
AppFlow: Using Machine Learning to Synthesize Robust,
Reusable UI Tests

Gang Hu
ganghu@cs.columbia.edu
Columbia University

New York, NY, United States

Linjie Zhu
linjie@cs.columbia.edu
Columbia University

New York, NY, United States

Junfeng Yang
junfeng@cs.columbia.edu

Columbia University
New York, NY, United States

ABSTRACT

UI testing is known to be difficult, especially as today’s development
cycles become faster. Manual UI testing is tedious, costly and error-
prone. Automated UI tests are costly to write and maintain.

This paper presents AppFlow, a system for synthesizing highly
robust, highly reusable UI tests. It leverages machine learning to
automatically recognize common screens and widgets, relieving
developers from writing ad hoc, fragile logic to use them in tests.
It enables developers to write a library of modular tests for the
main functionality of an app category (e.g., an “add to cart” test for
shopping apps). It can then quickly test a new app in the same cate-
gory by synthesizing full tests from the modular ones in the library.
By focusing on the main functionality, AppFlow provides “smoke
testing” requiring little manual work. Optionally, developers can
customize AppFlow by adding app-specific tests for completeness.

We evaluated AppFlow on 60 popular apps in the shopping and
the news category, two case studies on the BBC news app and the
JackThreads shopping app, and a user-study of 15 subjects on the
Wish shopping app. Results show that AppFlow accurately recog-
nizes screens and widgets, synthesizes highly robust and reusable
tests, covers 46.6% of all automatable tests for Jackthreads with
the tests it synthesizes, and reduces the effort to test a new app by
up to 90%. Interestingly, it found eight bugs in the evaluated apps,
including seven functionality bugs, despite that they were publicly
released and supposedly went through thorough testing.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Empirical software validation; Software evolution;

KEYWORDS

mobile testing; test reuse; test synthesis; UI testing; machine learn-
ing; UI recognition

ACM Reference Format:

Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: Using Machine

Learning to Synthesize Robust, Reusable UI Tests. In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236055

on the Foundations of Software Engineering (ESEC/FSE ’18), November 4–
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3236024.3236055

1 INTRODUCTION

Most applications are designed to interact with humans, making
it crucial to test the functionality, performance, and other key as-
pects of their user interfaces (UIs). Yet, UI testing is known to be
exceedingly challenging. Manual UI testing has the advantage of
testing faithful human experience, but the downside is that it is
tedious, costly, and error prone – imagine a poor tester repeating 30
manual tests on 50 different devices. Automated testing is supposed
to be the rescue, but today’s test automation in industry requires a
tremendous amount of developer “babysitting,” and few companies
have the skills or resources to set it up, as illustrated in the follow-
ing comment at HackerNews [64], a top developer forum: “I have
worked in several companies that have had goals of automated UI
regression test suites, but I’ve never worked at a company that pulled
it off successfully.”

UI Test automation often rely on script-based testing. Specially,
to automate UI testing, developers must invest a high initial cost to
write test scripts, diagnose test failures which are often caused by
“broken” tests instead of bugs in the application code [69], and main-
tain test scripts when the application’s UI evolves. While these tasks
seem easy on the surface, numerous pitfalls make them daunting
because application UIs are designed for human intelligence but test
scripts are low-level, click-by-click scripts. For instance, while we
humans can easily recognizewithout ambiguity the button to add an
item to a shopping cart, whether or not the button shows “Add”, “+”,
or an icon, a test script locates the button typically via a developer-
provided, hardcoded method (e.g., searching the internal widget
ID or by text match). This hardcoded method can easily become
incorrect when for example the button evolves from ’Add’ to an
icon or the application has different designs based on device factors
such as screen size. Test record and replay [21, 23, 27, 33, 37, 70, 75]
reduces the cost of writing tests, but recorded tests rarely work out
of the box, and UI evolution still requires re-recording [45].

These test automation challenges are exacerbated by today’s ever
faster development cycles. Development trends such as Continuous
Integration [40] and DevOps [39] require running tests on each
code commit or merge to a key branch which may happen a dozen
time a day, calling for fast, fully automated testing.

A standard software engineering practice to writing difficult code
is to delegate: experts implement the code as a library or service,
and other developers reuse. Examples include cryptography [13, 18],
distributed consensus [19, 66, 67], and image processing [86]. In UI
testing, there is ample opportunity for reusing tests because many

https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1145/3236024.3236055

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Gang Hu, Linjie Zhu, and Junfeng Yang

apps are in the same category and implement similar user flows.
For instance, almost all shopping apps implement some forms of
user sign in, search for an item, check item details, add to shopping
cart, check out, etc. We studied the top 309 non-game mobile apps
and found that 15 app categories are enough to cover 196 or 63.4%
apps (7.1), demonstrating the huge potential of sharing tests across
apps in the same category. Thus, it would save much struggling if
we could create a robust, reusable test library for shopping apps.

Unfortunately, few of today’s automation frameworks are de-
signed for reusing test scripts across apps. First, despite that apps
in the same category share much similarity in their flows, they may
have very different designs, texts, and names for their screens and
widgets. Thus, a test script for an app often cannot locate the right
screens and widgets for another app. Second, apps in the same cate-
gory may still have subtly different flows. For instance, the sign-in
flow of an app may contain just the sign-in screen, but another app
may show a welcome screen first. The add-to-shopping-cart flow of
an app may require a user to first visit the item details screen, but
another app may allow users to add items in search results directly
to shopping cart. These subtle differences prevent directly reusing
test scripts on different apps.

This paper presents AppFlow, a system for synthesizing highly
robust, highly reusable UI tests. It enables developers – e.g., those
in the “shopping app” community or a testing services company –
to write a library of modular UI tests for the main functionality of
a given category of apps. This library may be shared open-source
or stored within a testing cloud service such as Google’s Firebase
Test Lab or Amazon’s Device Farm. Then, when developers want
to test a new app in the same category, they can quickly synthesize
full tests from the modular ones in the library with a few lines of
customization, greatly boosting productivity.

By focusing on the main functionality of an app category,
AppFlow provides “smoke tests” or build verification testing for
each source code change, requiring little or no manual work. Previ-
ous work [57] has shown that such tests, even incomplete, provide
quick feedback to developers and help them fix bugs early before
the bugs cause greater impact. Optionally, developers can customize
AppFlow to add app-specific tests or override defaults to perform
complete regression testing.

A key idea in AppFlow is a machine learning approach to recog-
nizing screens and widgets. Instead of relying on developers’ hard-
coded logic, AppFlow learns a classifier from a training dataset of
screens and widgets labeled with their intents, using a careful se-
lection of features including texts, widget sizes, image recognition
results of graphical icons, and optical character recognition (OCR)
results. The training dataset can come from a developer commu-
nity for an app category, and AppFlow provides several utilities to
simplify this mostly one-time data collection. After the classifier
is trained, AppFlow uses it to map variant screens and widgets to
canonical ones. For instance, it maps text edit boxes with “User-
name”, “Your Email”, or “example@email.com” on sign-in screens
all to signin.username, representing the user-name widget.

This machine learning approach enables the AppFlow tests to
refer to canonical screens and widgets instead of app-specific ones,
enjoying a variety of benefits. First, apps’ UI can now evolvewithout
breaking tests as long as the new designs can be recognized by
AppFlow. Second, app UI can now respond to device factors such

as screen size without breaking tests. Third, canonical screens and
widgets abstract app-specific variations, making it easy to share
tests across apps. Fourth, AppFlow’s ability to recognize screens
enables developers to focus on testing the specific flows of a screen
without writing much boilerplate code to first bring the app to the
screen or later restore the app to a previous state. This benefit is
crucial for reusability, which we elaborate next.

A second key idea in AppFlow is to automatically discover apps’
behaviors by applying reusable, self-contained tests called flows
and synthesize full tests from them. To test a feature such as “at
the item details page, a user can add the item to shopping cart”, the
developer writes a flow that contains three components: (1) the
precondition of the test such as “app must be at item details screen;”
(2) the postcondition of the test such as “app must be at shopping
cart screen;” and (3) the actual steps to carry out the test such as
“click Add button.” The precondition and postcondition are in spirit
similar to Hoare Logic, and can contain custom conditions on app
state such as loggedin = true (i.e., the user must have logged in).
This flow is dual-purpose: it can be used to test if an app implements
this feature correctly, and it can be used to navigate an app into
states which are required to test other features. Specifically, given
a library of flows, AppFlow dynamically synthesizes full tests as
follows: it starts the app, recognizes its state, finds activated flows
whose preconditions are met, executes each flow, and repeats for
each new state reached.

