket, and securely mounts a portion of the cache
that the function’s identity has access to.

V. DATA-AWARE SCHEDULING

In existing serverless cloud architectures such as OPEN-
WHISK, each Invoker individually manages containers, and
the Controller does not know where the warm containers
are. Thus, the Controller only uses a deterministic hash
of the function to pick an Invoker. Although this method
has a good chance of picking a warm container, it fails to
consider data locality.

By contrast, LAMBDATA employs a data-aware scheduling
algorithm. Among the four phases of a serverless func-
tion, the compute and put phases are essential computa-
tions, unaffected by scheduling. Therefore, LAMBDATA’s
Controller schedules an Invoker in order to minimize the
lead time, defined as the time spent in the start and the get
phases, based on the bookkeeping information and profiling
results. We denote them by Tstart and Tget, respectively.

A. Estimating the lead time

The start phase. Let us name the function f . We denote by
Twarm the time to resume a warm container, and notice that
it is fast regardless of what function is in it. We denote by
Tcold the time in the start phase if we have to start a new
container, and find that it is relatively stable for the same
function but varies greatly across functions, so we model it
as a function of f . We notice that Tcold is not determined by
the code size of f because some functions install additional
packages or make one-time network connections after the
initialization of the container. To deal with this issue, LAMB-
DATA monitors Tcold(f) from the initialization to f ’s first
LAMBDATA API call of the get method. If LAMBDATA has
never seen f before, it estimates Tcold(f) by other functions
with similar code size as f . Therefore, the time spent in the
start phase is:

Tstart =

{
Twarm if a warm container is available
Tcold(f) otherwise

The get phase. Let D = {d1, d2, . . . , dn} be the set of
data that f depends on. We denote by Tdata(d) the time to
get data d from the cloud storage. We notice that Tdata(d)
is mainly determined by the size of d and the region of
the cloud storage, so LAMBDATA monitors the time spent
on recent cloud storage requests to track the relationship
between Tdata and object size dynamically. Let Dc ⊆ D be
the subset of cached data and Da = D \ Dc the subset
of data absent. If di ∈ Dc, then the function can read it
immediately. Otherwise, if di ∈ Da, the function needs to
get it from the cloud storage, using n concurrent threads
(n is an optional annotation provided by the developer, see
§III). In order to calculate the total time to get all the data,
we consider two cases. If |Da| ≤ n, meaning that there are
enough threads to download all data in parallel, then the time
is dominated by the slowest thread (i.e., getting the largest
data). If |Da| > n, then the time is approximately the total
time for getting all data over n threads. Therefore, the time
spent in the get phase is:

Tget =

{
maxd∈Da Tdata(d) if |Da| ≤ n

Σd∈Da

Tdata(d)
n otherwise

Total lead time. As a result, the total lead time is T =
Tstart + Tget. LAMBDATA tries to schedule the function on
the Invoker with the smallest T . If the best Invoker is
offline or overloaded, then it picks the next one, and so
forth. LAMBDATA uses the same load-detection mechanism
as existing serverless computing services.

B. Collecting bookkeeping data

When an Invoker receives a function invocation, it sends
an acknowledgment message to the Controller. LAMB-
DATA piggybacks with this message a list of currently cached
data, as an array of (bucket, key, size) tuples. The reason
to include data size is to help the scheduling algorithm
determine how long it would take to get the data from the
cloud storage, on other Invokers that has not cached the data
or on the same Invoker if the data is evicted from the cache.

The Controller has a cache registry that maintains a
global view of all data currently cached at each Invoker as
a dictionary of Invoker → Set[(bucket, key)]. It also
maintains the size of all data as a dictionary of (bucket,
key)→ size. Both dictionaries may be stale or incomplete,
which affects only scheduling efficiency but not the correct-
ness of the system. For example, the Controller may think
a data is cached on an Invoker, but it has actually been
evicted since the last acknowledgment message. In this case,
the function simply gets the data from the cloud storage
again. If any dictionary grows too large, the Controller
just purges old entries.

