
Practical Software Model Checking via
Dynamic Interface Reduction

Huayang Guo∗† Ming Wu† Lidong Zhou† Gang Hu∗† Junfeng Yang◦ Lintao Zhang†

∗ Tsinghua University † Microsoft Research Asia ◦ Columbia University
{huayang.guo,henry.hu.sh}@gmail.com {miw,lidongz,lintaoz}@microsoft.com

junfeng@cs.columbia.edu

ABSTRACT
Implementation-level software model checking explores the state
space of a system implementation directly to find potential software
defects without requiring any specification or modeling. Despite
early successes, the effectiveness of this approach remains severely
constrained due to poor scalability caused by state-space explo-
sion. DEMETER makes software model checking more practical
with the following contributions: (i) proposing dynamic interface
reduction, a new state-space reduction technique, (ii) introducing a
framework that enables dynamic interface reduction in an existing
model checker with a reasonable amount of effort, and (iii) provid-
ing the framework with a distributed runtime engine that supports
parallel distributed model checking.

We have integrated DEMETER into two existing model checkers,
MACEMC and MODIST, each involving changes of around 1,000
lines of code. Compared to the original MACEMC and MODIST
model checkers, our experiments have shown state-space reduction
from a factor of five to up to five orders of magnitude in representa-
tive distributed applications such as PAXOS, Berkeley DB, CHORD,
and PASTRY. As a result, when applied to a deployed PAXOS im-
plementation, which has been running in production data centers
for years to manage tens of thousands of machines, DEMETER
manages to explore completely a logically meaningful state space
that covers both phases of the PAXOS protocol, offering higher as-
surance of software reliability that was not possible before.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking, Reliability; D.2.5 [Software Engineering]: Test-
ing and Debugging—Testing tools

General Terms
Algorithms, Reliability

Keywords
Software model checking, state space reduction, dynamic interface
reduction

1. INTRODUCTION
Reliability has become an increasingly important attribute for com-
puter systems, as we are witnessing growing dependencies on com-
puter systems that run continuously on commodity hardware de-
spite adversity in the environment. Complete verification of sys-
tem implementations has been a daunting job, if not infeasible for
complex real-world systems. Implementation-level software model
checking [18, 36, 32, 41, 40, 33, 29, 38, 39] proves to be a vi-
able approach for improving reliability. It has advanced to a stage
where it can be applied directly to a system implementation and can
find rare program bugs by exploring a system’s state space system-
atically to detect system misbehavior such as crashes, exceptions,
and assertion failures. Despite this success, these model check-
ers are often unable to explore completely any non-trivial logically
bounded state space (e.g., a normal single execution of consensus),
making it hard to provide any degree of assurance for reliability.
State-space explosion is a major obstacle to their effectiveness.

In this paper, we introduce dynamic interface reduction (DIR), a
new state-space reduction technique for software model checking.
DIR is based on two principles.

First, check components separately. A common practice to man-
age software complexity is to encapsulate the complexity using
well-defined interfaces. Leveraging this common practice, a model
checker considers a target software system as consisting of a set
of components, each with a well-defined interface to the rest of
the system. For example, a typical distributed system is comprised
of a set of processes interacting with each other through message
exchanges. The set of message-exchange sequences, or message
traces, between a component and the rest of the system defines the
interface behavior for that component. In general, all behavior such
as shared memory, failure correlations, or other implicit channels
that cause one component to affect another is captured by interface
behavior. Any behavior other than interface behavior is locally con-
tained. Given the interface behavior of each component, DIR can
check its local state-space separately, avoiding unnecessary (and
expensive) exploration of the global state-space when possible.

Second, discover interface behavior dynamically. Model checking
each component separately requires knowing the interface behavior
of the component. DIR discovers this behavior dynamically dur-
ing its state-space exploration, by running the target components
for real and combining their discovered interface behavior. This
process is often efficient because it ignores intra-component com-
plexity that does not propagate through interfaces. Moreover, this
process is completely automated, so that developers do not have
to specify interface behavior manually [22, 31], which may be te-
dious, error-prone, and inaccurate. A last benefit is that this process



discovers only the true interface behavior that may actually occur in
practice, not made-up ones [23], thus avoiding difficult-to-diagnose
false positives.

We incorporate the DIR technique into DEMETER, a model check-
ing framework that includes an algorithm that progressively ex-
plores the local state-space of each component, while discovering
interface behavior between components. DEMETER adopts a mod-
ular design as a framework to enable DIR in existing model check-
ers with a reasonably small amount of engineering effort. Its design
can reuse the key modules for modeling a system and for state-
space exploration in an existing model checker; DEMETER further
defines a set of common data structures and APIs to encapsulate the
implementation details of an existing model checker. The key DIR
algorithm can then be implemented independently of any specific
model checker and is accordingly reusable.

DEMETER implements a distributed runtime for DIR-enabled model
checking that leverages the inherent parallelism of DIR, as local ex-
plorations for components with respect to given interface behavior
are largely independent. As a result, DEMETER scales nicely when
running on more machines, and is capable of tapping into any dis-
tributed system or cloud infrastructure that is becoming prevalent
today to push model checking capabilities further.

To demonstrate the practicality of DEMETER, we have incorpo-
rated DIR into MACEMC and MODIST, two independently devel-
oped model checkers. Despite their fundamental differences in im-
plementing model checking, each requires changes of only around
1,000 lines of code, thanks to the framework provided by DEME-
TER. The resulting model checkers take advantage of not only the
new reduction technique, but also of the distributed runtime to run
model checking in parallel on a cluster of machines.

The resulting checkers have been used to check representative ap-
plications, ranging from PASTRY and CHORD, two classic peer-to-
peer protocols, to Berkeley DB (BDB), a widely used open source
database, and to MPS, a deployed PAXOS implementation that has
been running in production data centers for years to manage tens of
thousands of machines. Our experiments show up to a 105 speedup
in estimated state-space exploration, thanks to the effectiveness of
interfaces in hiding local non-determinism related to thread inter-
leaving and coordination. Furthermore, DEMETER’s runtime shows
nearly perfect scalability as we increase worker machines from 4 to
32. This significantly improved model-checking capability from
both state-space reduction and parallelism translates directly to in-
creased confidence in the reliability of systems that survive exten-
sive checking: in our experiment with MPS, DEMETER was able
to explore a complete sub-space, where three servers execute both
phases in the PAXOS protocol. DEMETER was also able to explore
a complete sub-space for CHORD on MACE with three servers un-
til all have joined. To the best of our knowledge, neither would
be possible for any published implementation-level model checker
without DIR.

The rest of the paper is organized as follows. Section 2 presents
an overview with an example system we use throughout the paper.
Section 3 presents an overview of DIR and the algorithm. Section 4
outlines DEMETER’s system architecture and how MACEMC and
MODIST are integrated with DEMETER. Evaluations of and expe-
riences with DEMETER are the subject of Section 5, followed by
discussions in Section 6. We survey related work in Section 7 and
conclude in Section 8.

 

 
Client                                    Primary/Secondary 

                                   //Main thread            //Checkpoint thread                              

if (Choose(2)==0){     while (n=Recv()) {        Lock(); 

    Send(P,1);                    Lock();                      Log(sum);    Ckpt 

    Send(P,2);                    sum+=n;       Sum     Unlock(); 

} else {                             Unlock();                   

    Send(P,1);                  if (isPrimary)       

    Send(P,3);                         Send(S,n);  

}                                }      

                                

 

Figure 1: Code example for a contrived distributed accumula-
tor composed of a client C, a primary server P, and a secondary
server S.

2. OVERVIEW AND AN EXAMPLE
Dynamic interface reduction in DEMETER considers a system con-
sisting of a set of components, each with a well-defined interface
to interact with the rest of the system. For example, a distributed
system can have processes running on each machine as a compo-
nent, with a sequence of message exchanges between components
forming a message trace as interface behavior. (We assume no in-
teractions occur via any means other than messages.) State-space
exploration is then divided into a set of local explorations, one for
each component, and a global exploration that explores the inter-
actions between components; e.g., in the form of message traces.
During the exploration, DEMETER tracks and builds up the inter-
face behavior (e.g., message traces) between each component and
the rest of the system. By dynamically discovering interface be-
havior, DEMETER removes the need for users to model interac-
tions beforehand through manual or static-analysis methods, and
follows closely the philosophy of implementation-level software
model checking with no specification or modeling.

Before presenting the details of the system model, the DIR algo-
rithm, the architecture, and the implementation of DEMETER, in
this section, we use a simple code example to describe at a high
level the work flow of DEMETER with DIR and what kind of re-
duction it can achieve. For simplicity, we focus on distributed
systems where an execution trace captures the non-deterministic
events such as thread interleaving, message send, and message re-
ceive operations in an execution, while a message trace, which in-
cludes only the message send and receive operations in an execu-
tion, captures the interface behavior across components.

2.1 An Example
Figure 1 shows the pseudo code of a contrived distributed accu-
mulator composed of three components: a client, a primary server,
and a secondary server. The client (left of Figure 1) calls function
Choose(2) [18, 39, 40, 29], which non-deterministically returns
0 or 1. In practice, this can be used to imitate the effect of timeout,
failure, or a random function. Depending on the returned value of
the Choose function, the client code sends two different sequences
of numbers to the primary, which then sums them up and forwards
them to the secondary. A checkpoint thread writes the sum to disk.
We label the critical sections in these two threads as Sum and Ckpt,
respectively. Both the primary and the secondary run the same code
(right of Figure 1), except that the secondary has isPrimary set
to false. As a result, the secondary receives the numbers from the
primary, but does not forward the numbers further.