AppFlow’s synthesis has two main benefits. First, it greatly sim-
plifies test creation because developers no longer need to write
boilerplate code to bring the app to a certain state or clean up the
state after. Second, modularization enables test reuse. If tests are
specified as a whole, a test can hardly be reused due to variations
of implementations of not only the scenario under test, but also the
steps required to reach the scenario. In contrast, modular tests can
be properly synthesized to adapt to a specific app’s behavior. For
instance, we can create a test library that contains two sign-in flows
with or without the welcome screen and two add-to-shopping-cart
flows passing or not passing item details screen. AppFlow can
then synthesize the right tests for a new shopping app we want
to test, mixing-and-matching the modular flows. In addition, it
also allows AppFlow to adapt to apps’ behavior changes. AppFlow
can discover an app’s new behaviors and automatically synthesize
corresponding tests for them.

We implemented AppFlow for the Android platform because
of its wide adoption and tough market competitions developers
face, but the ideas and techniques are readily applicable to gen-
eral UI testing. AppFlow’s language to write flows is an extension
of Gherkin [50], a human-readable domain-specific language for
describing app behaviors.

Our evaluation of AppFlow consists of four sets of experiments.
First, we evaluated AppFlow on 40 popular shopping apps and 20
news app by creating and reusing test libraries for the two app
categories. Second, we conducted a case study of the BBC news app
with two dramatically different versions to see if the tests AppFlow
synthesizes are robust against the changes. Third, we conducted a
user study of 15 subjects on creating tests for the Wish shopping
app to compare AppFlow’s approach vs writing tests using an
existing test framework. Fourth, we analyzed a complete manual
test plan from the developers of the JackThreads app and quantified

AppFlow: Using Machine Learning to Synthesize Robust UI Tests ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

how many tests AppFlow can automatically synthesize. Results
show that AppFlow accurately recognizes screens and widgets,
synthesizes highly robust and reusable tests, covers 46.6% of all
automatable tests for Jackthreads, and reduces the effort to test a
new app by up to 90%. Interestingly, it also found eight bugs in
the evaluated apps, including seven functionality bugs, despite that
they were already publicly released and supposedly went through
thorough testing.

This paper makes three main contributions: (1) the AppFlow
system for synthesizing highly robust, highly reusable tests; (2) our
technique that leverages machine learning to recognize screens and
widgets for robustness and reusability; and (3) our evaluation on 60
real-world shopping and news apps that produces 2944 tests and
found 8 bugs. AppFlow’s source code and the test libraries eval-
uated are available at github.com/columbia/appflow; AppFlow’s
dataset is available at github.com/columbia/appflow-dataset.

This paper is organized as follows. An overview of AppFlow
is given in section 2. How machine learning is used is shown in
section 3. Method to define flows is presented in section 4. The
synthesis process is illustrated in section 5. Implementation details
are discussed in section 6. We evaluated AppFlow in section 7. We
discussed limitations of this approach in section 8. Related works
are reviewed in section 9. We conclude in section 10.

2 OVERVIEW

This section first presents a succinct example to show how to write
AppFlow tests (§2.1), and then describes its workflow (§2.2).

2.1 Example

Scenario: add to shopping cart [stay at cart]
Given screen is detail
And cart_filled is false
When click @addtocart
And click @cart
And not see @empty_cart_msg
Then screen is cart
And set cart_filled to true

Figure 1: Flow: “add to shopping cart”.

Suppose a developer wants to test the flow “adding an item to
an empty shopping cart clears the ‘shopping cart is empty’ mes-
sage” for shopping apps. Figure 1 shows an example for this test
in AppFlow. “Given...” specifies the precondition of the flow. The
screen to activate this flow should be the “detail” screen, the canon-
ical screen that shows an item’s details. This screen exists in al-
most all shopping apps, so using it to specify the condition not
only eases the understanding of this flow, but also allows this flow
to be reusable on other shopping apps. Here “screen” is a visible
property built into AppFlow. In contrast, the flow specifies in the
precondition that “cart_filled” must be “false,” and “cart_filled” is a
developer-defined abstract property indicating whether the shop-
ping cart is filled. Abstract properties are intended to keep track of
the invisible portions of app states, which can often be crucial for
writing robust tests. To run this flow, AppFlow ensures that the

precondition of the flow must be met, i.e., all properties specified
in the precondition must have the corresponding values.

Next, the flow does two clicks to the @addtocart and @cart
buttons. Unlike traditional test scripts that refer to the widgets using
handwritten, fragile logic, AppFlow tests use canonical widgets
exported by a test library, andAppFlow leverages machine learning
to match real widgets to canonical ones.

Then, the flow performs a check (“not see...”). After the two
clicks, current screen must be the canonical screen “cart”, which
represents the shopping cart screen. Thus, the flow checks to ensure
that the canonical widget @empty_cart_msg, which signals that
the shopping cart is empty, should not be seen on the screen.

Finally, “Then” specifies in the postcondition that the screen after
executing the clicks must be the canonical “cart” screen, which
AppFlow will check after executing this flow. (Postconditions are
different from checks because postconditions cause AppFlow to
update the app state it maintains.) The flow also sets “cart_filled”
to be “true” after executing this flow, which causes AppFlow to
update the abstract properties it tracks to reflect this effect. After
executing this flow, AppFlow will check to see if the new values of
these properties satisfy the preconditions of any previously inactive
flows, and add these flows to the set of flows to execute next.

This simple example shows some key benefits of AppFlow. This
flow is easy to understand, even for non-developers (e.g., a product
manager). The canonical screens and widgets used are recognized
by AppFlow automatically using machine learning methods, mak-
ing the test robust against design changes and reusable across
different apps. The system allows developers to describe just the
flows to test without writing boilerplate code to bring the app to
an item details screen.

2.2 Workflow

Figure 2: Workflow of AppFlow. The stick figure here represents

developer intervention.

Figure 2 shows the workflow of AppFlow. It operates in two
phases: the first phase, mostly one-time, prepares AppFlow for
testing a new category of apps (§2.2.1), and the second phase applies
AppFlow to test each new app in the category (§2.2.2).

2.2.1 Prepare for a new app category. To prepare AppFlow for a
new category of apps, developers do two things. First, they create
a test library in AppFlow’s language (§4) that contains common
flows for this category, and define canonical screens and widgets

github.com/columbia/appflow
github.com/columbia/appflow-dataset

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Gang Hu, Linjie Zhu, and Junfeng Yang

during this process. Second, they use simple AppFlow utilities to
capture a dataset of canonical screens and widgets and label them.
Sometimes apps in different categories share similar screens (e.g.,
sign-in screens), and these samples from other app categories can
also be added. Given this dataset, AppFlow extracts key features
from each sample and learns classifiers to recognize screens and
widgets based on them (§3).

2.2.2 Test a new app. To test a new app for the first time, develop-
ers do two things. First, they customize the test library for their app.
Machine learning is highly statistical and cannot always recognize
every canonical screen and widget. To correct its occasional errors,
developers run an interactive GUI utility of AppFlow to discover
the machine learning errors and override them. In addition, devel-
opers supply values to the variables used in the library, such as
the test user name and password. Developers may also add custom
flows to test app-specific behaviors. The syntax and usage of this
customization are described in §5.1.

Second, developers run AppFlow on the app to record the initial
test results. Recall that a test library typically contains several
variant flows such as signing in from the welcome screen or the
menu screen. AppFlow runs all flows and reports the result for
each, letting developers confirm which flows should succeed and
which should fail.

Under the hood, AppFlow uses the flows in the test library to
synthesize full tests through a systematic discovery process. Recall
that a flow is active if its precondition is met in a state. At first,
only the “start app” flow is active. In the discovery process, new
app states and new paths to reach them are discovered, and more
flows are activated. The process terminates when no more flows
need to be tested. The detail of this process is explained in §5.2.