In order to estimate Twarm, Tcold, and Tdata, the Invoker
also monitors the time whenever it starts a container or
handles a cloud storage operation, and sends them to

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

Object size (MB)

boto3 get
boto3 put
Lambdata get (miss)
Lambdata get (hit)
Lambdata put

Figure 10. Microbenchmark: median time to get and put objects of various
sizes to Amazon S3. Lower is better.

the Controller via the acknowledgment message. The
Controller bookkeeps recent profiling results and interpo-
lates them for estimation.

VI. EVALUATION

We deployed LAMBDATA on Amazon EC2 in the
us-east-1 region, with an m5a.large instance as the
Controller and five m5a.2xlarge instances as Invokers.
All instances are running Ubuntu 18.04 and Docker CE
17.03.3. We used Amazon S3 as the cloud storage. We
implemented LAMBDATA in Scala 2.12 atop OPENWHISK
and wrote all cloud functions in Python 3.6. We limit each
function’s memory usage and cache size to 512MB.

Our experiments aim to answer four research questions:

A. Is LAMBDATA fast handling cloud storage requests?
B. Does LAMBDATA speed up function invocations?
C. Does LAMBDATA speed up multi-function workflows?
D. Does LAMBDATA reduce monetary cost?

A. Microbenchmark

We first evaluate LAMBDATA’s performance of basic
cloud storage operations. We get and put data objects from
1MB to 256MB, to Amazon S3, using both BOTO3 [9],
the official AWS Python library, and LAMBDATA. Figure 10
shows the median time for each operation.

For the get operation, if the data is cached, LAMBDATA
takes less than 1ms, because it is simply accessing files
on the local disk, and LAMBDATA does not need to do
anything. If the data is missing, LAMBDATA’s performance
is comparable to BOTO3’s up to 16MB, and it shows a
speedup of up to 1.6× with larger data. For the put opera-
tion, LAMBDATA’s performance is comparable to BOTO3’s
for small data, and it shows a 1.85× speedup for 256MB
data. These speedups are because BOTO3 connects to the
cloud storage in the Python runtime inside a container,
whereas LAMBDATA connects to the cloud storage in the
Invoker, using a Java runtime outside of containers. Since
the LAMBDATA is just a wrapper over the underlying AWS
SDK, we do not claim any contribution on the speedups.
Nevertheless, the results show that LAMBDATA performs
well for basic cloud storage operations.

B. Function performance

To evaluate LAMBDATA’s performance on running func-
tions, we wrote two serverless applications modeled from
real-world applications, each with 10 functions. Table III
lists all the functions and their parameters. We now briefly
describe these two applications.

Photo sharing. We modeled this application according to
Instagram, a popular photo-sharing application. Users can
upload images, create short video stories from images,
apply filters or add special effects, and publish them. The
application also includes functions to scan for malware,
compress images, and transcode videos. Although Instagram
performs many computations (e.g., applying filters) locally
on a mobile phone, we implement everything as cloud
functions to demonstrate the feasibility. We used images
from the Div2K dataset [10], [11] as the workload.

Online classroom. We modeled this application according
to Canvas, a popular online learning management system.
Teachers can manage lecture notes, assign homework, pre-
pare exams, and grade them. We used documents at the
authors’ institution as the workload.

1) Speedup of function invocations: To evaluate the
speedup of function invocations, we instrumented the time
spent on each phase of a function invocation. Table IV shows
the breakdown of each phase’s time, and the speedup of
LAMBDATA compared with OPENWHISK, where all num-
bers are the median of 100 invocations. In order to eliminate
the variance in the start time and make a fair comparison,
we pre-warmed the container before each invocation.

First, we find that cloud functions are small and short-
running. With practical workloads, all function invocation
times are shorter than 10 seconds, and the majority shorter
than 2 seconds.

We further find that the time spent on each phase varies
significantly across functions. Both get and put phases
take hundreds of milliseconds for most functions. They are
mainly determined by the number of data objects and each
object’s size. The times of the compute phase are diverse,
ranging from 0 to 8 seconds. They are mainly determined
by the function’s business logic.