Our example does only simple summation for clarity. However,



 
1 1 

C.Choose(2)==0 
C.Send(P,1) 
P.Recv(C,1) 
P.Send(S,1) 
S.Recv(P,1) 
C.Send(P,2) 
 … 

Compute 

initial trace 

2 1 

Project global message 

trace to component 

3 1 3 1 3 1 
Locally explore 

Primary 

P.Recv(C,1) 

Ckpt 
Sum 

P.Send(S,1) 
Ckpt 
Sum 

Locally explore 

Secondary 

S.Recv(P,1) 

C.Send(P,1) 

Locally explore 

Client 

C.Choose(2)==0 C.Choose(2)==1 

P.Recv(C,2) 
S.Recv(P,2) 

C.Send(P,2) 

4 1 

C.Send(P,1) 

C.Send(P,3) 

Discover new 

interface behavior 

5 1 

Composition 

               
              C.Send(P,1) 
P.Recv(C,1) 
P.Send(S,1) 
S.Recv(P,1) 
              C.Send(P,3) 
 …… 

Trace1: 

Trace2: 

In Trace1: In Trace2: 

Sum 

P.Send(S,2) 

Sum 

Sum Sum 
Ckpt 

Ckpt 

Sum 

Sum 

Ckpt 

Sum 

Sum Sum Sum 
Ckpt 

Figure 2: Work flow of DEMETER with DIR on the example in
Figure 1. The work flow has five key steps, as explained in §2.2.

it still mimics real distributed systems in many aspects. For in-
stance, it is built on top of common techniques that real distributed
systems use, such as replication, message passing, multi-threading,
and checkpointing. Moreover, it has a well-defined component in-
terface that hides the implementation details (e.g., when the check-
point thread of the server interleaves with the main thread) within
a component. Because these local choices do not propagate out-
side of component interfaces, we can check them locally without
resorting to expensive global exploration of all components.

2.2 DIR Work Flow
At a high level, the work flow of DEMETER with DIR alternates
between a global explorer enumerating the global message traces
across components and a set of local explorers, one per component,
enumerating the local execution traces within each component. Fig-
ure 2 illustrates this work flow using the example in Figure 1. The
DIR work flow has five key steps:

1. To bootstrap the checking process, the global explorer first per-
forms a global execution including all components to discover
an initial global execution trace, and the corresponding global
message trace that keeps only the message send and receive op-
erations. As shown in the figure, the global explorer first ex-
plores the choice of Choose(2) returning 0 in the client. The
client then sends the sequence 1 and 2 to the primary, which for-
wards it to the secondary, resulting in the global trace Trace1.
A corresponding global message trace can be obtained by re-
moving all intra-component events from Trace1. The goal of
the global explorer is to discover all global message traces.

2. The global explorer projects a newly discovered global mes-
sage trace down to each component’s local message trace by
keeping only the message exchanges that are either sent or re-
ceived by that component. It then sends to each component
the corresponding projected message trace. Step 3 in Figure 2
shows the results of this projection for each component. As the
global explorer discovers more and more global message traces,
it keeps generating such projections, increasingly capturing the
interface behavior of each component.

3. Checking now shifts to local explorers. A local explorer enu-
merates non-deterministic choices within the corresponding com-
ponent. Because the local explorer does not control the execu-
tion of other components, whenever the component attempts to
interact with other components, the local explorer will match

any outgoing messages with those in the local message trace
and replay any incoming messages according to the local mes-
sage trace. As shown in step 3 of Figure 2, the local explorer for
the primary (similarly for the secondary) explores the different
interleavings of the Sum and Ckpt operations while matching
the Send operations and replaying the Recv.

4. If a local explorer causes the component to send a new message
that deviates from the local message trace, it can no longer fol-
low the message traces it already knows, and has to report this
deviation to the global explorer. For instance, as shown in Fig-
ure 2, when the local explorer of the client explores the choice
of Choose(2) returning 1, it encounters a new interface oper-
ation Send(P,3) (boxed) deviating from the known message
traces of the client. We label the new trace Trace2.

5. The global explorer then composes the new message trace with
existing global message traces to construct new global mes-
sage traces. For instance, in Figure 2, the global explorer lo-
cates the deviating points in the global message trace derived
from Trace1 and stitches the unchanged portion together with
Trace2 to form a new global message trace. (For details of
this composition process, see Section 3.3.) Then, the global
explorer goes back to step 2 and repeats until no new mes-
sage trace is discovered and all the local explorations against
the known message traces have finished.

2.3 Reduction Analysis
For the example in Figure 1, each component has two different
message traces (one for each value returned by Choose(2) at
the client). The client has one local execution trace per message
trace. The primary and the secondary each have three different lo-
cal traces per message trace, because Sum and Ckpt can interleave
differently and lead to different local states (see Figure 2), but the
changed local state does not propagate across the component in-
terfaces. Thus, DEMETER with DIR explores 2 ∗ (1+ 3+ 3) = 14
different executions.

In contrast, a model checker without DIR has to re-explore the en-
tire system whenever the local state of a component changes. The
reason is that, without dividing a whole system into components
and monitoring the interface behavior, a model checker has to as-
sume that a local change may affect the rest of the system. Thus, it
must re-explore all non-deterministic choices in the rest of the sys-
tem under this local change. For instance, when the primary’s main
thread interleaves differently with its checkpoint thread and results
in a different local state, a model checker without DIR would have
to re-explore unnecessarily the choices in both the client and the
secondary. As a result, it would explore a total of 2 ∗ 3 ∗ 3 = 18
executions.

Analytically, DIR achieves exponential state-space reduction. To
illustrate, consider a modified example where the client sends one
sequence of n numbers and the primary forwards the numbers to
(m− 1) replicas. Each server (primary or replica) has exactly one
message trace (since the client sends only one sequence of num-
bers). Under this message trace, each server has (n+ 1) different
thread interleavings. Therefore, DEMETER would explore 1+m∗
(n+ 1) executions, whereas a model checker without DIR would
explore (n+1)m executions.

From a system perspective, the reduction of DIR can be intuitively
viewed as a result of caching. Consider a system where a compo-
nent has many local non-deterministic choices but always sends the
same message to the other components. When exploring this com-



 

 

 

Sum 

Sum 

Primary Client 

Send(P,1) 

Choose(2)=0 

cp 

Recv(C,1) 

Ckpt 
main 

cp 

Send(S,1) 

Secondary 

Recv(P,1) 

Ckpt 

main 

Recv(C,2) 

Send(P,2) 

Figure 3: A trace τ of the example code in Figure 1. main and
cp refer to the main and the checkpoint threads, respectively.

ponent, the first time we discover an outgoing message, we have to
explore the effects of this message on the other components, which
can be expensive. However, as we keep exploring this component,
we discover that it sends the same message again in a different exe-
cution, and we can thus safely skip the expensive exploration of the
other components under this same message. In other words, we ef-
fectively get a “cache hit.” Following this intuition, we expect DIR
to work well for any system where there are well-defined interfaces
to hide implementation details. This is common for practically all
real systems, especially loosely coupled distributed systems that are
designed to reduce the amount of inter-process communication for
performance reasons.

3. DYNAMIC INTERFACE REDUCTION
In this section, we present the system model we assume for DIR
and the detailed algorithm.

3.1 System Model
DEMETER checks standard concurrent/distributed systems as de-
fined previously in software model checking [16, 18]. Abstractly, a
system starts from an initial state and at each step performs a tran-
sition into the next state. A transition is enabled if it is not blocked
and can be scheduled to execute on the current state. The envi-
ronment is used to model the non-determinism as different choices
of enabled transitions at a state. Such non-determinism includes
thread/process scheduling, message ordering, timers, failures, and
other randomness in the system.

Implementation-level software model checkers work directly on ac-
tual implementations of target systems. They typically consist of
two major pieces. The first is a system wrapper that exposes an un-
derlying system and enables the control of non-determinism in the
environment. The second is an exploration mechanism that builds
on top of the system wrapper to explore the system state space by
capturing and controlling non-determinism in order to find software
defects such as unintended exceptions and crashes, assertion fail-
ures, and other safety violations.

In DEMETER, a system is divided into a static set C of compo-
nents. Components interact with each other through interface ob-
jects, such as communication channels or shared objects. We clas-
sify transitions as internal transitions if they do not read or write
interface objects, or interface transitions if they access and/or up-
date interface objects. An interface transition is further an output

transition if it updates an interface object (e.g., sending a message
or updating a shared object); or an input transition if it reads an in-
terface object (e.g., receiving a message or reading a shared object).

Two transitions are dependent if their executions interfere with each
other: one could enable/disable the other, or executing them in a
different order could change the final outcome. Examples are two
lock operations on the same lock, a write operation and read/write
operations on the same shared variable, and a message send opera-
tion and the corresponding receive are dependent. Starting from an
initial state, a system execution is modeled as a trace that captures
all transitions taken by the system and the partial order (�) between
those transitions based on transition dependencies. Partial-order
equivalent traces are considered the same. Given a trace τ and an
enabled transition t at the state after executing τ , we can extend τ to
a new trace τ ◦ t by carrying out transition t. We can further define
a prefix relation between traces as follows. A trace τp is a prefix of
τ if and only if any transition in τp is in τ and, for any transition t
in τp and any tp � t in τ , tp must be in τp and tp � t in τp holds.

Each transition belongs to a particular component. A global trace τ

can be projected onto a component C to obtain a local trace by pre-
serving only transitions that belong to component C (including out-
put transitions from C to other components) and output transitions
from other components to C, along with their partial order. The
result is referred to as projc(τ). To capture interface behavior in a
trace, we construct a global skeleton from a global trace τ by keep-
ing only interface transitions and their partial order in the trace. We
refer to the resulting skeleton as skel(τ). Similarly, a local skeleton
skel(projc(τ)) can be defined on local trace projc(τ) for component
c. A local skeleton captures the interface behavior between c and
the rest of the system. Two global traces τ and τ ′ are interface-
equivalent with respect to component c if and only if their local
skeletons on c are the same; that is, skel(projc(τ)) = skel(projc(τ

′))
holds.