After the two setup steps, developers can now test new versions
of the app regularly for regressions.AppFlow runs a similar process
to synthesize full tests for each new app version, comparing the
results to those from the previous run. It reports any unexpected
failures and unexpected successes of the flows to developers, who
should either fix any regressions or confirm intended changes to
AppFlow.

3 RECOGNIZING CANONICAL SCREENS AND

WIDGETS

Intuitively, screens and widgets for similar purposes should have
similar appearance for good user experience, and similar names for
ease of maintenance. However, simple rules cannot recognize them
correctly, because of variations across apps and evolution of the
same app over time. For example, the “login” button on the “sign in”
screen may contain “Login”, “Sign in”, “Let me in”, or even an icon
showing an arrow. The underlying UI object usually has a class
name of “Button”, but sometimes it can be changed to “TextView”
or even “RelativeLayout”. Instead of using ad hoc, manually written
rules to recognize widgets, AppFlow leverages machine learning to
combine information from many available sources, thus it is much
more robust.

Feature selection is key to accurate recognition, and it absorbed
much of our effort. We experimented with a variety of feature
combinations, settled with the following method. For each UI ob-
ject (screen or widget), the features include its key attributes such

as description text, size, whether it is clickable; the UI layout of
the object; and the graphics. All features are converted to values
between 0 and 1 in the final feature vector. Numerical features
such as size are normalized using the maximum value. Boolean
features such as whether a widget is clickable is converted to 0
or 1 directly. UI layout is converted to text via a pre-order tree
traversal. Graphical features are handled in two ways. Button icons
carry specific meanings, so they are converted to feature vectors
by calculating their histogram of oriented gradients (HOG) [14].
Other graphical features are converted to text via OCR. All textual
features including those converted from UI layouts and graphics
are converted using Term Frequency–Inverse Document Frequency
(TF-IDF). Intuitively, TF-IDF gives a higher weight if a term occurs
in fewer documents (thus more descriminative) and more times in
a document. Sometimes 2-gram is used to form terms from words
in text. We show the effects of different feature selection schemes
on accuracy in §7.2.

Besides feature selection schemes, we also experimented with
different learning algorithms, and found that screen recognition
and widget recognition need different algorithms. The following
subsections describes the feature selection scheme and learning
algorithm that yield the best accuracy for recognizing screens and
widgets.

3.1 Classifying screens

AppFlow uses three types of features to recognize canonical
screens.

Screen layout The screen layout is a tree containing all the
widgets on the screen. Different screens may have different num-
bers of widgets and feature vectors have to be of fixed length, so
AppFlow converts the entire screen’s UI layout to one text string.
It traverses the tree in pre-order and, for each widget visited, it
selects the text, identifier, the underlying UI object’s class name,
and other key attributes of the widget. For size, position and other
non-text attributes, AppFlow generates a set of words to describe
them. For instance, consider a search box widget. It is typically at
the top of a search screen with a large width and small height. Its
identifier typically contains “Search” and “Edit” to indicate that it is
editable, and for implementing the search functionality. Given this
search widget, AppFlow first generates a set of words describing
the geometry of widget (“TOP” and “WIDE”) and another set con-
taining the word split of the identifier (“Search” and “Edit”) using
a rule-based algorithm. It then uses the Cartesian product of the
two sets of words as the description of this widget. This Cartesian
product works better than individual words because it captures the
correlation between the geometry and identifier for recognizing
widgets (e.g., “TOPsearch” is very indicative of a search widget); it
also works better than a concatenation of all words because it is
more invariant to minor design differences (e.g., with concatenation
“TOPWIDESearch” and “TOPSearch” become different terms).

Screen snapshot A user understands a screen mostly based on
the screen snapshot. To utilize this information,AppFlow performs
OCR on the snapshot to extract texts inside it.

Class information AppFlow includes the class name of the
screen’s underlying UI object in the features it selects. In Android,

AppFlow: Using Machine Learning to Synthesize Robust UI Tests ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

the class is always a subclass of Activity. Developers tend to name
screen classes with human readable names to ease maintenance.

From the training data set, we train a neural network classi-
fier [76] that takes the screen feature vectors as inputs and outputs
the canonical screen. It has 1 hidden layer with 68 neurons, opti-
mized with a stochastic gradient-based optimizer [43].

3.2 Classifying widgets

For each widget in the tree of widgets captured from a screen,
AppFlow selects the following features.

Widget’s text The text attribute of the widget is used. This
usually equals to the text shown on the widget. The text attribute of
the widget is the most evident clue of what the widget represents,
because usually users understand its usage through text. However,
other features are still needed. In some cases, the widget shows
an image instead of text. In other cases, text is embedded into the
image, and the text attribute is empty.

Widget’s context The widget’s description, identifier and class
name are used. The description and identifier of a widget are evi-
dences of its functionality, especially for widgets which have empty
text attributes. The description is provided for accessibility uses,
while the identifier is used by developers. The class name provides
some useful information, such as whether this is a button or a text
box, but it can be inaccurate.

Widget’s metadata The widget’s size, position, and some other
attributes are used. The widget’s metadata, combined with other
information, increases the accuracy of the machine learning results.
For example, in almost all apps, the “password” widget on the “sign
in” screen has its “isPassword” attribute set to true, which helps the
machine learning algorithm distinguish it from the “email” widget.

Neighbour information Some widgets can be identified by
observing their neighbours. For example, an empty editable text
box with no ID or description may be hard to recognize, but users
can understand its usage by observing its neighbour with a label
containing text “Email:”. AppFlow includes the left sibling of the
current widget in the feature vector.

OCR result OCR result of the widget’s image is used. Some
widgets do not have ID, text, or description. For traditional frame-
works, these widgets are especially hard to refer to, while we found
them fairly common among apps. Some other widgets have only
generic IDs, such as “toolbar_button”. In these cases, AppFlow uses
features which humans use to identify them. A user usually rec-
ognizes a widget either through its text, or its appearance. This
feature captures the text part, while the next feature captures the
graphical part.

Graphical features The image of the widget is used. Some
widgets, such as icons, use graphical features to hint users its func-
tionality. For example, in almost all apps, the search icon looks
like a magnifier. AppFlow uses the HOG descriptor, widely used in
single symbol recognition, to vectorize this feature.

Vectorized points from the train set are used to train linear sup-
port vector machine [7] (SVM) classifiers. Every linear SVM classi-
fier recognizes one canonical widget. The penalty parameter C is
set to 0.1. SVMs are used because it achieves high accuracy while
requiring little resources. Because the number of widgets is much
larger than the number of screens, efficiency must be taken into

account. Canonical widgets from different screens are classified us-
ing different sets of classifiers. To classify a widget, it is vectorized
as above, and fed into all the classifiers of its canonical screen. If
the classifier with the highest confidence score is higher than the
configurable threshold, its corresponding canonical widget is given
as the result. Otherwise the result is “not a canonical widget”.

4 WRITING TEST FLOWS

This section first describes the language extensions we made to
Gherkin to support writing test flows (§4.1), then explains some
specifics on creating a test library and best practices (§4.2).

4.1 Language to write flows

AppFlow’s flow language follows Gherkin’s syntax. Gherkin is a
requirement description language used by Behavior-Driven De-
velopment [9] tool cucumber [49], which in turn is used by Cal-
abash [91], a widely used automated testing framework for mobile
apps. We thus chose to extend Gherkin instead of another language
because mobile developers should already have some familiarity
with it.

In AppFlow, each flow is written as a scenario in Gherkin where
lines in the precondition are prefixed by Given, steps of the test
are prefixed by When, and lines in the postcondition and effect are
prefixed by Then. Unlike in Gherkin which use natural languages
for the conditions and step, AppFlow uses visible and abstract
properties. Calabash [91] extends Gherkin to also include conditions
on the visible UI states, but it does not support abstract properties.