We compared the run time of LAMBDATA with OPEN-
WHISK and found no statistically significant difference if the
data is not in the cache. If the data is cached, LAMBDATA
gives an average speedup of 1.50×. Of all functions, the
speedup is higher (up to 3.99×) if the get phase dominates,
and lower (1.02×) if the compute phase dominates.

Overall, our experiment shows that LAMBDATA offers
significant speedup over existing serverless clouds.

2) Case study: In order to understand how data matters
to LAMBDATA’s performance, we show a case study on
a typical cloud function: thumbnail. This function gets
an image file, generates its thumbnail, and puts it on the
cloud storage. We study how various image size affects both

Table III
LIST OF ALL FUNCTIONS AND THE PARAMETERS USED IN THE EXPERIMENT.

Function Descsription Parameters used in this experiment

App 1: Photo sharing
malware Scan a file for malware, using yextend [12]. Used malware rules form BinaryAlert [13].
compress Compress an image, using Pillow [14]. Output JPEG quality = 75%.
thumbnail Generate a thumbnail of an image, using Pillow. Thumbnail size = 320× 320.
image filter Apply a filter on an image, using Pillow and numpy [15]. Applied an Instagram “Amaro”-like filter.
create story Generate a video from a list of images, using OpenCV [16]. 1920× 1080 M-JPEG, 5 seconds per imaage.
add text Add a text label to a video, using OpenCV. Added a label with random text.
add audio Add an audio track to a video, using FFmpeg [17]. Used a pop music track in MP3 format.
transcoding Convert a video to another codec, using FFmpeg. Transcoded into the msmpeg4v2 format.
video filter Apply a filter on a video, using OpenCV. Applied a cartoon-like filter.
publish Publish an image or a video into a dedicated bucket. Bookkeeping only, no computation on data.

App 2: Online classroom
lecture note Compile a lecture note in LATEX beamer to PDF. The lecture note had 10 slides.
merge notes Merge a list of PDF files into one PDF. Merged 10 lecture notes.
watermark Add a watermark to all pages of a PDF file. Used “lecture notes” as the watermark.
split note Split a PDF file into two files (slides and speaker notes). Splitted a 10-page PDF into two 5-page PDFs.
write homework Compile a LATEX homework document to PDF. The PDF had three questions, one per page.
grade homework Generate per-question PDF files for all submissions. Used three questions, 20 student submissions.
question pool Create a question pool for an exam from a PDF repository. Randomly chose 5 out of 15 questions.
make exam Generate per-student problem set from the question pool. Randomly chose 3 out of 5 questions.
answer exam Compile a LATEX document and attach it to the exam PDF. The document had 10 pages.
grade exam Attach a grade on each page of a PDF file. The document had 10 pages.

Table IV
BREAKDOWN OF THE PHASES IN EACH FUNCTION (IN MILLISECONDS).

Function get compute put speedup

App 1: Photo sharing
malware 208 69 0 3.99×
compress 216 117 83 2.08×
thumbnail 201 79 48 2.58×
image filter 130 8129 111 1.02×
create story 651 865 418 1.51×
add text 353 938 392 1.27×
add audio 419 70 249 2.31×
transcoding 414 591 154 1.56×
video filter 398 7600 461 1.05×
publish 299 0 423 1.71×

App 2: Online classroom
lecture note 116 1345 122 1.08×
merge notes 615 1436 145 1.39×
watermark 129 513 116 1.20×
split note 65 89 157 1.27×
write homework 98 1470 123 1.06×
grade homework 711 904 311 1.58×
question pool 101 83 102 1.54×
make exam 129 61 114 1.74×
answer exam 115 1340 143 1.08×
grade exam 133 856 139 1.13×