Figure 3 shows an example trace τ of the example code in Fig-
ure 1. Each segment corresponds to a transition, while arrows rep-
resent inter-thread/process communications, which also imply the
happen-before relation between transitions. A partial order (�) is
defined between transitions in the same thread, between a send tran-
sition and its corresponding receive transition across threads and
processes, and is transitive. Examples include P.Recv(C,1) �
P.Sum, P.Sum � P.Ckpt, P.Send(S,1) � S.Recv(P,1).
All Send and Recv transitions (marked in bold) are interface tran-
sitions, while Choose, Sum, and Ckpt are internal transitions cor-
responding to local non-deterministic choices. The corresponding
global skeleton of τ in Figure 3 contains the 6 interface transitions
and their partial order as in the original trace. The local trace with a
projection to the client contains Choose(2)=0, C.Send(P,1),
and C.Send(P,2). The corresponding local skeleton contains
only transitions C.Send(P,1) and C.Send(P,2).

3.2 Partial-Replay Local System
The first core idea of DIR is to check each component separately.
Checking a component c is possible with a local skeleton that spec-
ifies all the interface behavior between c and the rest of the system.
This is done through a partial-replay local system. In theory, it is
possible to replay just the interface transitions on a local skeleton
(e.g., by supplying received messages recorded in the local skele-
ton). In reality, replaying only the interface transitions is difficult.
For example, in order to replay message-exchange transitions, the
underlying network channels (sockets) must be set up correctly.



 

 

Ckpt 
Sum 

Sum 

Primary Client 

Send(P,1) 

Choose(2)=1 

cp 

Recv(C,1) 

Ckpt 
main 

cp 

Send(S,1) 

Secondary 

Recv(P,1) 

main 

Send(P,3) 

(a) Branching trace τA with branching
transition C.Send(P,3).

 

 

Sum 

Timeout 

Sum 

Primary Client 

Send(P,1) 

Choose(2)=0 

cp 
Recv(C,1) 

Ckpt 

main 

cp 

Send(S,1) 

Secondary 

Recv(P,1) 

Ckpt 

main 

Send(S,1) 

Recv(P,1) 

(b) τB: A global trace with the same pro-
jected local skeleton on the client as τA,
and with a message resend from the pri-
mary.

 

 

Sum 

Timeout 

Sum 

Primary Client 

Send(P,1) 

Choose(2)=1 

cp 
Recv(C,1) 

Ckpt 

main 

cp 

Send(S,1) 

Secondary 

Recv(P,1) 

Ckpt 

main 

Send(S,1) 

Recv(P,1) 

Send(P,3) 

(c) Substitution: substC(τB,τA).

Figure 4: Composition by Substitution: an Example.

This could involve earlier operations such as bind. Such internal
dependencies might be hard to identify thoroughly; the process is
often error-prone. Simulating network behavior for replaying is
also a significant undertaking, as done in model checkers such as
MODIST. Therefore, a partial-replay local system replays not only
interface transitions, but also any other transitions in the rest of the
system. This choice leads to a simple and modular design, albeit at
the cost of running transitions in other components.

More precisely, given a local skeleton κc and a representative trace
τ satisfying projc(skel(τ)) = κc, a partial-replay local system tries
to enumerate transitions in c, while replaying the behavior of the
rest of the system (denoted as R) according to τ . Starting from the
initial state, in each step the partial-replay local system either picks
an enabled transition from component c or replays τ’s transitions
in R. A transition t made by R in projR(τ) can be replayed if and
only if any transition in projR(τ) that t depends on has already been
replayed.

A partial-replay local system could make an output transition in c
that deviates from κc. Such a deviating output transition is called
a branching transition. When a branching transition tb is encoun-
tered, let τb be the trace explored right before taking the branching
transition, the partial-replay local system reports 〈tb,τb〉 in order
for DEMETER to discover new global and local skeletons through
composition by substitution, which we describe next.

3.3 Composition by Substitution
The second core idea of DIR is to discover interface behavior dy-
namically. This is the responsibility of the global explorer through
composition by substitution. The global explorer maintains the set
G containing the pair 〈κ,τ〉 for each discovered global skeleton κ

and a corresponding global trace τ , where κ = skel(τ). The global
explorer further maintains a set B of all discovered branching tran-
sition/trace pairs (〈tb,τb〉) reported by partial-replay local systems.

Intuitively, the global explorer’s process of discovering interface
behavior can be thought of as a state-space exploration of a new
transition system with only the interface transitions of the orig-
inal system. The global explorer essentially builds up the tran-
sition system with the global skeletons captured in G, where the
branching transitions captured in B are the transitions in that sys-
tem. For a branching transition from component c, the local skele-
ton κc = projc(skel(τb)) defines when that branching transition is

enabled: for any global skeleton κ , the branching transition is en-
abled if and only if projc(κ) = κc holds, in which case we can carry
out that branching transition to extend κ to a new global skeleton.

This process is described more precisely through the following com-
position by substitution on traces, which uses the subst operation
defined as follows. If two traces τ and τ ′ are interface-equivalent
with respect to component c, τs = substc(τ,τ ′) defines a new trace
by replacing all c’s transitions in τ with c’s transitions in τ ′ while
preserving the partial order in the original traces; that is, for any
transitions t and t ′ in τn, if t and t ′ are both in τ or both in τ ′ with
t � t ′, then t � t ′ holds in τs. Such a substitution is possible because
τ and τ ′ are interface-equivalent with respect to c: c’s transitions in
τ and τ ′ are indistinguishable to the rest of the system because they
present the same interface behavior (i.e., local skeleton).

Given 〈tb,τb〉 ∈ B and 〈κg,τg〉 ∈ G, where τb and τg are interface-
equivalent with respect to component c, we compose a new global
trace τs = substc(τg,τb) through substitution, construct τn = τs ◦ tb
by taking the branching transition tb, and add 〈skel(τn),τn〉 into G.

Figure 4 illustrates the process of composition by substitution. We
enrich the example in Figure 1 slightly by enabling the primary
to resend its message if a local timeout for that message is trig-
gered. The secondary ignores the resent message if it has already
received the previous one. The extension creates more variations
in global skeletons and helps illustrate how composition by sub-
stitution creates new global skeletons. Figure 4(a) shows a global
trace τA (containing all transitions in solid lines) with a branching
transition tb = C.Send(P, 3) (in dotted lines), when the client
has Choose(2) set to 1, rather than 0. Figure 4(b) shows another
global trace τB that has the same local skeleton for the client as τA.
It is a prefix of a complete trace when the client has Choose(2)
set to 0. The local traces of τA and τB for the primary are differ-
ent in the order between Sum and Ckpt. The global skeletons of
the two are also different: in τB, the primary resends the message
with value 1. The differences in τA and τB are however invisible
to the client. Further assume that τB and its global skeleton have
already been discovered in G. When the branching transition in
Figure 4(a) is reported, a composition is performed to yield a new
trace substC(τB,τA), where the branching transition is also enabled,
as shown in Figure 4(c). substC(τB,τA) ◦ tb is then a new global
trace.



 

<tb, τb> 

Partial-Replay  

Local System 

 

Global Explorer 

G 

new 

B 

… 

 Compose 

Project 

… 

LC 

… 

Local Explorer  
for component C 

<κg, τg> 

branching 
traces 

<localc(κg), τg> 

Figure 5: Interactions between global and local explorers.

3.4 Global and Local Explorers
The DIR algorithm consists of two types of cooperative progressive
tasks that are running concurrently. Whereas the global explorer
maintains a set G to track global skeletons and a set B to track
branching transitions, a local explorer for component c maintains
Lc = {〈projc(κ),τ〉 | 〈κ,τ〉 ∈ G} to track local skeletons for com-
ponent c. Figure 5 illustrates the interactions between the global
explorer and the local explorers. Local explorers use partial-replay
local systems to explore each component separately and reports
branching to the global explorer, while the global explorer uses
composition by substitution to discover new global skeletons.

Local Explorer

1. Local explorer c initiates a partial-replay local system with re-
spect to each 〈κc,τ〉 ∈ Lc.

2. When a partial-replay local system detects a branching tran-
sition tb at trace τb, the local explorer backtracks and reports
〈tb,τb〉 to the global explorer to be added into B.

Global Explorer

1. Perform composition by substitution whenever B or G is up-
dated until reaching a fixed point. For any 〈κg,τg〉 ∈ G, and
〈tb,τb〉 ∈ B satisfying skel(projc(τb)) = projc(κg), where tb is
a transition from component c, let τn = substc(τg,τb) ◦ tb, add
〈skel(τn),τn〉 into G.

2. For each component c, update Lc = {〈projc(κ),τ〉 | 〈κ,τ〉 ∈G}
whenever G is updated.

Optimizations. It is worth noting that our presentation of the al-
gorithm ignores certain obvious optimizations for simplicity and
clarity. For example, any prefix of a global skeleton/trace can be
subsumed because any prefix of a valid global skeleton/trace is a
valid global skeleton/trace. We just need to record the longest ones.
Also, to avoid an excessive number of branching transitions, when a
new global skeleton is constructed, the global explorer will attempt
to continue running the corresponding global trace to completion,
including all system components. Similarly, the algorithm starts by
having the global explorer perform a global execution including all
system components to discover initial global traces, in order to ini-
tialize G with some global skeletons and associated global traces.