The actions in a flow are specified using a verb followed by its
arguments. The verbs are common operations and checks, such as
“see”, “click”, and “text”. The arguments can be widgets or values.
For widgets, either canonical ones or real ones can be used. Canon-
ical ones are referenced with @<canonical widget name>. Real
ones are found using locators similar to how Calabash locates wid-
gets. Simple methods such as “id(arg)”, “text(arg)” and “desc(arg)”
find widgets by comparing their corresponding attributes with the
argument “arg,” while method “marked(arg)” matches any of those
attributes. Here “arg” may be a constant or a configuration variable
indicated using @<variable name>.

Below we show four examples of flows. The first flow tests that
a user can log in with correct credentials:

Scenario: perform user login
Given screen is signin
And loggedin is false
When text @username ’@email’
And text @password ’@password’
And click @login
Then screen is not signin
And set loggedin to true

The second flow tests that a logged-in user can enter shopping cart
from the “main” screen:

Scenario: enter shopping cart [signed in]
Given screen is main
And loggedin is true
When click @cart
Then screen is cart

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Gang Hu, Linjie Zhu, and Junfeng Yang

The third flow tests that the “shopping cart is empty” message is
shown on the “cart” screen when the shopping cart is empty:

Scenario: check that cart is empty
Given screen is cart
And cart_filled is false
Then see @cart_empty_msg

The last flow, which requires the shopping cart to be non-empty,
removes the item from the shopping cart, and expects to see the
“shopping cart is empty” message:

Scenario: remove from cart [with remove button]
Given screen is cart
And cart_filled is true
When click @item_remove
And see @cart_empty_msg
Then set cart_filled to false

4.2 Creating a test library

Today developers write similar test cases for different apps in the
same category, doing much redundant work. By contributing to a
test library combinedwithAppFlow’s ability to recognize canonical
screens and widgets, developers can share their work, resulting in
greatly improved productivity.

There are two subtleties in writing flows for a library. First, devel-
opers need to decide how many flows to include in the test library.
There is a trade-off between the cost of creating custom flows and
the cost of creating customizations. With more flows, the test li-
brary is more likely to include rare app behaviors, so less custom
flows are needed. On the other hand, more flows in the test library
usually means more rare canonical widgets, which have fewer sam-
ples from apps. Thus, these widgets may have lower classification
accuracy, and having them requires more time to customize. Sec-
ond, the same functionality may be implemented slightly differently
across apps. As aforementioned (§1), the add-to-shopping-cart flow
of an app may require a user to first visit the item details screen,
but another app may allow users to add items in search results
directly to shopping cart. Although conceptually these flows are
the same test of the add-to-shopping-cart functionality, they need
to be implemented differently. Therefore AppFlow supports the
notion of a test that can have several variant flows, and tracks the
flow(s) that works when testing a new app (§5).

Best practices. From our experience creating test libraries for
two app categories, we learned four best practices. They help us
create simple, general, and effective test libraries. We discuss them
below.

First, flows should be modular for better reusability. Developers
should avoid writing a long flow that does many checks and keep
pre/postconditions as simple as possible. Precondtions and postcon-
dions are simple depictions of the app states. The concept of app
states naturally exists in traditional tests; testers and developers
sometimes describe them in comments or write checks for them.
When writing preconditions and postconditions, it takes no more
effort than writing checks for traditional methods. Rich function-
alities do not directly translate into complicated design because
mobile apps tend to have a minimalism design to focus on provid-
ing content to users without unnessary cognitive load [4]. An app

with rich functionalities usually has properties separated into fairly
independent groups, and thus have simple preconditions and post-
conditions. Short flows with well-defined pre/postconditions are
simple to write, easy to understand, and more likely to be reusable.
For instance, most flows should not cross multiple screens. Instead,
a flow should specify the screen where it can start executing and
the screen it expects when its execution finishes, and it should not
cross other screens during its execution.

Second, test flows should refer only to canonical screens and
widgets. If a flow wants to check for a specific widget on the current
screen, this widget should be defined as a canonical widget, then
the test flow can refer it. Similarly, if the flow wants to verify a
screen is the expected screen, the screen should be defined as a
canonical screen. This practice avoids checks which leads to fragile
flows, such as searching for specific strings on the screen to verify
the screen or comparing widgets’ text to find a specific widget.

Third, flows of common functionalities implemented by most
apps should be included, while rare flows should be excluded from
the test library. From our experience, it is crucial for classification
results to be accurate. If there are misclassifications, developers
would be confused by incorrect test results. Time spent by develop-
ers in debugging tests would likely be longer than time required to
write a few custom flows. In addition, larger test library increases
the exeuction time of AppFlow.

Forth, test flows should be kept simple. Complex flows are hard
to generalize to other apps. As we mentioned above, it would be
helpful in this respect if flows are splitted into smaller pieces and
made modular. Also, the properties used in flows’ conditions should
also be kept at minimum, since having more properties increases
the testing time by creating more combinations.

5 APPLYING A TEST LIBRARY TO A NEW

APP

A developer applies a test library to her app in two stages. First, in
the setup stage, when applying the library to her app for the first
time, she configures and customizes the test library, specifically
assigning necessary values to test variables such as test account
name and overriding classification errors of machine learning. The
developer may also add custom flows in this stage to test app-
specific behaviors. Afterwards, she runs AppFlow to synthesize
tests and record the pass and fail results. Note that a failed flow does
not necessarily indicate an error. Recall that the same functionality
may be implemented differently, so a failed flow may simply mean
that it does not apply to the tested app.

Second, in the incremental stage, she applies the library to test
a new version of the app. Specifically, AppFlow runs all tests syn-
thesized for the previous version on the new version, retries all
flows failed previously, and compares the results with the previous
results. The differences may show that some previously passing
flows fail now and other previously failing flows pass now. The
developer can then fix errors or confirm that certain changes are
intended. She may further customize the library if needed. Each
incremental run takes much less time than the setup stage because
AppFlow memorizes tests synthesized for the previous version.

Both stages are powered by the same AppFlow’s automated test
synthesis process to discover applicable flows and synthesize full

AppFlow: Using Machine Learning to Synthesize Robust UI Tests ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

tests. AppFlow starts from the initial state of an app, repeatedly
executes active flows, and extends a state transition graph with
new states reached by these flows. When there are no more active
flows, the process is finished. A full test for a flow is synthesized
by combining a chain of flows which starts at the initial state and
ends at the flow.

In the remaining of this section, we describe how a developer
customizes a test library (§5.1) and how AppFlow applies the test
library with customizations on an app to synthesize full tests (§5.2).

5.1 Configuration and customization

Developers customize a test library to an app in four steps. The
first three steps are typically required only in the first run. First,
developers assign values to test variables. A new app needs new
values for these variables, because they contain app-specific test
data, such as the user name and password to be used for login,
the search keyword, etc. This data is straightforward to provide,
and AppFlow also provides reasonable defaults for most of them,
but developers can override them if they want. Developers may
optionally change AppFlow’s options to better suit their needs.
Here is an example of this part:

email user@example.com

password verysecurepassword

Second, developers create matchers for screens and widgets
to override machine learning errors. Although machine learning
greatly reduces the need for developer-written screen and widget
matchers, it inherently misclassifies in rare occasions, which de-
velopers must override. To ease the task, we build a GUI tool that
helps developers inspect the machine learning results on their app
and generate matchers if needed. A screenshot of this tool is shown
in Figure 3. Operationally, the tool guides developers to navigate to
their app’s canonical screens defined in the test library, and over-
lays the recognition results on the app screen. When the developers
find any classification error, they can easily generate a matcher to
override the error. We discuss typical classification errors and how
developers can fix them below.

A widget is misclassified in two ways. First, a canonical widget
can be misclassified as a non-canonical widget. Developers can fix
this by creating a widget matcher to help AppFlow recognize this
widget. They first select the misclassified canonical widget, press
the space key, and click or type the correct label in a pop-up dialog.
The tool will generate a boilerplate matcher using the widget’s prop-
erties. If its ID is unique within the screen, the generated matcher
finds a widget with this ID. Otherwise, the tool will examine the
widget’s class, text, and description. If this widget’s properties are
not unique enough to generate the matcher, widgets containing it
would also be examined. Second, a non-canonical widget can be
classified as a non-existing canonical widget. Developers can fix
this in a similar way to the first case. The only difference is that the
label typed in should be empty. The tool will generate a “negative”
matcher, which means that there is no such canonical widget on
the current screen.

