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ABSTRACT
The overhead of the kernel storage path accounts for half of
the access latency for newNVMe storage devices.We explore
using BPF to reduce this overhead, by injecting user-defined
functions deep in the kernel’s I/O processing stack. When
issuing a series of dependent I/O requests, this approach
can increase IOPS by over 2.5× and cut latency by half, by
bypassing kernel layers and avoiding user-kernel boundary
crossings. However, we must avoid losing important prop-
erties when bypassing the file system and block layer such
as the safety guarantees of the file system and translation
between physical blocks addresses and file offsets. We sketch
potential solutions to these problems, inspired by exokernel
file systems from the late 90s, whose time, we believe, has
finally come!

“
As a dog returns to his vomit, so a fool repeats
his folly.

Attributed to King Solomon ”
CCS CONCEPTS
• Software and its engineering → Operating systems;
• Computer systems organization → Secondary storage
organization; • Information systems→ Data management
systems.
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1 INTRODUCTION
Storage devices have lagged behind networking devices in
achieving high bandwidth and low latency. While 100 Gb/s
bandwidth is now common for network interface cards (NICs)
and the physical layer, storage devices only now support 2-
7 GB/s bandwidth and 4-5 µs latencies [10, 16, 22, 23]. With
such devices, the software stack is now a substantial over-
head on every storage request. In our experiments this can
account for about half of I/O operation latency, and the im-
pact on throughput can be even more significant.

Kernel-bypass frameworks ,e.g. SPDK [48], and near-storage
processing reduce kernel overheads. However, there are
clear drawbacks to both such as significant, often bespoke,
application-level changes [44, 45], lack of fine-grained iso-
lation, wasteful busy waiting, and the need for specialized
hardware in the case of computational storage [13, 19, 46].
Therefore, wewant a standard OS-supportedmechanism that
can reduce the software overhead for fast storage devices.
To address this, we turn to the networking community

for inspiration. Linux’s eBPF [6] provides an interface for
applications to embed simple functions directly in the kernel.
When used to intercept I/O, these functions can perform
processing that is traditionally done in the application while
avoiding copying data and context switches between the
kernel and user space. Linux eBPF is widely used for packet
processing and filtering [5, 33], security [12] and tracing [32].

BPF’s ubiquity in the kernel and its wide acceptance make
it a natural scheme for application-specific kernel-side exten-
sions in layers outside of the networking stack. For example,
it could be used to chain dependent I/Os such as traversing a

*These authors contributed equally to this work.
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disk-based data structure like a B-tree where one block refer-
ences another. Embedding such BPF functions deep enough
in the kernel has the potential to eliminate nearly all of the
software overhead of issuing I/Os such as in kernel-bypass,
while avoiding the pitfalls of kernel-bypass such as polling
and wasted CPU time.

To realize the performance gains of BPF we identify four
substantial research challenges which are unique to the stor-
age use case. First, for ease of adoption, our architecture
must support Linux with standard file systems and appli-
cations with minimal modifications to either. It should be
efficient and bypass as many software layers as feasible. Sec-
ond, storage pushes BPF beyond simple packet processing
uses. Packets are self-describing, so BPF can operate on them
mostly in isolation. Traversing a structure on-disk is state-
ful and frequently requires consulting outside state. Storage
BPF functions will need to understand applications’ on-disk
formats and access outside state in the application or ker-
nel, for example, to synchronize concurrent accesses or to
access in-memory metadata. Third, BPF functions must not
violate file system security guarantees while still allowing
shared disk usage among applications. Storage blocks them-
selves typically do not record ownership or access control
attributes, in contrast to network packets whose headers
specify the flows to which the packets belong. Fourth, the
approach must enable concurrency. Applications support
concurrent accesses via fine-grained synchronization (e.g.
lock coupling [31]) to avoid read-write interference with
high throughput; synchronization from BPF functions may
be needed.
Our approach is inspired by the work on exokernel file

system designs. User-defined kernel extensions were the
cornerstone of XN for the Xok exokernel. It supported mutu-
ally distrusting “libfs”es via code downloaded from user pro-
cesses to the kernel [35]. In XN, these untrusted deterministic
functions were interpreted to give the kernel a user-defined
understanding of file system metadata. Then, the application
and kernel design was clean slate, and absolute flexibility in
file system layout was the goal. While we require a similar
mechanism to allow users to enable the kernel to understand
their data layout, our goals are different: we want a design
that allows applications to define custom BPF-compatible
data structures and functions for traversing, filtering and
aggregating on-disk data, works with Linux’s existing inter-
faces and file systems, and substantially prunes the amount
of kernel code executed per-I/O to drive millions of IOPS.
Finally, we make the observation, and empirically vali-