Geometric mean 1.50×

OPENWHISK and LAMBDATA’s run time in each phase.
We pre-warmed the container and ran thumbnail with

input images of four popular dimensions: 1024×768 (web
quality, 460KB), 1920×1080 (full HD, 1.2MB), 3840×2160
(4K UHD, 4.7MB), and 4032×3024 (12 megapixel iPhone
photo, 7MB). Figure 11 shows the timeline of each function
invocation. Each cluster represents an image dimension, of

4032x3024

3840x2160

1920x1080

1024x768

 0 100 200 300

2.59x

2.40x

2.03x

2.67x

Time (ms)

Baseline get
Baseline process
Baseline put
Lambdata get
Lambdata process
Lambdata put

Figure 11. Time breakdown and speedup of the thumbnail function for
various image sizes.

which the top bar is the timeline of OPENWHISK, and the
bottom bar is the timeline of LAMBDATA.

We observe that all phases’ run time increase with the
image dimension, but the ratio of these increases is non-
linear. For example, the compute time on an iPhone image
is 6.9 times as long as on a web image, while the get
time is only 2.6 times as long. LAMBDATA shortens the
get time to almost zero, but the compute time remains the
same. Therefore, the speedup LAMBDATA provides is non-
linear with regard to the image dimension. We find that while
LAMBDATA gives speedup for all images, it works best with
iPhone photos.

The same observation applies to all functions. We con-
clude that LAMBDATA works well with all real-world data.

C. Workflow performance

To evaluate LAMBDATA’s performance on real-world us-
age involving multiple functions, we simulated 10 workflows
that resemble practical scenarios and used synthetic work-
loads derived from real-world parameters to trigger these

Lambdata

Baseline

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

create story
add text

transcoding
publish

Figure 12. Timeline for the slideshow workflow.

functions. We ran each workload 15 times and chose the
result with the median turnaround time. We now show the
most typical workflow: slideshow in the photo-sharing app.
In this workflow, the user creates a short 1080P M-JPEG
video with five recently-uploaded images and adds some
text to the video. The application then transcodes the video
to the msmpeg4v2 format and publishes the converted video.

Figure 12 shows the timeline of this workflow. The
top cluster is the baseline running on OPENWHISK, and
the bottom cluster is of LAMBDATA. This workflow has
four functions chaining into one pipeline: create story,
add text, transcoding, and publish. Since the user has
just uploaded the source images, the data cache is warm. For
each individual function, LAMBDATA’s run time is shorter
than the baseline, because it reuses data from the cache.

For the orchestration of the four functions, the base-
line schedules each function invocations consecutively,
whereas LAMBDATA overlaps the next-stage functions with
put phase of the previous function, further reducing the
turnaround time.

Overall, LAMBDATA achieves a 2.16× speedup to finish
the workflow. Across all 10 workflows, LAMBDATA achieves
an average of 1.51× speedup.

D. Cost savings

LAMBDATA’s cost savings come from two factors. First,
LAMBDATA shortens the run time of cloud functions, thus
reducing cost on the serverless computing service. Second,
LAMBDATA eliminates redundant requests to the cloud stor-
age, thus reducing cost on the storage service. We applied
the current pricing model of AWS Lambda and AWS S3 and
calculated the cost savings for all workflows.2

Table V shows the cost savings for the slideshow work-
flow in §VI-C, where LAMBDATA reduces its cost by 28.6%.
Across all workflows, LAMBDATA’s achieves an average cost
savings of 16.5%.

VII. DISCUSSION

Cache coherence. LAMBDATA requires that data are im-
mutable, so the cache is never incoherent. This requirement
follows our insights (§II-A) and is recommended by cloud

2We did not use AWS’s billing statement because it was too coarse-
grained.

Table V
MONETARY COST. NUMBERS ARE IN ×10−6 DOLLARS.

Baseline LAMBDATA Savings

Serverless cost 40.8 24.1
Storage cost 21.6 20.4
Total 62.4 44.5 28.6%

vendors. If a function needs to mutate data, it should store
the data with a new key and delete the old data.

Concurrent writes. Writing different data to the same object
from multiple functions violates our requirement that data
are immutable, and is a bad practice in any serverless
computing. LAMBDATA does not prevent concurrent writes
but leaves it to the developer to use distinct object keys.