A screen is also misclassified in two ways. First, a canonical
screen can be classified as another canonical screen. Developers can
create a screen matcher to fix this. They press the “x” key to enter
the screen matcher generating mode, click unique widgets which

Figure 3: The GUI tool to inspect machine learning results and gen-

erate matchers. The UI of the tool is shown at left. The recognized

canonical widgets have a blue rectangle overlay on them, and their

labels are shown at center. A pop-up dialog to correct misclassified

labels is shown at right. The possible canonical widgets are pro-

vided as buttons. To bring up the dialog, a developer clicks on a wid-

get to select it, whose overlay becomes red, and presses the “space”

key. In this example, the selected widget is incorrectly classified as

“signin_fb”, and this dialog asks for the correct label.

only appear on this screen, press “x” again, and enter the screen’s
label in an pop-up dialog. The tool then generates a matcher for this
label which requires all these widgets to be present. Second, an app-
specific screen can be classified as a canonical screen. Developers
can fix it in a similar way, but put an app-specific screen name
starting with “app_” in the dialog. The matchers generated may
be further edited to check for widgets which should not exist on
a canonical screen. The tool also checks the generated matchers
against other screens, which prevents developers from creating a
loose matcher matching unintended screens.

Alternatively, experienced developers can skip the GUI tool and
directly add custom matchers to their app’s configuration file:
@signin.login marked:'Log In'

%bookmark text:'Saved ' && id:'toolbar '

Here a widget matcher is provided for the “login” widget on the
“signin” screen. AppFlow can use it to locate this widget. Also, a
screen matcher for the “bookmark” screen is provided.

Third, developers may write custom flows to test app-specific
behaviors. Sometimes none of the library’s flows for implementing
a feature applies, so a custom flow is required forAppFlow to reach
the later flows. Custom flows follow the same syntax as the flows in
the test library, but they can match app-specific screens and widgets
in addition to canonical ones. They can use the same properties
defined in the test library or define their own ones. These custom
flows will be executed alongside flows in the test library.

Lastly, developers run AppFlow to synthesize tests and gener-
ate the pass and fail results. Once developers confirm the results,
AppFlow saves them for future incremental testing on each new
version of the app.

If developers miss anything in the first three steps, they would
see unexpected test results in the last step. Since AppFlow logs

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Gang Hu, Linjie Zhu, and Junfeng Yang

each test’s execution including the flows and actions performed
and the machine learning results, developers can easily figure out
what is missing and repeat the above steps to fix. In our experience,
we rarely need to repeat more than 10 times to test an app.

These steps are typically easy to do. The first three steps are
manual and often take between half an hour to an hour in our
experience applying a test library to two app categories (see §7).
The most time-consuming step among them is to create custom
screen and widget matchers, since developers need to navigate to
different screens and carefully examine machine learning results.
The steps of providing values for test variables and writing custom
flows are usually straightforward. The last step takes longer (for the
apps we evaluated, this step takes from one to two hours), but it is
automated synthesis and requires no developer attention. After the
last step has been completed once, rerunning is much faster because
AppFlow saves the test results from the previous run. In all, this
setup stage takes 1.5–3 hours including both manual customization
and automated synthesis.

5.2 Synthesizing full tests

In both the first run and repeated runs, AppFlow uses the same
underlying algorithm to synthesize full tests to run. It models the
app behaviors as a state transition graph in which an app state is a
value-assignment to all properties, including both visible properties
and abstract properties. For instance, a state of a shopping app may
be “screen = detail , cart_f illed = true, loддedin = true .” The tran-
sitions of a state are the flows activated (i.e., whose preconditions
are satisfied by the state) at the state. Starting from the initial state,
AppFlow repeatedly selects an active flow to execute, and adds the
state reached by the flow to the state transition graph. It stops when
it finishes exploring the entire state transition graph.

Given the state transition graph, synthesizing full tests becomes
easy. To test a flow, AppFlow finds a route that starts from the
initial state and reaches a state in which the flow is active, and
combines the flows along the route and the flow to test into a full
test case. As an optimization, AppFlow stores the execution time
of each flow in the state transition graph, and selects the fastest
route when generating full tests.

One challenge is how to reset the app to the initial state. When
traversing the state transition graph, AppFlow needs to restore
a previously visited state to explore another active flow in the
state. AppFlow does so by uninstalling the app and cleaning up its
data, and then executes the flows along the route to the state. This
method fails if the app syncs its state to the server side. For instance,
a flowmay have added an item to the shopping cart already, and the
shopping cart content is synced to the server side. When the app
is re-installed, the shopping cart still contains the item. AppFlow
solves this challenge by synthesizing a state cleanup route that
undoes the effects of the flows to reach the state. For instance, to
clean the shopping cart state, it runs the flow to remove an item
from the shopping cart.

6 IMPLEMENTATION

AppFlow is implemented for the Android platform using 15,979
lines of Python code. It uses scikit-learn [68] for machine learning,
and Tesseract [79] for extracting text from images.

6.1 Capturing screen layout

AppFlow uses the UIAutomator API [31] to capture current screen
layout, a tree of all widgets with their attributes. AppFlow also
captures apps’ embedded webpages by communicating with apps’
WebViews using the WebView Remote Debugging protocol [29].
This interface provides more details for widgets inside the embed-
ded webpages than the UIAutomator API.

6.2 Post-processing of the captured layout

The layout returned by UIAutomator contains redundant or invisi-
ble views, which would reduce the accuracy of AppFlow’s screen
and widget recognition. AppFlow thus post-processes the layout
using several transformations, recursively applied on the layout
until no more transformations can be done. For instance, one trans-
formation flattens a container with a single child, removes empty
container, and removes invisible widgets according to previously
observed screens. Another transformation uses optical text recogni-
tion to find and remove hidden views. It extracts text from the area
in a snapshot corresponding to each widget, and compares the text
with the widget’s text property. If the difference is too large, the
view is marked as invisible. If all children of a widget are invisible,
AppFlow marks the widget invisible, too. Our results show that
this transformation safely removes up to 11.5% of the widgets.

7 EVALUATION

We focus our evaluation on the following six questions.
RQ1: How much do real-world apps share common screens, wid-

gets, and flows and can AppFlow synthesize highly reusable
flows? The amount of sharing bounds the ultimate utility of
AppFlow.

RQ2: How accurately can AppFlow’s machine learning model
recognize canonical screens and widgets?

RQ3: How robust are the tests AppFlow synthesizes across differ-
ent versions of the same app?

RQ4: How much manual labor does AppFlow save in terms of the
absolute cost of creating the tests that AppFlow can readily
reuse from a library?

RQ5: How much manual labor does AppFlow save in terms of the
relative cost to creating a fully automated test suite for an
app?

RQ6: How effectively can the tests AppFlow synthesizes find
bugs? While it is out of the scope of this paper to integrate
AppFlow with a production Continuous Integration system,
we would like to at least apply AppFlow to the public apps
on app stores and see if it finds bugs.

7.1 RQ1: amount of sharing across apps

We first manually inspected the description of all 481 apps with
more than 50 million installations on Google Play [2], Android’s
app store, and studied whether they fall into an app category that
shares common flows. Of the 481 apps, 172 are games which are
known to be difficult to test automatically [20, 42], so we excluded
them. In the remaining 309 apps, 196 (63.4%) of them fall into 15
categories that share many common flows, such as shopping and
news. The other 113 (36.6%) apps fall into smaller categories which
have larger behavior variations, such as utilities.

AppFlow: Using Machine Learning to Synthesize Robust UI Tests ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

We conducted a deeper dive on two representative categories:
shopping apps1 and news apps. For shopping apps, we selected 40
top apps from Play Store. For news apps, we selected 20.We selected
them according to the number of downloads. More than half of
these apps have more than 10 million installations, and all of them
have more than 1 million installations. We chose more shopping
apps because they outnumber news apps in the Google Play store.
Apps which cannot be automatically tested with AppFlow, such
as the ones which show errors on emulators, and the ones which
require SMS authentication codes, are excluded.