Correctness. A state-space reduction technique must be both sound
and complete. In the context of DIR, soundness requires that every

Global Explorer

Target Application

System Wrapper

Component Wrapper

Common Data Structure Layer

State Space Explorer

Local Explorer

Partial-Replay 
Local System

Figure 6: DEMETER Layering Architecture.

local trace explored by the algorithm is a projection of a valid global
trace, while completeness states that, for any valid global trace τ ,
our algorithm discovers skel(τ) in the global explorer (G) and finds
projc(τ) in the local explorer for every component c.

Intuitively, the soundness hinges on the following fundamental sub-
stitution rule: if two valid traces τ and τ ′ are interface-equivalent
with respect to component c, substc(τ,τ ′) is also a valid trace. The
substitution rule derives directly from the notion of interface equiv-
alence and reflects the following observation. A component’s inter-
face behavior, captured by its local skeletons, isolates a component
from the rest of the system. For an execution of a single compo-
nent, changes in the rest of the system are irrelevant as long as the
behavior at the interface (as captured in local skeletons) remains the
same. Conversely, if two executions of a component conform to the
same local skeleton, they are indistinguishable from the rest of the
system.

DIR upholds soundness because, during both the partial-replay lo-
cal exploration and the composition in global exploration, each
discovered local or global skeleton complies with a valid global
trace due to the substitution rule. The completeness is guaranteed
through the cooperation of local and global explorers, as the local
exploration can find all the local states and discover all the possible
branching transitions with respect to given local skeletons, while
the global explorer can construct all new global skeletons through
composition for given sets of global skeletons and branching tran-
sitions. A proof sketch for the soundness and completeness is de-
scribed in Appendix A.

4. ARCHITECTURE AND IMPLEMENTA-
TION

In this section, we present the layered architecture of DEMETER
that is specifically designed to facilitate incorporation of DIR into
an existing model checker, followed by notes on some implemen-
tation details and on how we retrofit MACEMC and MODIST to
integrate DEMETER.

4.1 A Model Checking Framework
We design DEMETER as a model-checking framework, which can
embed an existing software model-checker in order to enable DIR
for it. We refer to the model checker embedded in DEMETER as
eMC. This design significantly reduces the amount of work to build
model checkers with DEMETER and avoids having DIR trapped in
a particular model checking implementation.

Turning DEMETER into a model-checking framework requires a
careful modular design. Figure 6 shows the layered architecture



of DEMETER, where the shaded rectangles correspond to the lay-
ering in eMC. These modules (system wrapper and state-space ex-
plorer) are unmodified when plugged into DEMETER. In particular,
DEMETER is able to leverage eMC’s state-space explorer because
it adds a partial-replay local system layer that gives the state-space
explorer an illusion of a stand-alone complete system, similar to the
original application. The partial-replay local system layer further
uses a component wrapper, which defines component boundaries
and interface transitions. To isolate the specific implementation de-
tails of eMC, DEMETER defines a common set of eMC-neutral data
structures/API and implements a Common Data Structure Layer
that converts between these common data structures and those used
in a particular eMC. Consequently, the global explorer and the part
of the local explorer built on top of the Common Data Structure
Layer are reusable across different eMCs.

Partial-Replay Local System. As shown in Figure 6, DEMETER
builds a partial-replay local system by reusing eMC’s state-space
explorer and system wrapper. The partial-replay local system takes
a component c, a local skeleton, and a corresponding global trace
τ , and runs the entire system on the original system wrapper except
that it checks whether a transition is local to c or not (provided by
the component wrapper) and replays any transitions in the rest of
the system R following τ . The replay of R’s transitions in τ is done
by instructing eMC’s state-space explorer to take the designated
transitions, but all the choices within component c are left to eMC’s
state-space explorer.

Common data structures and APIs. Conceptually, the global
explorer can be regarded as performing model checking of com-
ponents with only interface transitions. However, reusing either
eMC’s system wrapper or state-space explorer is difficult partly be-
cause this higher-level system must be constructed with transitions
not known beforehand.

We opt for simplicity and build the global explorer on a small set of
common data structures and APIs. In particular, we model the basic
concurrency unit of a system as a thread. A transition is represented
by a simple data structure with the following core fields: (i) its
thread identifier, (ii) its unique identifier, (iii) its vector clock, (iv)
interface transition flag, and (v) additional information about the
transition. The additional information is mainly for converting this
data structure to any original trace representation in eMC. A trace
is defined as a set of transitions organized by their partial order
(according to vector clocks). A skeleton is defined as a kind of
trace that contains only interface transitions. Common operations
can be defined on those data structures, such as projection from
global trace to local trace, extraction of interface skeleton from a
trace, and composition of a branching trace and a global trace. All
of these operations are independent from eMC.

We have further implemented the following core functions on top of
eMC’s system wrapper for global explorer: (i) reset system to the
initial state, (ii) execute a particular transition at the current trace
prefix, and (iii) run a trace prefix to completion (after the prefix,
any completion of a global trace is sufficient). For local explorer,
the partial-replay local system also provides a simple API to set
up and run a partial replay. Implementing the global explorer and
part of the local explorer on this set of common data structures and
APIs makes its core logic reusable as it is made independent from
eMC. The common data structure layer in Figure 6 is responsible
for providing the data-structures and the APIs.

4.2 Interface Equivalence and Vector Clock
Interface equivalence defined on the equality of two skeletons is a
key concept in DEMETER and is widely used in the implementation
of DIR. For example, the local explorer needs to check equality
between branching traces and local skeletons so that it can decide
whether an encountered branching trace or local skeleton is new or
not; when performing composition, the global explorer also needs
to check whether two traces are interface-equivalent.

Interface equivalence can be judged by comparing interface transi-
tions in skeletons. An interface transition in a skeleton is identified
through the following four properties: (i) the component it belongs
to, (ii) the communication object it accesses, (iii) its operation and
arguments (e.g., a send operation with its message content), and (iv)
partial order information which can be expressed in vector clocks
that capture the happen-before relation between transitions.

Special care must be taken when vector clocks are used for interface-
equivalence checking. Using vector clocks on traces directly might
be problematic because the vector clocks also take into account
internal transitions that are not included in skeletons. DEMETER
therefore recomputes a skeleton vector clock for each trace. It first
extracts the interface transitions and their dependencies from the
original trace to build a dependency graph of the interface transi-
tions. Based on the dependency graph, DEMETER re-computes the
vector clock for the skeleton.

To expedite frequently-used interface-equivalence checking, DEME-
TER first imposes the same canonical representation on partial-order
equivalent skeletons and computes a signature for a skeleton by ap-
plying a hash on that canonical representation. The equality of two
skeletons is then the same as the equality of their signatures.

4.3 Distributed Runtime
The architecture of DEMETER enables a fair degree of parallelism.
Model checking in DEMETER involves a global explorer and a set
of local explorers, one for each component. Each local explorer
is responsible for one component of the model-checked system and
has no direct interactions with others. For each local skeleton of the
component, the local explorer starts an MC Worker that executes the
partial-replay local system for that component with respect to that
local skeleton.

In our current implementation, the global explorer is the only major
centralized task in the whole execution flow of DEMETER. Its core
task, composition by substitution, is independent for each matching
pair from G and B and can be executed separately, with its complex-
ity linear to the length of the input traces. The complexity of finding
matching pairs in G and B is in the worst case quadratic to the num-
ber of elements in the sets, although better data structures can be
used to speed up the process of finding matching pairs. The size of
G could grow exponentially with the number of components. In our
experiments, we have not observed the global explorer becoming a
bottleneck for the scalability of the entire exploration of DEMETER
(see Section 5.2), largely because there are only a small number of
components. We do not focus on cases where there are a large num-
ber of components because, as will be discussed in Section 6.1, it
is possible to keep the number of components (at each level) small
by organizing a system into a hierarchy of components.

All state changes on the global explorer are logged and persisted
so that it can be re-started after failures. No replication is enabled,
although doing so is straightforward. Because the global explorer



always checks whether a reported branching trace is new, having
duplicate branching traces sent to the global explorer is accept-
able. As a result, any MC Worker can be re-started without causing
any correctness problem. In the worst case, an MC Worker can be
re-started (possibly on a different machine) and the previously ex-
plored local state space would be re-explored. Because it uses an
existing model checker for local exploration, its ability to re-start
from failure is determined by that underlying model checker. Ide-
ally, each MC Worker leverages a checkpoint/recovery mechanism
in the underlying model checker to avoid redundant exploration due
to failures.

4.4 Integration with Existing Model Checkers
CompWrap DEMETER is designed to integrate with existing model
checkers, and we have enabled DIR for MACEMC and MODIST
using DEMETER. Table 1 shows line-number counts for the com-
mon parts of DEMETER, as well as those specifically for MACEMC
and MODIST. The common DEMETER modules include the fol-
lowing: the global explorer, part of the local explorer that is respon-
sible for coordinating with partial-replay local systems and with the
global explorer, the common data structure and API, and other util-
ities, such as the network library, cross-OS utilities, and message-
digest modules. For MACEMC and MODIST individually, we need
to implement a partial-replay local system (PRLocal), a component
wrapper (CompWrap), and a converter for the Common Data Struc-
ture Layer. The converters are simple in both: they take less than
100 lines of code and are integrated with other pieces.

MACEMC MODIST

PRLocal 1,006 574
CompWrap 108 183

Total 1,114 757
DEMETER Common 7,279

Table 1: Development cost as lines of code for DEMETER,
DEMETER-MACEMC, and DEMETER-MODIST.

MACEMC Integration. MACEMC is a software model checker
for systems implemented using the MACE compiler and C++ lan-
guage extensions. MACE models each node as a state machine with
atomic event handlers for events such as message reception and
timeouts. MACEMC treats a target application as a single program
that composes every node with a simulated network environment
for distributed applications. With such a system wrapper, at any
time, MACEMC selects a node and one of its pending events to
call the corresponding event handler to transition the system to the
next state. This is considered one transition; each pending event
therefore corresponds to an enabled transition. Control returns to
MACEMC when a transition completes, while a transition could
introduce new events to the system. MACEMC repeats this process
as long as there are pending events.