date, that many popular storage data structures, such as
B-trees or log-structured merge trees, are implemented as
large, immutable files [11, 17, 24, 29], and that their extents
get changed infrequently. This leads us to focus our initial
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Figure 1: Kernel’s latency overheadwith 512 B random
reads. HDD is Seagate Exos X16, NAND is Intel Op-
tane 750 TLC NAND, NVM-1 is first generation Intel
Optane SSD (900P), and NVM-2 is second generation
Intel Optane SSD (P5800X)

kernel crossing 351 ns 5.6%
read syscall 199 ns 3.2%
ext4 2006 ns 32.0%
bio 379 ns 6.0%
NVMe driver 113 ns 1.8%
storage device 3224 ns 51.4%

total 6.27 µs 100.0%
Table 1: Average latency breakdown of a 512 B random
read() syscall using Intel Optane SSD gen 2.

design on implementing BPF functions on immutable data
structures with largely stable extents.

2 SOFTWARE IS THE STORAGE
BOTTLENECK

The past few years have seen new memory technologies
emerge in SSDs attached to high bandwidth PCIe using
NVMe. This has led to storage devices that now rival the
performance of fast network devices [1] with a few microsec-
onds of access latency and gigabytes per second of band-
width [10, 16, 22, 23]. Hence, just as the kernel network-
ing stack emerged as a CPU bottleneck for fast network
cards [26, 37, 41, 47], the kernel storage stack is now becom-
ing a bottleneck for these new devices.
Figure 1 shows this phenomenon by breaking down the

fraction of read I/O latency that can be attributed to the
device hardware and the system software for increasingly
fast storage devices. The results show the kernel’s added
software overhead was already measurable (10-15% latency
overhead) with the first generation of fast NVMe devices
(e.g. first generation Optane SSD or Samsung’s Z-NAND).
In the new generation of devices software accounts for about
half of the latency of each read I/O! As devices get faster,
the relative overhead of the kernel stack will only continue
getting worse.
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Figure 2: Dispatch paths for the application and the
two kernel hooks.

The Overhead Source. To breakdown this software over-
head, we measured the average latency of the different soft-
ware layers when issuing a random 512 B read() system call
with O_DIRECT on an Intel Optane SSD Gen 2 prototype
(P5800X) on a 6-core i5-8500 3 GHz server with 16 GB of
memory, Ubuntu 20.04, and Linux 5.8.0. We disable processor
C-states and turbo boost and use the maximum performance
governor. We use this setup throughout the paper. Table 1
shows that the layers that add the most latency are the file
system (in this case ext4), followed by the transition from
user space into kernel space.
Kernel-bypass allows applications to submit requests di-

rectly to devices, effectively eliminating all of these costs
except the costs to post NVMe requests (“NVMe driver”) and
the device latency itself [26, 36, 48, 49]. However, eliminating
all of these layers comes at a high cost. The kernel can only
delegate whole devices to processes, and applications must
implement their own file systems [39]. Although NVMe sup-
ports SR-IOV, which allows partitioning one physical device
into multiple namespaces and exposing each namespace as
a separate virtual device, the maximum number of virtual
devices is usually limited [8]. The same is true for building
file system support for near-storage compute devices [44, 45].
Even when they re-implement file systems, they still cannot
safely share files or capacity between distrusting processes.

Finally, lack of efficient application-level interrupt dispatch-
ing means these applications must resort to polling to be
efficient at high load; this makes it impossible for them to effi-
ciently share cores with other processes, resulting inwasteful
busy polling when I/O utilization isn’t high enough.

There have been recent efforts to streamline kernel I/O sub-
mission costs via a new system call called io_uring [7]. It pro-
vides batched and asynchronous I/O submission/completion
path that amortizes the costs of kernel boundary crossings
and can avoid expensive scheduler interactions to block ker-
nel threads. However, each submitted I/O still must pass
through all of the kernel layers shown in Table 1. So, each
I/O still incurs significant software overhead when accessing
fast storage devices (we quantify this in §3).