We created test libraries for these two categories, and found that
we needed 25 canonical screens and 99 canonical widgets for the
shopping apps; and 12 canonical screens and 46 canonical widgets
for the news apps. These are the canonical widgets and screens
required by all the flows we created based on best practices we
presented in Section 4.2. We wrote 144 flows that do 111 unique
feature tests (the same feature may be implemented slightly dif-
ferently, requiring different flows; see §4.2) for the shopping apps;
and 60 flows that does 57 unique feature tests for news apps. On
average, each shopping app can reuse 61.3 (55.2%) tests and each
news app can reuse 30.2 (53.0%) tests. Primarily due to an issue in
UIAutomator that misses certain widgets when collecting UI layout
and other implementation issues, AppFlow was able to synthesize
slightly fewer tests, 61.0 tests for shopping and 28.6 for news. Fig-
ure 4 shows the histogram of the number of apps each flow can
test. The average is 15.8 for shopping apps and 10.1 for news apps.

 0

 10

 20

 30

 40

 0 30 60 90 120

Shopping

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

News

Figure 4: Number of apps each flow can test. The x-axis shows the

flows, and the y-axis show the number of apps.

7.2 RQ2: accuracy recognizing screens and

widgets

Our dataset consists of the tagged sample screens and widgets
collected from the 40 shopping and 20 news apps. For screens with
fixed content, we collected one sample per app. For screens with
variable content, such as product detail screens, we collected at
most five samples per app. For the 40 shopping apps, we collected
1620 screen samples which contain 9,497 canonical widgets and
55,771 non-canonical widgets. For news apps, we collected 396
screen samples which contain 1,850 canonical widgets and 9,496
non-canonical widgets.

We used well-established method leave-one-out cross-
validation [6] to evaluate accuracy. Specifically, when evaluating
AppFlow on one app, we trained the model on data collected from
1Coupon and cashback apps, such as Ebates and Flipp, just serve as proxies to other
businesses. Thus, they are not considered shopping apps.

all other apps in the same category and used this app’s data as the
test set. This method effectively tests how our system works in
real usage scenarios, where a test library is applied to test a new
app which was not used during the creation of the test library.
Screen recognition accuracy. Our results show that AppFlow
accurately recognized 1464 canonical screen samples for shopping
apps, achieving 90.2% accuracy; and 321 canonical screen samples
for news apps, achieving 81.5% accuracy. The accuracy is higher
for shopping apps partly due to their larger number of samples.
Averaging across all apps, the screen recognition accuracy is 87.3%.

We also evaluated the effect of feature selection in classifying
screens. Using only screen layouts, the accuracy is 85.6% for the
shopping apps and 75.9% for the news apps. With OCR results, the
accuracy reaches 88.4% and 80.5%.With Activity name, the accuracy
rises to 90.2% and 81.5%. The feature of screen layout is essential,
and other features are also important.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 402

A
cc

ur
ac

y
Number of apps

shopping apps
error

Figure 5: Accuracy vs. number of App. The x-axis shows the number

of sample apps, and the y-axis shows the accuracy in screens.

Figures 5 shows how accuracy of machine learning changes with
the number of sample shopping apps. We evaluated the accuracy
on randomly picked subsets of sample apps. It increases with the
number of apps, and reaches 80% for 20 apps. The result is similar
for news apps.
Widget recognition accuracy. AppFlow’s widget recognition
accuracy is 88.7% for shopping apps and 85.9% for news apps,
and 87.8% averaging over all evaluated apps. Similar to canoni-
cal screens, we can see that more samples result in higher widget
recognition accuracy.

Figure 6 evaluates feature selection in classifying widgets. We
order the features to best demonstrate their effectiveness. Using a
widget’s text alone can only achieve a low accuracy, while adding a
widget’s context and graphical features greatly improves the results.
Other features, including metadata and neighbour’s context, also
have small contributions to the result.

 0
 0.2
 0.4
 0.6
 0.8

 1

Shopping News

text only
add graphical

add OCR
add context

add neighbour
add metadata

Figure 6: Features used in classifying widgets. Different bars show

different combinations of features. The y-axis shows the accuracy

of classifying widgets.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Gang Hu, Linjie Zhu, and Junfeng Yang

7.3 RQ3: robustness

To evaluate whether AppFlow is robust against an app’s design
changes, we conducted a case study with two versions of BBC
News [22] whose home screens are shown in Figure 7. In the old
version, there is a “Search topics” entry in its menu, as shown in
the left image. Clicking on it navigates the app to the search screen,
which overlaps a search input box at the top of the main screen. In
the new version, the menu entry is removed. Instead, a search icon,
which looks like a magnifier, appears in the toolbar of the main
screen, as shown in the right image. Clicking on it still navigates
the app is to the search screen, which has a new design: instead of
overlapping a search input box, a separate screen is shown.

(a) Old version (b) New version

Figure 7: Old and new versions of BBC News.

Using its machine learning model, AppFlow recognized canon-
ical screens “main”, “menu”, and “search” and canonical widgets
including the menu’s search entry and the search icon. Both the
flow “navigate to search screen by clicking search entry on the
menu screen” and “navigate to search screen by clicking the search
icon on the main screen” are common, so they are present in the test
library. When we first run AppFlow on the old version and later
run it on the new version, AppFlow correctly reported that the
first flow turns not reusable, and the second flow becomes reusable.
All the flows starting from the search screen are not affected.

7.4 RQ4: absolute manual labor savings in

creating tests

Table 1: Customizations. Average number of lines of customization

required for each app.

Number of lines Shopping News

Screen matchers 4.0 1.9
Widget matchers 9.1 3.8
Configuration 9.5 2.5
Custom flows 15.0 7.4
Total 37.6 15.6

AppFlow has two major costs: writing a test library for an app
category and setting up testing for a specific app. Our own expe-
rience was that test library and its flows are simple and easy to

write. The average number of lines of each flow is 5.7 for shopping
apps, and 4.5 for news apps. Table 1 shows the number of lines of
customizations required to test each specific app. On average, an
app requires 30.3 lines of customizations. Only 15.9% of canonical
screens and 8.9% of canonical widgets require matchers. Compar-
ing with identifying all of them by fragile logic, AppFlow greatly
increases tests’ robustness.

We conducted a user study to quantify the cost saved by
AppFlow. The cost of using AppFlow includes both the cost of
creating a test library and applying it to a new app, so this user
study targets both. The study had 15 participants. 13 of which are
master students and the other two are Ph.D. students. None of them
have prior knowledge ofAppFlow. A state-of-the-art mobile testing
framework Calabash [91] is chosen for comparison. Calabash is one
of the most popular mobile testing frameworks, and its language
is easy to learn and similar to AppFlow’s. We randomly picked 10
test scenarios of shopping apps from 5 screens. The task is to write
test scripts for these scenarios. A typical shopping app, Wish [32],
is selected as sample.

Subjects are given descriptions of these scenarios and educated
with the usage of AppFlow and Calabash, then asked to perform
following tasks. For AppFlow, they are asked to 1) write flows 2)
capture screen samples from the sample app and tag canonical
widgets 3) create customizations for incorrect machine learning
results of these samples 4) install the customizations and flows,
run the flows, and add additional customizations if needed. These
tasks are evaluating both the scenario of writing test libraries and
the scenario of applying a test library to a new app. Specifically,
tasks 1) and 2) are evaluating the first scenario, while tasks 3) and
4) are evaluating the second. For Calabash, they are asked to write
test scripts and debug the scripts until they pass. Half of subjects
follow this order, and the other half write Calabash tests first. This
eliminates the effect of familiarity between systems.

We measured time spent in each task. On average, a user spends
78s in writing a flow. Tagging a screen takes 72s. Checking machine
learning results and creating customizations requires 22s for one
screen. Each reusable flow takes an average of 17s for developers to
inspect the test result and customize the widget or screen matchers
if needed. In comparison, writing and debugging a case in Calabash
requires 320s.

Based on this data, we estimated the cost to create a test library.
When training our model, we captured and tagged 1620 screen
samples. We also wrote 144 flows for the test library. Combining
with numbers above, we can calculate the test library for shopping
apps takes 72s × 1620 + 78s × 144 ≈ 35h31m to create.