For state-space exploration, MACEMC must control all sources of
non-determinism, such as the scheduling of pending events, the use
of a special Toss command in event handlers, or the use of time-
outs in event handlers. In the implementation of MACEMC, the
RandomUtil module in MACE controls such non-determinism in
the system. Nodes in MACE interact with each other via TCP/UDP
services. Each transition could trigger send operations that will en-
able corresponding receive events on receiving nodes. Transitions
containing send or receive operations are candidates for interface
transitions.

MACEMC’s system wrapper therefore exposes and controls Ran-
domUtil, as well as send and receive operations. Because the infor-
mation associated with send and receive operations is insufficient
(e.g., for identifying the destination of a send operation), a com-
ponent wrapper has to trace it down in MACE to fill the needed
information for interface transitions. In some cases, depending on
how a component is defined, a send or receive operation might not
be an interface transition. This happens when the receiving node is
in the same component as the sender.

Data-structure conversion between MACEMC and DEMETER is
relatively simple. Nodes in MACE are units of execution and we
use node id as the thread identifier. Events in MACE have in-
formation about corresponding transitions. DEMETER does re-
quire recording any non-deterministic choices within an event han-
dler. In fact, DEMETER enumerates all such choices to find out
the set of possible transitions because different non-deterministic
choices correspond to different transitions for the processing of an
event. Each transition in MACE may contain multiple network
operations that DEMETER must store to define interface transi-
tions appropriately. MACEMC does not track partial-order depen-
dencies. Without making any internal changes within MACEMC,
DEMETER tracks dependencies for interface transitions conserva-
tively where any two transitions from the same node are assumed
to be dependent. As shown in Section 5, this conservative way of
defining partial order has significant implications on the effective-
ness of DIR.

MACEMC implements two search algorithms. The first is a depth-
first search (DFS) that enumerates all possible execution paths with
an execution depth bound and is used to verify safety properties in
a limited state space. The other one is a random walk algorithm that
is used to detect potential liveness bugs. We apply DEMETER only
to improve the DFS part of MACEMC since its random exploration
does not check whether a randomly executed transition introduces
a redundant trace, and hence it gives up any hope of reducing re-
dundancies or achieving any notion of completeness.

MODIST Integration. MODIST is a software model checker that
detects bugs due to non-determinism in distributed applications. In
MODIST, any concurrent program behavior can be modeled as dif-
ferent invocation orders of Win32 APIs, such as EnterCriticalSec-
tion and WaitForSingleObject. MODIST provides a module called
dist_sys that maintains the application state and captures most Win32
API invocations of a target application, including synchronization,
network, and file-system operations. This module constitutes the
system wrapper for MODIST.

In MODIST, a transition is defined as an execution between two
consecutive invocations of system APIs. There is a straightforward
mapping between MODIST’s data structures and DEMETER’s. Pro-
cess Id and thread Id are combined to identify a thread, while the
operation of each transition can be identified by the MODIST id of
the corresponding Win32 API. MODIST itself maintains traces as
a partial order and its vector clock can be used directly in DEME-
TER’s common data structure.

MODIST’s state-space exploration uses DFS with dynamic partial-
order reduction. This algorithm is designed for a general transition
system and requires a partial-order dependency relation between
transitions. Local explorers in DEMETER directly use this state-
space exploration algorithm in their partial-replay local system.



5. EXPERIMENTS AND EVALUATIONS
In this section, we describe our experiments on DEMETER and re-
port findings of our evaluation results on DEMETER-MACEMC
and DEMETER-MODIST, two real model checkers that we have
built in DEMETER by incorporating MACEMC and MODIST. We
conduct all of our experiments on a cluster of machines (Intel Xeon
x5550 2.67GHz CPU, 12GB main memory) on a 1Gb Ethernet.

Our experiments use representative applications for DEMETER-
MACEMC and DEMETER-MODIST. For DEMETER-MACEMC,
we check PASTRY and CHORD, two well-known peer-to-peer dis-
tributed hash-table implementations on MACE, as well as PAM, an
unoptimized PAXOS implementation on MACE for a single consen-
sus decision. PAM was independently developed by a student. For
DEMETER-MODIST, we choose MPS, a production PAXOS imple-
mentation that has been running in Microsoft data centers for years
and contains about 53K lines of code. We also check Berkeley
DB (BDB), a widely used open-source transactional storage engine
that supports replication for applications requiring high availabil-
ity. We check its release version 4.7.25.NC as done with the orig-
inal MODIST [39]. We use an example application ex_rep_mgr
that comes with BDB as the test driver. This application manages
its data using the replication manager of BDB. During the test, the
multiple replicas first run an election. Once completed, the elected
primary creates worker threads to modify the replicated database
simultaneously. We have also implemented the standard Dining
Philosophers Problem (DPhi) mostly for validation/debugging be-
cause we know the expected results in this case.

Our experiments are designed to evaluate the following three key
aspects: (i) on effectiveness, how effective is DIR for reducing state
spaces, and what factors could affect its effectiveness? (ii) on per-
formance, cost, and parallelism, how much overhead does the extra
complexity of DEMETER incur in model checking and how does
the capability of state-space exploration increase with the use of
more machines? (iii) on experience with verification and bug find-
ing using DEMETER, does the state-space reduction translate into
improved ability to cover a meaningful logical state space com-
pletely, and does it help find bugs more effectively?

5.1 Effectiveness
To estimate the effectiveness of DIR, we run DEMETER on target
applications and record the number of local traces that have been
explored by the local explorers. We then compute the number of
global traces that are covered by those local traces. The compu-
tation is performed as follows: for each global skeleton κ , let nc
be the number of local traces in component c that are interface-
equivalent with κ on c’s interface. These local traces can compose
across components to create global traces, whose number is then
Πc∈C (nc). Let ng be the sum on the number of global traces over
all global skeletons. We then compute the reduction ratio as ng
divided by the number of explored local traces on all the local ex-
plorers.

Table 2 reports the reduction ratio (Red-Ratio), the actual number
of global skeletons discovered, and the number of local traces ex-
plored. We run target applications in different settings in terms of
the number of nodes (components) and perform each model check-
ing for hours. App-n refers to the application running with n nodes
(components), except that DPhi-n has n components with each con-
taining 8 philosophers. Overall, we are seeing significant state-
space reduction with the reduction ratio ranging from 5 to over
500,000. We see a significant increase when moving from a 2-node

to a 3-node system due to the multiplicative factor. Notice that all
the applications in Table 2 except MPS, BDB, and CHORD-3 can
also be fully checked by the original model checker. For those ap-
plications, we have validated the calculated value of ng used for
reduction ratio with the number of traces explored by the original
model checker. This confirms that DEMETER with DIR upholds
completeness and provides the justification to use calculated ng for
reduction ratio when the state space is too large to be fully explored
by the original model checker.

Appli- Red- Global Local RT- Speed-
cation Ratio Skel Trace Ratio up

DPhi-2 41.7 6 1,510 2.0 20.9
DPhi-3 7,098.0 25 2,236 1.2 5,915.0
MPS-2 487.9 5 5,599 3.2 152.5
MPS-3 542,944.0 457 377,965 2.5 217,177.6
BDB-2 277.2 527 25,113 5.6 49.5
BDB-3 278,481.2 664 50,592 6.3 44,203.4
Pam-2 5.4 39 856 2.3 2.3
Pam-3 97.8 65 6,081 5.2 18.9

Pastry-2 4.9 48 713 1.5 3.3
Pastry-3 132.4 2,220 7,360 9.7 13.6
Chord-2 19.0 48 3,282 2.7 7.0
Chord-3 1,587.0 1,326 17,384 2.9 547.2

Table 2: State-space reduction and cost reduction of DEME-
TER. The applications in top-half of the table are checked by
DEMETER-MODIST, while the ones in bottom-half are checked
by DEMETER-MACEMC.

The reduction ratios for MPS and BDB are particularly impressive.
For MPS, each node is implemented with multiple threads that have
to synchronize with others using EnterCriticalSection, e.g., to ac-
cess a shared message queue. A significant portion of such differ-
ent interleaving does not lead to changes in the interface, thereby
resulting in state-space reduction. Most of such interleaving is in
the underlying common network library, which is fairly compli-
cated as it supports various forms of networking (e.g., AsyncIO
with completion port). Similarly, BDB employs multiple threads
to handle the delivered messages and update shared database or
replication-related data structures. It also uses WSAEventSelect to
process asynchronous network events. Again, most of the complex
internal non-determinisms do not propagate across interfaces.

Although respectable, the reduction ratios for applications in MACE
are relatively low. Our investigation shows that numbers of local
traces for each global skeleton are relatively small in part because of
our conservative partial-order tracking for DEMETER-MACEMC:
two send transitions from the same node are always considered to
have dependencies. Different orders of two inherently concurrent
sends (on two separate threads, for example) would lead to different
global skeletons. If their dependencies were accurately modeled,
as MODIST does, they would be considered independent and their
relative order due to intra-node non-determinism would not matter
to other nodes, which would lead to a smaller number of global
skeletons and better reduction.