3 BPF TO THE RESCUE?
With the rise of fast networks, Berkeley Packet Filter (BPF)
has gained in popularity for efficient packet processing since
it eliminates the need to copy each packet into userspace;
instead, applications can safely operate on packets in the
kernel. Common networking use cases include filtering pack-
ets [4, 5, 25, 33], network tracing [2, 3, 32], load balancing [4,
15], packet steering [30] and network security checks [12].
It has also been used as a way to avoid multiple network
crossings when accessing disaggregated storage [38]. Linux
supports BPF via the eBPF extension since Linux 3.15 [21].
The user-defined functions can be executed either using an
interpreter or a just-in-time (JIT) compiler.

BPF for Storage. We envision similar use of BPF for stor-
age by removing the need to traverse the kernel’s storage
stack and move data back and forth between the kernel and
user space when issuing dependent storage requests. Storage
applications often generate many “auxiliary” I/O requests,
such as index lookups. A key characteristic of these requests
is that they occupy I/O bandwidth and CPU time to fetch
data that is ultimately not returned to the user. For example,
a search on a B-tree index is a series of pointer lookups that
lead to the final I/O request for the user’s data page. Each
of these lookups makes a roundtrip from the application
through the kernel’s storage stack, only for the application
to throw the data away after simple processing. Other similar
use cases include database iterators that scan tables sequen-
tially until an attribute satisfies a condition [18], aggregate
queries that only need to return a final result (e.g. the max-
imum or average value), or graph databases that execute
depth-first searches [9].

The Benefits. Wedesign a benchmark that executes lookups
on an on-disk B+-tree (which we call a B-tree for simplicity),
a common data structure used to index databases [20, 34].
For simplicity, our experiments assume that the leaves of
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Figure 3: Search throughput improvement on B-tree with varying depth when reissuing lookups from different
kernel layers.

the index contain user data rather than pointers [24, 40]. We
assume each node of the B-tree occupies its own disk page,
which means for a B-tree of depth d , a lookup requires read-
ing d pages from disk. The core operation of a B-tree lookup
is parsing the current page to find the offset of the next disk
page, and issuing a read for the next page, a “pointer lookup”.
Traditionally, a B-tree lookup requires d successive pointer
lookups from userspace. To improve on the baseline, we reis-
sue successive pointer lookups from one of two hooks in
the kernel stack: the syscall dispatch layer (which mainly
eliminates kernel boundary crossings) or the NVMe driver’s
interrupt handler on the completion path (which eliminates
nearly all of the software layers from the resubmission). Fig-
ure 2 shows the dispatch paths for the two hooks along with
the normal user space dispatch path.
These two hooks call an eBPF function that simply is-

sues a memcpy, simulating parsing the page to find the next
pointer. Afterwards, the kernel hook dispatches a random
read I/O request for the pointer extracted by the BPF function.
This experiment represents an upper bound on the expected
performance improvement from using eBPF to accelerate a
single dependent sequence of storage I/Os.
Figures 3a and 3b show the throughput speedup of both

BPF hooks relative to the baseline application traversal, and
Figure 3c shows the latency of both hooks while varying
the depth of the B-tree. When lookups are reissued from the
syscall dispatch layer, the maximum speedup is 1.25×. The
improvement is modest because each lookup still incurs the
file system and block layer overhead; the speedup comes
exclusively from eliminating kernel boundary crossings. As
storage devices approach 1 µs latencies, we expect greater
speedups from this dispatch hook. On the other hand, reis-
suing from the NVMe driver makes subsequent I/O requests
significantly less computationally expensive by bypassing
nearly the entire software stack. Doing so achieves through-
put improvements up to 2.5× and reduces latency by up to

49%. Relative throughput improvement actually goes down
when adding more threads, because the baseline application
also benefits from more threads until it reaches CPU satu-
ration at 6 threads. Once the baseline hits CPU saturation,
the computational savings due to reissuing at the driver be-
comes much more apparent. The throughput improvement
from reissuing in the driver continues to scale with deeper
trees, because each level of the tree compounds the number
of requests that are issued cheaply.

What about io_uring? The previous experiments use Linux’s
standard, synchronous read system call. Here, we repeat
these experiments using themore efficient and batched io_uring
submission path to drive B-tree lookups from a single thread.
Like before, we reissue lookups within the NVMe driver
and plot the throughput improvement against an application
that simply batches I/Os using unmodified io_uring calls.
Figure 3d shows the throughput speedup due to reissuing
from within the driver relative to the application baseline.