We also estimated the cost of applying a test library to a new
app. On average, 61.3 flows can be reused on an app (cf. §7.1),
and 3.1 custom flows are required. The new app can have at most
25 canonical screens. Thus, applying a test library should require
22s × 25 + 78s × 3.1 + 17s × 61.3 ≈ 30m40s . These numbers match
our own experience. Notice that the last step in the setup stage
of applying a test library is not included, because it’s a mostly
automatic process and the developer’s time spent is insignificant
compared with other steps. In contrast, using Calabash requires
320 × 61.3 ≈ 5h29m for creating these test cases.

These estimations show that writing test cases using AppFlow
only requires 9.3% of the time when comparing with Calabash. Even

AppFlow: Using Machine Learning to Synthesize Robust UI Tests ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

if we include the time to create the test library, which should be
readily available from the market, AppFlow saves cost as long as a
test library is used on more than seven apps.

The cost of creating a test library depends on its complexity,
the familiarity of developers with AppFlow, and the number of
samples captured. Note that this is mostly one-time cost. The cost
of applying a test library on a new app mainly depends on the size
of it and the accuracy of machine learning models. This can further
be reduced with better machine learning methods.

7.5 RQ5: relative manual labor savings to

complete test automation

To understand AppFlow’s cost savings relative to the cost of creat-
ing a complete test automation suite, we obtained and analyzed the
manual test plan of Android app JackThreads [26], a representative
shopping app. This test plan is obtained directly from the develop-
ers, who were using this plan for manually testing. This typical test
plan of shopping app contains 351 tests. Among them, 262 (74.6%)
can be checked using test scripts. The test library of AppFlow cov-
ers 122 (46.6%) of those automatable ones. When a flow covers a
test, it checks all the automatically verifiable requirements, so it is
highly effective. By using AppFlow, 46.6% of the test cases can be
automatically created, providing large cost savings.

There are two reasons why tests are not covered by the test
library. First, test library only covers common tests, while some tests
are highly specific to this app. For example, a scenario requires the
images of categories on the “Categories” screen are shown as a grid,
with 3 rows containing 1, 2, and 1 images. This behavior is never
seen in other apps, so the test script for this scenario is not reusable
by nature. Second, some scenarios refer to uncommon widgets
or screens which are only present in this app. These widgets and
screens are not considered canonical, thus the flows corresponding
to them cannot enter the test library.

7.6 RQ6: effectiveness in bug finding

Although AppFlow is evaluated on apps released on the Google
Play Store, which should have been tested thoroughly, AppFlow
still found multiple bugs in different apps. We found 6 bugs in
shopping apps and 2 bugs in news apps. These bugs except one
are not crash bugs. The non-crash bugs cannot be detected with-
out knowing semantics, so they will be missed by tools such as
DynoDroid [52] or Stoat [82]. We show 2 interesting examples.

One bug appears in the Homedepot [25] app, a shopping app for
home improvements. After typing a search query into the search
input box and clicking search button on soft keyboard, the app
should show search results. Instead, search results appear for a
second, then quickly retract. This prevents user from searching
using an arbitrary keyword. On the other hand, if user click on
one of search suggestions instead of the search button, it works.
AppFlow detected this problem because the postcondition “screen
is search results screen” failed after testing the “do a search” flow.

Another bug appears in the Groupon [24] app, a shopping app
for group deals. In the search screen, if the user typed a query
incorrectly and wanted to clear it, a natural way is to click the
“clear search query” button, which usually looks like an “X”. In this
version, this does not work for the first time, but works if you click

again. A human tester may miss this bug because she may think
that she did not click it and tried again. AppFlow detected this bug
from the failed last step in the “clear query” flow, which checks for
absence of the search keyword.

8 LIMITATIONS AND FUTUREWORK

Fundamental limitations of AppFlow. AppFlow aims at
greatly reducing manual effort implementing automated UI testing.
We did not design AppFlow to replace manual testing completely:
it is well known that as of now automated UI testing cannot replace
manual UI testing completely because user experience is highly sub-
jective [71]. However, as the advocates of Continuous Integration
and DevOps articulate, early detection of bugs increases developer
productivity and software quality, thereby indirectly reducing man-
ual testing effort [57].

Along this vein, AppFlow aims at automatically testing com-
mon scenarios. Thus, the test library should only include common
flows, not every possible ones. Custom flows may be written to test
app-specific features. On the other hand, sufficient flows, either
custom or common, must be present for AppFlow to synthesize
executable tests. For instance, if there is no sign-in flow applicable,
AppFlow cannot reach flows that require a user to be signed in.
Our evaluation shows that only a small number of custom flows
are needed in §7.4.

Flows in a test library ofAppFlow should only refer to canonical
widgets, which may limit checks they can perform and reduce
their effectiveness.AppFlow focuses on testing core functionalities,
which as we have shown are largely shared across apps and can
be tested using only canonical widgets. As the test library evolves,
more canonical screens can be added, and more canonical widgets
can be defined, so tests can be more effective.

Machine learning misclassification. AppFlow leverages ma-
chine learning to recognize screens and widgets. Being statistical
in nature, machine learning occasionally misclassifies, requiring
developers to provide matchers. When an app updates, these match-
ers might need update as well. A flow may pass even if the feature
it tests is not correctly implemented. For example, suppose a flow
checks for a certain canonical widget, and a software update re-
moves that widget, the flow may still pass if machine learning in-
correctly recognized another widget as the canonical one. Machine
learning misclassifications only cause problems for the simplest
flows, since any flowwhich depends on interaction with that widget
would likely break, indicating the problem to developers. However,
this problem is not limited to AppFlow, because traditional test
scripts typically use fragile rules to match widgets, so they have
the same problem and these rules may silently fail, too. In contrast,
since AppFlow uses machine learning to recognize canonical UI el-
ements, as the accuracy of machine learning improves, this problem
would also be mitigated.

Supporting other platforms. AppFlow currently only sup-
ports the Android platform. It is straightforward to use its ideas
to test iOS apps. The ideas also apply to other UI testing environ-
ments, including web and desktop applications. Unlike mobile apps,
Web and desktop applications tend to have more complex UIs, so
recognizing UI elements might be harder. We leave these for future
work.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Gang Hu, Linjie Zhu, and Junfeng Yang

9 RELATEDWORK

Automated UI testing methods can be classified by whether they
need developers’ input. Random testing tools [52, 73, 87] and sys-
tematic tools [1, 3, 10, 36, 53, 54, 63, 82] explore apps’ state space and
detect generic problems without developers’ help. UnlikeAppFlow,
these tools can only check for basic problems like crashes, so they
cannot test if apps can complete scenarios.

Other methods need developers to specify expected behaviors.
Model based testing [35, 58, 84, 88] requires models or UI patterns,
which have to be created manually for each app. These models are
usually hard to write and maintain. PBGT [12] aims to reduce the
effort of modeling by reusing models, but a model created using it
is highly specific to an app and usually not reusable on other apps.

Concurrent to our work, Augusto [47] generates semantic UI
tests based on popular functionalities. It explores an application
with GUI ripping, matches the traversed windows with UI patterns,
verifies them according to semantic models defined using Alloy [41],
and generates semantic tests. We share the same intuition that apps
implement common tests (called application independent function-
alities, or AIFs, in Augusto) using common UI elements, and we
both generate semantic tests. There are also key differences. At the
technical level, unlike Augusto which uses rules to match widgets
and screens, AppFlow uses machine learning methods to recognize
them, which are more robust. AppFlow discovers reusable flows by
evaluating flows on an app and progressively constructing a state
transition graph, while Augusto dynamically extracts an applica-
tion’s GUI model, identifies AIFs inside it, and generates tests for
them. At the experimental level, we conducted studies of real-world
apps to quantify the amount of sharing across apps in the same
category. In addition, two posters [5, 72] discussed the potential of
transferring tests written for an app to another.

Script-based testing frameworks, such as Calabash [91],
Espresso [30], and others [17, 27, 44] require developers to write and
maintain test scripts. As we mentioned in section 1, these scripts
require considerable efforts to write and maintain. This prevents
companies from adopting such methods. Specifically, these scripts
use fragile rules to find UI elements, which makes them not robust
to UI changes and increases maintenance cost.