Cache eviction policy. The cache eviction policy is orthogo-
nal to LAMBDATA’s design. LAMBDATA can use any policy
to evict cache. Because data in serverless computing are
small and demonstrate good temporal and spatial locality, the
cache need not be large. In practice, we find that a 512MB
cache with a simple LRU algorithm works well, with no
implications on the maximum throughput or the number of
functions that can be run in parallel inside an Invoker.

Data prefetching. By making a cloud function’s data intents
explicit, one further optimization is that the Invoker can
prefetch data on behalf of a function, while the container
is being initialized. LAMBDATA did not implement this
optimization because cloud providers charge users by the
duration a container runs. This prefetching that happens out-
side a container’s lifetime would violate the billing model.

Security. LAMBDATA maintains the same container isola-
tions as in existing serverless clouds, except for the cache.
It leverages existing cloud services’ identity and access
management (IAM) policies to restrict what cache a function
can access. Only functions under the same identity can see
one another’s cached data. A malicious function could try to
cache a lot of data in the hope of exhausting the cache space
and evicting other identities’ cached data. LAMBDATA can
mitigate this impact by imposing a limit on the maximum
cache size per identity.

VIII. RELATED WORK

Memoization for dataflow programs. Memoization [18],
[19], [20] is a technique that reuses prior computation results
of pure functions. Nectar [21] manages data and computation
in the traditional data center setting. It memoizes intermedi-
ate computation results of Dryad programs. Incoop [22] uses
memoization on the MapReduce framework. However, these
systems only work for specific programming models, and it
is non-trivial to generalize their use cases to serverless com-
puting where code and data are decentralized. LAMBDATA
generalizes the idea of memoization to cloud functions.

Scheduling workflows. Numerous work studies the schedul-
ing of cloud workflows [23], [24], [25]. For example,
Oozie [26] manages workflows for Hadoop systems, and
Yu et al. [27] schedules workflows for grid computing. Un-
fortunately, their models do not fit in the scope of serverless
programming. Cloud bursting schedulers, such as [28], only
consider occasional workload offloading rather than general
cloud computing use cases. DEWE v3 [29] employs a hybrid
execution model on serverless computing, but it focuses on
scientific workflows and resource underutilization, different
from LAMBDATA’s goal of data-awareness.

Serverless function orchestration. AWS Step Func-
tions [30] manages serverless computing workflows by de-
scribing functions as a state machine. Although it maintains
states for serverless applications, the 32KB size limit is
insufficient for large data objects. IBM Composer [31] and
Azure Durable Functions [32] let developers write function
compositions with special library functions, and allow larger
state size. Nevertheless, these frameworks do not consider
data locality, and their states are only for intermediate
data, not persisted in the cloud storage. Besides, they all
require new programming models unfamiliar to developers.
By contrast, with LAMBDATA, developers write functions
and manipulate data objects in a familiar way.

Data systems for serverless computing. Pocket [3] intro-
duces a multi-tier storage system for interactive serverless
data-analytic applications. However, it focuses on interme-
diate data and does not provide high data durability. By
contrast, we choose to build LAMBDATA on top of existing
cloud storage so that data are highly durable, and developers
are familiar with this programming model.

IX. CONCLUSION

This paper presented LAMBDATA, a novel serverless com-
puting system that enables developers to declare a cloud
function’s data intents, including both data read and data
written. It caches data locally, and its data-aware scheduling
algorithm considers both code and data locality. Evaluation
on two practical applications with 20 cloud functions shows
that LAMBDATA achieves an average of 1.51× speedup on
the turnaround time and reduces monetary cost by 16.5%.
All source code of LAMBDATA and benchmarking applica-
tions we wrote are at https://columbia.github.io/lambdata.

REFERENCES

[1] K. Corless, M. Kavis, and K. Norton,
NoOps in a serverless world, https://www2.
deloitte.com/insights/us/en/focus/tech-trends/2019/
noops-serverless-computing-transforming-it-operations.html.