As expected, increasing the batch size (number of system
calls batched in each io_uring call), increases the speedup,
since a higher batch size increases the number of requests
that can be reissued at the driver. For example, for a batch
size of 1 only 1 request (per B-tree level) can be reissued
inexpensively, whereas for a batch size of 8, each B-tree level
saves on 8 concurrent requests. Therefore, placing the hooks
close to the device benefits both standard, synchronous read
calls and more efficient io_uring calls. With deep trees, BPF
coupled with io_uring delivers > 2.5× higher throughput;
even three dependent lookups give 1.3–1.9× speedups.

4 A DESIGN FOR STORAGE BPF
Our experiments have given us reason to be optimistic about
BPF’s potential to accelerate operations with fast storage de-
vices; however, to realize these gains, I/O resubmissions must
happen as early as possible, ideally within the kernel NVMe
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interrupt handler itself. This creates significant challenges
in using BPF to accelerate storage lookups for a practical
system such as a key-value store.

We envision building a library that provides a higher level-
interface than BPF and new BPF hooks in the Linux kernel as
early in the storage I/O completion path as possible, similar
to XDP [25]. This library would contain eBPF and helper
functions that accelerate access and operations on popular
data structures, such as B-trees and log-structured merge
trees (LSM).

Within the kernel, these BPF functions that would be trig-
gered in the NVMe driver interrupt handler on each block
I/O completion. By giving these functions access to raw
buffers holding block data, they could extract file offsets
from blocks fetched from storage and immediately reissue
an I/O to those offsets; they could also filter, project, and
aggregate block data by building up buffers that they later
return to the application. By pushing application-defined
structures into the kernel these functions can traverse per-
sistent data structures with limited application involvement.
Unlike XN, where functions were tasked with implementing
full systems, these storage BFP functions would mainly parse
the storage block layout of application data structures and
run simple, application-defined computations.
We outline some of the key design considerations and

challenges for our preliminary design, which we believe we
can realize without substantial re-architecture of the Linux
kernel.

Installation & Execution. To accelerate dependent accesses,
our library installs a BPF function using a special ioctl.
Once installed, the application I/Os issued using that file de-
scriptor are “tagged”; submissions to the NVMe layer prop-
agate this tag. The kernel I/O completion path, which is
triggered in the NVMe device interrupt handler, checks for
this tag. For each tagged submission/completion, our NVMe
interrupt handler hook passes the read block buffer into the
corresponding BPF function.
When triggered, the function can perform a few actions.

For example, it can extract a file offset from the block; then, it
can “recycle” the NVMe submission descriptor and I/O buffer
by calling a helper function that retargets the descriptor to
the new offset and reissues it to the NVMe device submission
queue. Hence, one I/O completion can determine the next I/O
that should be submitted with minimal CPU cost or delay.
This lets functions perform rapid traversals of structures
without application-level involvement.

The function can also copy or aggregate data from the
block buffer into its own buffers. This lets the function per-
form selection, projection, or aggregation to build results
to return to the application. These buffers are hidden from
and not returned to the application during intermediate calls

to the function, for example if the right block hasn’t been
found yet.When the function completes it can indicate which
buffer should be returned to the application.

Translation & Security. In Linux the NVMe driver doesn’t
have access to file system metadata. If an I/O completes for a
block at offset o1 in a file, a BPF function might extract file off-
set o2 as the next I/O to issue. However, o2 is meaningless to
the NVMe context, since it cannot tell which physical block
this corresponds to without access to the file’s metadata
and extents. Blocks could embed physical block addresses
to avoid the need to consult the extents, but without impos-
ing limits on these addresses, BPF functions could access
any block on the device. Hence, a key challenge is imbuing
the NVMe layer with enough information to efficiently and
safely map file offsets to the file’s corresponding physical
block offsets without restricting the file system’s ability to
remap blocks as it chooses.
For simplicity and security in our design, each function

only uses the file offsets in the file to which the ioctl at-
tached the function. This ensures functions cannot access
data that does not belong to the file. To do this without slow
file system layer calls and without constraining the file sys-
tem’s block allocation policy, we plan to only focus on cases
when the extents for a file do not change.
We make the observation that many data center applica-