5.2 Performance, Cost, and Parallelism
The reduction ratio tells only part of the story. The cost of explor-
ing a trace in DEMETER can be noticeably higher due to the ex-
tra complexity related to DIR, which includes the extra cost in the
partial-replay local system of the local explorer (e.g., computing the
signature of the local skeleton for each local trace to check whether
it is a branching trace), as well as the cost of composition and pro-
jection in the global explorer. In our experiment, we compute RT-
Ratio as the relative cost of exploring a local trace in DEMETER



0 K

10 K

20 K

30 K

40 K

50 K

60 K

 0  1  2  3  4  5  6  7  8

N
u
m

b
e
r 

o
f 

lo
c
a
l 

tr
a
c
e
s

Time (hours)

32 machines
16 machines
8 machines
4 machines

Figure 7: Numbers of explored local traces over time for MPS-
3, with different numbers of worker machines.

with respect to the cost of exploring a global trace in the original
model checker. The cost of exploring a local trace in DEMETER
is the total amount of time spent on all the local explorers and the
global explorer, amortized over the total number of explored local
traces. As shown in Table 2, the RT-Ratios are significantly less
than the Red-Ratios, which means that, although for the execution
of a given trace, DEMETER is slower than original model checkers,
it wins by exploring far fewer executions. We measure the effective
speedup, without considering any potential parallelism in DEME-
TER, as Red-Ratio divided by RT-Ratio. These results are shown as
Speedup in Table 2. For MPS-3, we are seeing an effective speedup
of over 105, while for PAM-2 the speedup is only about 2.

While having a small number of nodes is sufficient to discover
many protocol-level issues, in order to understand how the reduc-
tion effectiveness and the composition cost scale with the number of
components, we did also run MPS with 5 nodes for 1.5 hours (with-
out completely searching local state spaces for each global skele-
ton): the reduction ratio and speedup already reached 109, confirm-
ing the trend of increased effectiveness with increased number of
components. We also noticed a significant increase in the cost of
composition: an order of magnitude increase from MPS-3. We are
likely to run into scalability issues at some point with the global
explorer. Section 6.1 discusses how we might address those issues.

Scalability. RT-Ratio and Red-Ratio do not take into account the
effect of distributed and parallel execution. We further evaluated the
inherent parallelism in DEMETER by deploying it on a cluster of
machines. The goal of the experiment is to understand the increased
effectiveness in state-space exploration as it uses more machines.
We use DEMETER-MODIST on MPS as the showcase and vary the
number of machines running MC Workers. Separately, we have one
machine running the global explorer and three more as the local
explorers, one for each component, coordinating MC Workers.

We run each experiment for about 7 hours. Figure 7 shows the
numbers of discovered local traces over time with different num-
bers of worker machines. In each case, DEMETER is able to ex-
plore new local traces linearly over time and we also see near-
perfect scalability as the number of machines goes up. This demon-
strates (i) partial-replay local systems are embarrassingly parallel
and (ii) composition by the global explorer does not become a bot-
tleneck and can always dispatch enough local skeletons to make
each worker machine busy when the local workers can discover
and report enough new branching traces for composition in a short
period of initial time.

5.3 Experiences
It is natural to ask whether or not the observed significant state-
space reduction translates into any tangible benefits for improving
system reliability. In particular, we look at two aspects: (i) DEME-
TER’s ability to explore completely a meaningful logically bounded
state space of a system implementation for a higher degree of reli-
ability assurance and (ii) how DEMETER improves our ability to
find bugs.

Our experiment shows that DEMETER is capable of completely ex-
ploring a logically meaningful state space of a 3-node CHORD and
MPS without any artificial bound on exploration depths. We do
have to make the system finite: for CHORD, the system ends as
soon as all three nodes join successfully with timeout fired at most
once at each node. For MPS, we bound ballot numbers (to 2) and
decree numbers (to 1). Such logical bounds still allow for a vast
number of scenarios covering both phases of the PAXOS protocol.
To see why previous model checkers do not come close to finish-
ing the exploration, our CHORD exploration took 3 hours, explor-
ing 17,384 local traces that correspond to 27,588,408 global traces,
which would take more than 2 months for MACEMC to explore.
Similarly, the exploration of DEMETER on MPS took 18 hours,
exploring 182,689 local traces that correspond to 7,743,820,726
global traces, which would take about 34 years for MODIST to ex-
plore, even with its already significant partial-order methods for
state-space reduction.

We believe the ability to explore thoroughly a meaningful logical
state-space of a real implementation is significant. It offers a higher
degree of assurance for system reliability as basic implementation-
level protocol behaviors have now been “verified”. Such kind of
coverage statement for implementation was not possible before with
the existing implementation-level model checkers and with the ex-
isting state-space exploration and reduction strategies on any non-
trivial real production system.

Bug Finding. DEMETER naturally looks for safety bugs through
state-space exploration. Finding liveness bugs often require a spe-
cial set of strategies, as was done with MACEMC [29]. Those
strategies are often incompatible with DIR, although they might
still benefit from DIR. Our investigation focuses on safety bugs,
while leaving liveness bugs to future work.

Our experiences with DEMETER on finding safety bugs are mixed,
as significant state-space reduction does not translate automatically
to proportional increases in bug-finding effectiveness. On the pos-
itive side, we have found two serious bugs in PAM: the depths at
which those bugs were found are beyond the capability of the DFS
search in MACEMC. The first bug arises due to loss of protocol
state during replica recovery. In a 3-node replica system with nodes
a, b, and c, replica a initially becomes a leader and passes a decree
by getting the supporting vote from b only. Then b restarts from a
failure and incorrectly votes with c to pass a different decree, be-
cause b has lost its state (related to a’s earlier actions) during fail-
ure/recovery. DEMETER found this bug in a trace with a total depth
of 27. The second bug is due to an incorrect vote message. When
a leader receives accepted values in phase 1, it must vote in phase
2 the accepted value with the highest ballot number. The initial im-
plementation incorrectly chose the first received value instead. This
bug appears only when two different values were accepted on two
different nodes and in our experiment involves a trace with a total
depth of 43.



On the negative side, we did not find any new bugs when running
DEMETER on MPS, BDB, PASTRY, and CHORD through a simple
brute-force search. We found only the first bug in PAM. Bug finding
turns out to be significantly different from covering a state space.
When a state space is large, it is more effective to cover as many in-
teresting scenarios as possible. Bug finding is therefore best guided
with application-specific knowledge and DEMETER offers a more
powerful tool for this guided process. For example, rather than fo-
cusing on the initial phase and running a system for a long time,
we periodically stop the system to get a checkpoint and start a new
exploration from that checkpoint if we think that checkpoint state is
“interesting” (e.g., having replicas with inconsistent states). We es-
sentially do vertical decomposition of system execution and prune
out “uninteresting” branches. This allows DEMETER to explore
longer traces more effectively. The second PAM bug was found this
way through 3 “inconsistent” checkpoints as stepping stones. The
final buggy path is the result of concatenation of these sub-paths.

6. DISCUSSIONS
This section discusses three subtle issues that affect the effective-
ness of DIR: how to define components, how to check global prop-
erties, and how to avoid branching redundancies.

6.1 Defining Components
The effectiveness of DIR depends on how a target system is parti-
tioned into components. One natural way is to make each process a
component. In our experience, this simple approach is effective be-
cause processes in a distributed system tend to communicate with
each other through message passing, where the design tends to min-
imize communication between them for performance reasons. Ap-
plication logic within a process is often implemented with multiple
threads and asynchronous I/O for high performance, which intro-
duces substantial sources of non-determinism in it. Therefore, in-
teractions between processes can be significantly simpler than non-
determinism within each process, leading to significant state-space
reduction when explored with DIR.

It is also possible to group multiple processes together to form a
component. Even with processes running the same code, differ-
ent groupings often have different effects, due to different roles the
processes play in an application. For example, in dining philoso-
phers, it makes sense to group consecutive philosophers together
because doing so will lead to an interface with only two forks no
matter how many philosophers are included in that component. In
the worst case, if philosophers are divided into two components in
alternation, all forks will become interface objects. Even for the
3-node cases of PASTRY and CHORD, nodes 1 and 2 have more
interactions between them. Our experiments show better reduction
ratios when grouping those two into a group, compared to grouping
nodes 2 and 3 in a component, although having three components
yields the best reduction ratios.

The decision of whether certain processes should be grouped to-
gether as one component depends on a number of factors. Tightly
coupled processes should ideally be grouped together, although this
will increase the complexity of partial-replay local systems. When
the number of components is high, the number of global skele-
tons goes up exponentially, which increases the overhead on the
global explorer. We have developed an algorithm called hierar-
chical dynamic interface reduction to address this issue further. It
reduces the overhead on the global explorer by recursively divid-
ing a system into a small number of components at each level. We
have shown the effectiveness of this method on dining philosophers,

which leads to exponential state-space reduction in theory. We have
yet to show that the added complexity brings significant practical
benefits on real applications. Peer-to-peer protocols such as PAS-
TRY and CHORD are ideal targets.

6.2 Global Property Checking
Not only can DEMETER discover local assertion failures and mis-
behavior during state-space exploration, but can also be used to
check global safety properties. The ideal place to perform global
property checking is at the global explorer as it has a global view on
a system via global skeletons and global traces. To facilitate global
property checking, each component has to expose not only interface
transitions but also any local states that are referenced by the speci-
fied global property. Updates to local variables referenced will have
to be reported. Those states are taken into account when assess-
ing whether an execution creates a branching trace, although local
skeletons for the local explorers do not have to contain such states
because they are not used in partial-replay local systems. All such
information is incorporated into global skeletons during the com-
position process. The global explorer can then enumerate all the
consistent snapshots of those state variables on all the global skele-
tons to check global properties. From our experience, adding global
property checking into DEMETER-MODIST is natural as MODIST
has the mechanism to expose states. Adding the same functionality
to DEMETER-MACEMC is harder because the state variables are
not easily exposed in MACEMC.