[2] Cloud Foundry, Where PaaS, Containers and Serverless Stand
in a Multi-Platform World, https://www.cloudfoundry.org/
multi-platform-trend-report-2018/.

[3] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
and C. Kozyrakis, “Pocket: Elastic ephemeral storage for
serverless analytics,” in OSDI, 2018.

[4] Amazon Web Services, AWS Lambda Developer Guide:
Programming Model, https://docs.aws.amazon.com/lambda/
latest/dg/programming-model-v2.html.

[5] Google, Cloud Functions Execution Environment, https://
cloud.google.com/functions/docs/concepts/exec.

[6] Apache OpenWhisk, Open Source Serverless Cloud Platform,
https://openwhisk.apache.org.

[7] IBM Cloud, How Cloud Functions works, https://cloud.ibm.
com/docs/openwhisk?topic=openwhisk-about.

[8] Apache Kafka, A distributed streaming platform, https://
kafka.apache.org/.

[9] Boto3, https://aws.amazon.com/sdk-for-python/.
[10] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on

single image super-resolution: Dataset and study,” in CVPR
Workshops, 2017.

[11] R. Timofte, E. Agustsson et al., “NTIRE 2017 challenge on
single image super-resolution: Methods and results,” in CVPR
Workshops, 2017.

[12] yextend, https://github.com/BayshoreNetworks/yextend.
[13] BinaryAlert, https://github.com/airbnb/binaryalert.
[14] Pillow, https://pillow.readthedocs.io/en/stable/.
[15] NumPy, https://www.numpy.org.
[16] OpenCV, https://opencv.org.
[17] FFmpeg, https://ffmpeg.org.
[18] Y. A. Liu, S. D. Stoller, and T. Teitelbaum, “Static caching

for incremental computation,” ACM Trans. Program. Lang.
Syst., vol. 20, no. 3, May 1998.

[19] W. Pugh and T. Teitelbaum, “Incremental computation via
function caching,” in POPL, 1989.

[20] D. Michie, “Memo functions and machine learning,” Nature,
vol. 218, pp. 19–22, Apr. 1968.

[21] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang, “Nectar: Automatic management of data and
computation in datacenters,” in OSDI, 2010.

[22] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquin, “Incoop: Mapreduce for incremental computa-
tions,” in SoCC, 2011.

[23] A. K. Bardsiri and S. M. Hashemi, “A review of workflow
scheduling in cloud computing environment,” 2012.

[24] Z. hui Zhan, X. F. Liu, Y. jiao Gong, J. Zhang, H. S. hung
Chung, and Y. Li, “Cloud computing resource scheduling and
a survey of its evolutionary approaches,” ACM Comput. Surv.,
vol. 47, pp. 63:1–63:33, 2015.

[25] O. Alqaryouti and N. Siyam, “Serverless computing and
scheduling tasks on cloud: A review,” American Scientific
Research Journal for Engineering, Technology, and Sciences,
vol. 40, pp. 235–247, 2018.

[26] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srini-
vasan, C. Peters, A. Neumann, and A. Abdelnur, “Oozie: To-
wards a scalable workflow management system for hadoop,”
in SWEET, 2012.

[27] J. Yu, R. Buyya, and K. Ramamohanarao, Workflow Schedul-
ing Algorithms for Grid Computing, 2008, pp. 173–214.

[28] Y. C. Lee and B. Lian, “Cloud bursting scheduler for cost
efficiency,” 2017 IEEE 10th International Conference on
Cloud Computing (CLOUD), pp. 774–777, 2017.

[29] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution
of scientific workflows,” in ICSOC, 2017.

[30] Amazon Web Services, AWS Step Functions, https://aws.
amazon.com/step-functions/.

[31] IBM, Composer, https://github.com/ibm-functions/composer.
[32] Microsoft, About Durable Functions, https://docs.

microsoft.com/en-us/azure/azure-functions/durable/
durable-functions-overview.