tions do not modify in-place persistent storage structures.
For example, once an LSM-tree writes SSTable files to disk,
they are immutable and their extents are stable [29]. Simi-
larly, the index file extents remain nearly stable in on-disk
B-tree implementations. In a 24 hour YCSB [28] (40% reads,
40% updates, 20% inserts, Zipfian 0.7) experiment on Mari-
aDB running TokuDB [17], we found the index file’s extents
only changed every 159 seconds on average with only 5 ex-
tent changes in 24 hours unmapping any blocks. Also note
that in many index implementations, the index is stored on
a single file, which helps further simplify our design.
We exploit the relative stability of file extents via a soft

state cache of the extents at the NVMe layer.When the ioctl
first installs the function on the file storing the data structure,
its extents are propagated to the NVMe layer. If any block
is unmapped from any of the file’s extents, a new hook in
the file system triggers an invalidation call to the NVMe
layer. Ongoing recycled I/Os are then discarded, and an error
is returned to the application layer, which must rerun the
ioctl to reset the NVMe layer extents before it can reissue
tagged I/Os. This is a heavy-handed but simple approach.
It leaves the file system almost entirely decoupled from the
NVMe layer, and it places no restrictions on the file system
block allocation policies. Of course, these invalidations need
to be rare for the cache to be effective, but as the YCSB results
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confirm, we expect this is true in most of the applications
we target.

I/O Granularity Mismatches. When the BIO layer “splits”
an I/O, e.g. across two discontiguous extents, it will generate
multiple NVMe operations that complete at different times.
We expect these cases to be rare enough that we can perform
that I/O as a normal BIO and return the buffer and completion
to the application. There, it can run the BPF function itself
and restart the I/O chain with the kernel starting at the next
“hop”. This avoids extra complexity in the kernel. Similarly, if
application needs to generate more than one I/O in response
to a single I/O completion, we propagate the completion up
to the BIO layer which allocates and submits the multiple
I/Os to the NVMe layer. This avoids returning to userspace.

Caching. As the caching of indices is often managed by
the application [17, 27, 29], we assume the BPF traversal will
not interact with the buffer cache directly and that appli-
cations manage caching and synchronizing with traversals.
Cache eviction and management is increasingly done at the
granularity of application-meaningful objects (e.g. individ-
ual data records) instead of whole pages. Our scheme fits
well into this model, where BPF functions can return specific
objects to the application rather than pages, after which the
application can apply its own caching policies.

Concurrency. A write issued through the file system might
only be reflected in the buffer cache and would not be visible
to the BPF traversal. This could be addressed by locking,
but managing application-level locks from within the NVMe
driver, and especially from within the interrupt handler, can
be expensive. Therefore, data structures that require fine-
grained locking (e.g. lock coupling in B+trees [31]) require
careful design to support BPF traversal.
To avoid read/write conflicts, we initially plan to target

data structures that remain immutable (at least for a long
period of time). Fortunately, many data structures have this
property, including LSM SSTable files that remain immutable
[29, 43], and on-disk B-trees that are not updated dynamically
in-place, but rather in a batch process [17]. In addition, due
to the difficulty of acquiring locks, we plan initially to only
support read-only BPF traversals.

Fairness. BPF issued requests do not go through the file
system or block layer, so there is no easy place to enforce
fairness or QoS guarantees among processes. However, the
default block layer scheduler in Linux is the noop sched-
uler for NVMe devices, and the NVMe specification sup-
ports command arbitration at hardware queues if fairness
is a requirement [14]. Another challenge is that the NVMe
layer may reissue an infinite number of I/O requests. The
eBPF verifier prevents loops with unknown bounds [42], but

we would also need to prevent unbounded I/O loops at our
NVMe hook.

For fairness purposes and to prevent unbounded traversals,
we plan to implement a counter per process in the NVMe
layer that will track the number of chained submissions,
and set a bound on this counter. The counter’s values can
periodically be passed to the BIO layer to account the number
of requests.

5 CONCLUSIONS
BPF has the potential to significantly speed up dependent
lookups to fast storage devices. However, it creates several
key challenges, arising due to the loss of context when op-
erating deep in the kernel’s storage stack. In this paper, we
focused primarily on enabling the initial use case of index
traversals. Notwithstanding, even for current fast NVMe de-
vices (and more so for future ones), chaining a small number
of requests using BPF provides significant gains. We envi-
sion a BPF for storage library could help developers offload
many other standard storage operations to the kernel, such as
aggregations, scans, compaction, compression and dedupli-
cation. We also believe that the interactions of BPF with the
cache and scheduler policies create exciting future research
opportunities.
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