6.3 Branching Redundancy
DEMETER builds a partial-replay local system for each local skele-
ton. A branching trace is not part of a local state space, but should
be counted as overhead for local exploration. We have observed
that some trace prefixes are explored in multiple partial-replay lo-
cal systems for different skeletons, once as part of local traces in
one, and again as part of branching traces in another. This leads to
redundant state-space exploration by partial-replay local systems
for different local skeletons. DEMETER could explore a branching
trace multiple times since it does not know whether that branching
trace is already explored in other partial-replay systems. One solu-
tion to this problem is to have DEMETER explore all partial-replay
systems of a component on a single worker to avoid such redun-
dancies as the redundancies are among MC Workers for the same
component. As a result, DEMETER’s parallel granularity is now
limited to the number of components. However, we can acceler-
ate the exploration by parallelizing the exploring algorithm itself.
For example, it is possible to have a different worker exploring a
sub-tree space of a particular local-state partial-replay system. One
caveat is the potential interactions with the state-space exploration
strategy in an eMC: for example, MODIST uses dynamic partial or-
der reduction, where the exploration of a sub-tree space might need
to add new transitions to the execution points above that subtree.

7. RELATED WORK
Model Checking. Model checkers have previously been used to
find bugs in both the design and implementation of software. Tra-
ditional model checkers require that users transform a target system
into an abstract model beforehand [11, 34, 2, 14, 26, 27]. This pro-
cess is often expensive and error-prone, thereby limiting the use of
these tools for large-scale software systems. Implementation-level
software model checkers [18, 36, 32, 41, 40, 39, 33, 29, 38] can in-
stead work directly on implementations of software systems by sys-
tematically controlling executions and exploring non-determinisms
in a system implementation.



Both traditional model checkers and software model checkers have
to face the problem of state-space explosion. Based on the observa-
tion that complex large-scale systems normally consist of loosely-
coupled components, compositional reasoning techniques [6, 35,
12, 4, 22, 31] have been proposed and applied for effective state-
space reduction. Such methods check each component of a sys-
tem in isolation and infer global system properties appropriately.
However, all of the previous proposals target only traditional model
checkers. Some of them need substantial human effort [22, 31], and
hence are not scalable. Others [6, 35, 12], although automatic, re-
quire eagerly constructing an abstract component acting as the en-
vironment of a component being checked, making it impractical for
complex large-scale systems. In contrast, DEMETER applies DIR
to software model checkers by lazily and dynamically discovering
all interface interactions among components, thereby significantly
reducing the amount of human effort and removing any need for
static program analysis to transform a system implementation or its
environment into an abstract model.

Alur and Yannakakis [1] applied model checking on hierarchical
state machines where the state nodes of a state machine can be or-
dinary states or state machines themselves. Their method leverages
this hierarchical structure of the state machines to avoid exploring
the same sub-state-machine multiple times. Their method applies
to formal sequential hierarchical state-machine specifications only,
whereas DIR targets implementation-level model checking of con-
current and distributed systems without formal specifications.

The most related method was proposed recently by Guerraoui and
Yabandeh [23] to separate the exploration of system states (i.e., the
combination of node-local states) and network states. The proposed
method takes an optimistic approach and does not model dependen-
cies between network transitions. This imprecision leads to loss of
soundness, which has to be addressed using a compensatory valid-
ity check. In contrast, our approach tracks dependencies explicitly
and ensures soundness during exploration.

State-Space Reduction. Other state-space reduction techniques,
such as partial order reduction [17, 16], symmetry reduction [28],
and abstraction [25, 10, 3, 13, 21], have been proposed and inves-
tigated. Those techniques are orthogonal to DIR and can often be
applied together. For example, the analysis presented in Section 2.3
on the example in Figure 1 helps to show why DIR is orthogonal
to partial order reduction (POR). POR states that it is sufficient to
explore only one permutation order of a set of independent opera-
tions. For instance, only one order of the Sum in the primary and the
Ckpt in the secondary need be explored because they are indepen-
dent. Fundamentally, POR still views a system as a whole. Thus,
when the Sum and Ckpt operations within one server interleave
differently, POR has to re-explore the entire system. Nonetheless,
combining the two reduction techniques is easy as both the global
explorer and the local explorers in DIR can use POR to reduce the
number of executions they explore. In fact, when integrating with
MODIST, we have effectively enabled both POR and DIR. It is an
interesting future direction to see whether other state-space reduc-
tion techniques are compatible with the architecture of DEMETER.

Error-Detection Techniques. Recently, symbolic execution [8, 7,
20, 9] has been used to detect errors in real systems. This tech-
nique takes program inputs as symbolic values and explores all pos-
sible execution paths by solving the corresponding path conditions.
Similar to model checking, symbolic execution also confronts the
problem of state-space explosion. SMART [19] applied composi-

tion in symbolic execution at function granularity. It checks func-
tions in isolation, encoding the results as function summaries ex-
pressed using input preconditions and output postconditions, and
then re-using those summaries when checking higher-level func-
tions. However, their idea cannot be applied in checking concur-
rent/distributed systems. Zamfir and Candea [42] further enhanced
symbolic execution to support concurrent systems by making thread-
scheduling decisions symbolic. It is again an interesting future
research direction to understand whether an idea similar to DIR
would help in this scenario.

Software Verification. Many attempts have been made to verify
software implementations [30, 37, 5, 24, 3, 15]. BLAST [24] and
SLAM [3] combine predicate abstraction and model checking tech-
niques to analyze and verify specific safety properties of device
drivers. Model checking is complementary in that it can be used to
check a bounded small state space thoroughly and to provide some
assurance by attempting to find defects when complete verification
is infeasible.

8. CONCLUSIONS
DEMETER provides early validation on dynamic interface reduc-
tion and closes the gap between a theoretically interesting algorithm
and a practical model checking framework that demonstrates its ef-
fectiveness on representative distributed systems with real model
checkers. Experiences with DEMETER further shed lights on sev-
eral interesting future directions. First, removing any scalability
hurdle to applying DEMETER to a large number of components
could further unleash the power of this reduction. Second, further
pushing the boundary of state spaces that can be completely ex-
plored could make model checking a useful tool for software reli-
ability assurance. Third, finding bugs effectively with DEMETER
requires a different thinking from covering a state sub-space com-
pletely and might need guidance with domain knowledge.

9. ACKNOWLEDGEMENTS
We thank Tisheng Chen and Yi Yang for their help at the early
stage of this project, and our colleagues at System Research Group
in Microsoft Research Asia for their comments and support. Sean
McDirmid helped greatly in improving the writing of this paper.
Charles E. Killian, Jr. provided valuable information on MACEMC.
We would also thank Lorenzo Alvisi, Robbert van Renesse, and
Geoffrey M. Voelker for their comments on the paper. We are
grateful to the anonymous reviewers for their valuable feedback.
We are particularly in debt to our shepherd Petros Maniatis for his
detailed guidance and constructive suggestions. Junfeng was sup-
ported in part by NSF grants CNS-1117805, CNS-1054906 (CA-
REER), CNS-1012633, and CNS-0905246; and AFRL FA8650-10-
C-7024 and FA8750-10-2-0253.

10. REFERENCES
[1] R. Alur and M. Yannakakis. Model checking of hierarchical state

machines. ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(3):273–303, 2001.

[2] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In Proceedings of the Eighth International
SPIN Workshop on Model Checking of Software (SPIN ’01), pages
103–122, May 2001.

[3] T. Ball and S. K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL ’02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 1–3, New York, NY, USA, 2002. ACM.

[4] S. Berezin, S. V. A. Campos, and E. M. Clarke. Compositional
reasoning in model checking. In COMPOS’97: Revised Lectures from



the International Symposium on Compositionality: The Significant
Difference, pages 81–102, London, UK, 1998. Springer-Verlag.

[5] W. Bevier. Kit: A study in operating system verification. IEEE
Transactions on Software Engineering, pages 1382–1396, 1989.

[6] J. Burch, E. M. Clarke, and D. Long. Symbolic model checking with
partitioned transition relations. In VLSI, pages 49–58. North-Holland,
1991.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the Eighth Symposium on Operating Systems Design
and Implementation (OSDI ’08), pages 209–224, Dec. 2008.

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In Proceedings of the
13th ACM conference on Computer and communications security
(CCS ’06), pages 322–335, Oct.–Nov. 2006.

[9] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective
symbolic execution. In Workshop on Hot Topics in Dependable
Systems, 2009.

[10] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In K. Jensen and A. Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages
168–176. Springer, 2004.

[11] E. M. Clarke and E. A. Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In
Logic of Programs, Workshop, pages 52–71, London, UK, 1982.
Springer-Verlag.

[12] E. M. Clarke, D. Long, and K. L. McMillan. Compositional model
checking. In Proceedings of the Fourth Annual Symposium on Logic
in computer science, pages 353–362, Piscataway, NJ, USA, 1989.
IEEE Press.

[13] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation,
pages 415–426, New York, NY, USA, 2006. ACM.

[14] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu,
Robby, and H. Zheng. Bandera: Extracting finite-state models from
Java source code. In Proceedings of the 22nd International
Conference on Software Engineering (ICSE ’00), pages 439–448,
June 2000.

[15] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference
counting implementations. Tools and Algorithms for the Construction
and Analysis of Systems, pages 352–367, 2009.

[16] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In Proceedings of the 32nd Annual
Symposium on Principles of Programming Languages (POPL ’05),
pages 110–121, Jan. 2005.

[17] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion Problem,
volume 1032 of LNCS. 1996.

[18] P. Godefroid. Model checking for programming languages using
verisoft. In POPL ’97: Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 174–186, New York, NY, USA, 1997. ACM.

[19] P. Godefroid. Compositional dynamic test generation. In POPL ’07:
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 47–54, New York,
NY, USA, 2007. ACM.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pages 213–223, New York, NY, USA, 2005. ACM.

[21] S. Graf and H. Saïdi. Construction of abstract state graphs with pvs.
In CAV ’97: Proceedings of the 9th International Conference on
Computer Aided Verification, pages 72–83, London, UK, 1997.
Springer-Verlag.

[22] O. Grumberg and D. Long. Model checking and modular verification,
May 1994.

[23] R. Guerraoui and M. Yabandeh. Model checking a networked system
without the network. In Proceedings of the 8th USENIX conference
on Networked Systems Design and Implementation, NSDI’11,
Berkeley, CA, USA, 2011. USENIX Association.

[24] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with BLAST. In Proceedings of the 10th international
conference on Model checking software, pages 235–239.
Springer-Verlag, 2003.

[25] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Proceedings of the 29th Annual Symposium on
Principles of Programming Languages, pages pp. 58–70. ACM Press,
2002.

[26] G. J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

[27] G. J. Holzmann. From code to models. In Proceedings of the Second
International Conference on Applications of Concurrency to System
Design (ACSD ’01), June 2001.

[28] C. N. Ip and D. L. Dill. Better verification through symmetry. Form.
Methods Syst. Des., 9(1-2):41–75, 1996.

[29] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and
the critical transition: Finding liveness bugs in systems code. In
Proceedings of the Fourth Symposium on Networked Systems Design
and Implementation (NSDI ’07), pages 243–256, April 2007.

[30] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verification of an
OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pages 207–220. ACM, 2009.

[31] K. Laster and O. Grumberg. Modular model checking of software. In
TACAS ’98: Proceedings of the 4th International Conference on
Tools and Algorithms for Construction and Analysis of Systems,
pages 20–35, 1998.

[32] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill.
CMC: A pragmatic approach to model checking real code. In
Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation (OSDI ’02), pages 75–88, Dec. 2002.

[33] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation (PLDI ’07), June 2007.

[34] J.-P. Queille and J. Sifakis. Specification and verification of
concurrent systems in cesar. In Proceedings of the 5th Colloquium on
International Symposium on Programming, pages 337–351, London,
UK, 1982.

[35] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration of finite state
machines using BDD’s. In IEEE Int. Conf. Computer-Aided Design,
pages 130–133, 1990.

[36] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering,
10(2):203–232, 2003.

[37] B. Walker, R. Kemmerer, and G. Popek. Specification and
verification of the UCLA Unix security kernel. Communications of
the ACM, 23(2):131, 1980.

[38] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak. CrystalBall:
Predicting and preventing inconsistencies in deployed distributed
systems. In Proceedings of the Sixth Symposium on Networked
Systems Design and Implementation (NSDI ’09), Apr. 2009.

[39] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou. Modist: Transparent model checking of
unmodified distributed systems. In Proceedings of the Sixth
Symposium on Networked Systems Design and Implementation
(NSDI ’09), Apr. 2009.

[40] J. Yang, C. Sar, and D. Engler. Explode: A lightweight, general
system for finding serious storage system errors. In Proceedings of
the Seventh Symposium on Operating Systems Design and
Implementation (OSDI ’06), pages 131–146, Nov. 2006.

[41] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model
checking to find serious file system errors. In Proceedings of the Sixth
Symposium on Operating Systems Design and Implementation (OSDI
’04), pages 273–288, Dec. 2004.

[42] C. Zamfir and G. Candea. Execution synthesis: A technique for
automated software debugging. In Proceedings of the 5th European
conference on Computer systems, pages 321–334. ACM, 2010.



APPENDIX
A. PROOF SKETCH
In this section, we prove that the algorithms for the global explorer
and the local explorer in Section 3.4 preserve both soundness and
completeness. The proofs use the substitution rule introduced in
Section 3.4 as an “axiom” that follows directly from the definitions
of components, interfaces, and interface equivalence.

A.1 Soundness
Lemma A.1. With respect to 〈κc,τ〉 ∈ Lc, where τ is a valid global
trace, the partial-replay local system produces a valid global trace
in every exploration step. A global trace is valid if its execution can
occur in a real run of the checked system.

Proof. Consider a system consisting of component c and the rest of
the system R. A partial-replay local system for component c with
respect to 〈κc,τ〉 ∈ Lc starts from the initial state and in each step
either picks an enabled transition from component c or replays τ’s
transitions in R. To enable replaying, the partial-replay local system
tracks which of τ’s transitions in R can be replayed: a transition t
in τ can be replayed if and only if t is a transition from R and any
transition t ′ 6= t in projR(τ) satisfying t ′ � t has been replayed in
previous steps. The transitions replayed in R and the interface tran-
sitions from component c always form a prefix of projR(τ). There-
fore, at any step, there exists a prefix τp of τ such that projR(τp)
captures all replayed transitions projected to R (including both R’s
internal transitions and interface transitions) and their partial order.

The partial-replay local system preserves the partial order between
transitions in projc as in the original system and between transi-
tions in projR(τ) as in τ . By definition, the transitions taken in c
and the interface transitions related to c form a projection of some
valid trace τ1 (i.e., projc(τ1) captures all transitions in c and all the
interface transitions for c). The trace that the partial-replay local
system produces is therefore substc(τp,τ1). Due to the substitution
rule, it is a valid trace.

Lemma A.2. (i) For each 〈κ,τ〉 ∈ G, τ is a valid global trace, (ii)
for each 〈tb,τb〉 ∈ B, τb is a valid global trace, and (iii) for each
〈κc,τ〉 ∈ Lc for any component c, τ is a valid global trace.

Proof. Prove by induction on the order of the entries added into
sets G, B, and Lc’s.

Initially, the algorithm uses a real global execution to find a global
trace to add to G. That global trace is valid by construction. For
the induction step, assume that all entries in G, B, and Lc satisfy the
conditions. We consider the following cases:

Case 1: A new entry 〈κc,τ〉 is added into Lc. There must exist some
〈κ,τ〉 ∈G satisfying projc(κ) = κc. By the induction hypothesis, τ

is a valid global trace.

Case 2: A new entry 〈tb,τb〉 is added to B. This is because tb is
a branching transition at trace τb when executing a partial-replay
local system for c with respect to some 〈κc,τ〉 ∈ Lc for some com-
ponent c. By the induction hypothesis, τ is a valid trace. τb is
a valid trace by the construction of the partial-replay local system
due to Lemma A.1.

Case 3: A new entry 〈κn,τn〉 is added into G. This is because
there exists 〈tb,τb〉 ∈ B and 〈κg,τg〉 ∈ G satisfying projc(κg) =
skel(projc(τb)), τn = substc(τg,τb) ◦ tb, and κn = skel(τn). By the
induction hypothesis, τb is a valid global trace and τg is a valid
global trace. Following the substitution rule, substc(τg,τb) is a
valid trace. By the construction of 〈tb,τb〉, tb is a valid transition
in substc(τg,τb) because it is an enabled transition from c in τb.
Therefore, τn = substc(τg,τb)◦ tb is a valid trace.

Theorem A.3. For any local trace τc that the local explorer for
component c discovers, there exists a valid global trace τ , such that
τc = projc(τ).

Proof. Follows directly from Lemma A.1 and Lemma A.2.

A.2 Completeness
Theorem A.4. Assume a local explorer with the eMC and the
partial-replay local system explores completely the enabled tran-
sitions in a component, for any valid global trace τg, the global
explorer eventually adds 〈skel(τg),τ〉 into G for some global trace
τ . For every component c, the local explorer discovers projc(τg).

Proof. Assume there exists a valid global trace τg that invalidates
the theorem, i.e., either some of its projected local traces for compo-
nents cannot be explored by the local explorers, or its corresponding
global skeleton cannot be discovered by the global explorer. There
must be a longest prefix τp of this global trace τg that satisfies the
following properties: (i) the local trace τx = projx(τp) for any com-
ponent x has been explored by the local explorer of x and (ii) there
exists a global trace τ

g
p , such that 〈skel(τp),τ

g
p〉 has been discovered

by the global explorer and is therefore in G.

Let t be the subsequent transition of τp in τg: by definition of τp and
τg, such a transition must exist. Without loss of generality, let t be a
transition belonging to a component c. Transition t will be enabled
during the local exploration of c against τc = projc(τp) according
to the substitution rule. We consider two cases.

Case 1: t is an internal transition. We show that τp ◦ t satisfies (i)
and (ii) as τp does. Because t is enabled at τc, the local explorer for
c will take this transition, reaching the projection of τp ◦ t to c. For
any other component, the projection of τp ◦ t is the same as that of
τp. Because t is an internal transition, skel(τp ◦ t) is also the same
as skel(τp). Because τp ◦ t is a prefix of τg longer than τp, we have
a contradiction with the definition of τp.

Case 2: t is an interface transition. Because t is enabled at τc, the
local explorer will take this transition. Again, we show that τp ◦ t
satisfies (i) and (ii) as τp does. The part of the proof about (i) is
the same as in Case 1. For (ii), we need to show that the global
explorer discovers skel(τp ◦ t) through composition by substitution.
Let τb be the global trace that the partial-replay local system con-
structs when reaching τc. We have τc = projc(τb). Pair 〈t,τb〉
will be reported to the global explorer. Because 〈skel(τp),τ

g
p〉 ∈ G

and projc(skel(τp)) = skel(projc(τb)) hold, the global explorer will
construct a new global trace τn = substc(τ

g
p,τb) ◦ t and discovers

skel(τn). By construction, we have skel(substc(τ
g
p,τb)) = skel(τp).

Therefore, we have skel(τn) = skel(τp ◦ t), which means that (ii)
holds for τp ◦ t. Again, because τp ◦ t is a prefix of τg longer than
τp, we have a contradiction with the definition of τp.