Test record and replay [21, 23, 27, 33, 37, 45, 70, 75] eases test
writing. Like other scripts, tests generated by it usually refer to
UI elements with absolute position [21, 28, 33, 37, 70] or fragile
rules [23, 75]. These scripts produce unstable results and may not
adapt to different screen resolutions [45]. Worse, these rules may
match widgets with properties not intended by developers, further
reducing robustness. AppFlow enables scripts to be robust and
reused by using machine learning to locate UI elements and using
its synthesis system to automatically discover an app’s behavior.
This greatly reduces the cost of adopting automatic testing.

Sikuli [8] uses computer vision to help developers and enables
them to create visual test scripts. It allows developers to use images
to define widgets and expected feedbacks, and then matches these
images with screen regions to find widgets and check assertions.
It can also record visual tests and replay them. Similar to Sikuli,
AppFlow also uses computer vision in recognizing UI elements,
but AppFlow also combined non-visual features from UI elements
which are essential for correct recognition. AppFlow’s model is

trained on samples from multiple apps, which enables AppFlow
to adapt to UI changes and recognize same UI element in different
apps. Unlike Sikuli which may only adapt to spatial changes in
UI elements, AppFlow can adapt to behavior changes which may
result in addition and removal of UI elements.

UI test repair [11, 34, 38, 61] aims at reducing test maintenance
cost, by automatically fixing UI tests after applications’ designs
change. They find alternative UI event sequences for UI tests under
repair to keep them runnable. Although these method are efficient,
they can only fix a portion of all the broken tests, while the remain-
ing ones still need manual work.

Some previous works create models or tests automatically. Unit-
Plus [80] and other works [46, 62, 78, 92, 93] used available tests to
assist developers in creating new tests for the same app, but tests
still need to be created first. GK-Tail+ [56] and other work [16]
create models or tests by mining traces. Polariz [55] uses a crowd
with no testing experience to provide test cases and mines common
patterns among multiple apps. AppFlow can be combined with
these works to free developers from writing test libraries. Previous
works [59, 60] generate test cases from well-defined operations
with automatic planning, while AppFlow generates tests by pro-
gressively discover an app’s behavior, which is necessary to handle
different app designs and synthesize only tests reusable in this app.

Machine learning algorithms has been widely used in software
engineering. Previous works [15, 48, 51, 65, 74, 77, 81, 83, 85, 89,
90] learn useful features from codes for code completion, clone
detection, bug finding, similar app detection, etc. Poster [72] uses
off-the-shelf model only to calculate text similarity between UI
elements. To the best of our knowledge, AppFlow is the first work
to apply machine learning in recognizing apps’ screens and widgets.

10 CONCLUSION

In this paper we presented AppFlow, a system for synthesizing
highly robust, highly reusable UI tests. AppFlow achieves this by
realizing that apps in the same category share much commonality.
It leverages machine learning to recognize canonical screens and
widgets for robustness and reusability, and provides a system for
synthesizing complete tests from modular tests of main functional-
ities of an app category.

We evaluated AppFlow on 60 popular apps in the shopping and
the news category, two case studies on the BBC news app and the
JackThreads shopping app, and a user-study of 15 subjects on the
Wish shopping app. Results show that AppFlow accurately recog-
nizes screens and widgets, synthesizes highly robust and reusable
tests, covers 46.6% of all automatable tests for Jackthreads with the
tests it synthesizes, and reduces the effort to test a new app by up
to 90%. It also found eight bugs in the evaluated apps, which were
publicly released and should have been thoroughly tested. Seven of
them are functionality bugs.

ACKNOWLEDGEMENTS

We thank Gail Kaiser, Jonathan Bell, and the anonymous reviewers
for their valuable comments. This work was funded in part by NSF
CNS-1564055, ONR N00014-16-1-2263, and ONR N00014-17-1-2788
grants.

AppFlow: Using Machine Learning to Synthesize Robust UI Tests ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES

[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. 2015. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE Software 32, 5 (2015), 53–59.

[2] androidrank.org. 2018. Android application ranklist - All applications. (2018).
https://www.androidrank.org/listcategory?category=&sort=4&price=all

[3] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In ACM SIGPLAN Notices, Vol. 48. ACM,
641–660.

[4] Nick Babich. 2018. 10 Do’s and Don’ts of Mobile UX Design. http://theblog.adobe.
com/10-dos-donts-mobile-ux-design/. (Feb. 2018).

[5] Farnaz Behrang and Alessandro Orso. 2018. Automated Test Migration for Mobile
Apps. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings (ICSE ’18). 384–385.

[6] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

[7] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. 1992. A training al-
gorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop
on Computational learning theory. ACM, 144–152.

[8] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. 2010. GUI Testing Using
Computer Vision. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). 1535–1544.

[9] David Chelimsky, Dave Astels, Bryan Helmkamp, Dan North, Zach Dennis, and
Aslak Hellesoy. 2010. The RSpec Book: Behaviour Driven Development with Rspec,
Cucumber, and Friends.

[10] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of
Android Apps with Minimal Restart and Approximate Learning. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages, and Applications (OOPSLA ’13). 623–640.

[11] Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso. 2011.
WATER: Web Application TEst Repair. In Proceedings of the First International
Workshop on End-to-End Test Script Engineering (ETSE ’11). 24–29.

[12] Pedro Costa, Ana CR Paiva, and Miguel Nabuco. 2014. Pattern based GUI testing
for mobile applications. InQuality of Information and Communications Technology
(QUATIC), 2014 9th International Conference on the. IEEE, 66–74.

[13] Wei Dai and JeffreyWalton. 2018. Crypto++ Library 5.6.5 | Free C++ Class Library
of Cryptographic Schemes. https://www.cryptopp.com/. (2018).

[14] Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human
detection. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2005. CVPR 2005., Vol. 1. IEEE, 886–893.

[15] Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun Qiu, and
Tao Xie. 2012. XIAO: Tuning Code Clones at Hands of Engineers in Practice. In
Proceedings of the 28th Annual Computer Security Applications Conference (ACSAC
’12). 369–378.

[16] Markus Ermuth and Michael Pradel. 2016. Monkey See, Monkey Do: Effective
Generation of GUI Tests with Inferred Macro Events. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA 2016). 82–93.

[17] JS Foundation. 2018. Appium: Mobile App Automation Made Awesome. http:
//appium.io/. (2018).

[18] OpenSSL Software Foundation. 2017. OpenSSL. https://www.openssl.org/. (2017).
[19] The Apache Software Foundation. 2017. ZooKeeper. https://zookeeper.apache.

org/. (2017).
[20] Jerry Gao, Xiaoying Bai, Wei-Tek Tsai, and Tadahiro Uehara. 2014. Mobile

Application Testing: A Tutorial. Computer 47, 2 (Feb. 2014), 46–55.
[21] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and ToddMillstein. 2013. RERAN:

Timing- and Touch-sensitive Record and Replay for Android. In Proceedings of
the 2013 International Conference on Software Engineering (ICSE ’13). 72–81.

[22] Google. 2018. BBC News. https://play.google.com/store/apps/details?id=bbc.
mobile.news.ww. (2018).

[23] Google. 2018. Espresso Test Recorder. https://developer.android.com/studio/test/
espresso-test-recorder.html. (June 2018).

[24] Google. 2018. Groupon - Shop Deals & Coupons. https://play.google.com/store/
apps/details?id=com.groupon. (2018).

[25] Google. 2018. The Home Depot. https://play.google.com/store/apps/details?id=
com.thehomedepot. (2018).

[26] Google. 2018. JackThreads: Men’s Shopping. https://play.google.com/store/apps/
details?id=com.jackthreads.android. (2018).

[27] Google. 2018. monkeyrunner. (June 2018). http://developer.android.com/tools/
help/monkeyrunner_concepts.html.

[28] Google. 2018. monkeyrunner. http://developer.android.com/tools/help/
MonkeyRunner.html. (June 2018).

[29] Google. 2018. Remote Debugging Webviews | Web | Google Developers.
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/
webviews. (July 2018).

[30] Google. 2018. Testing UI for a Single App. https://developer.android.com/training/
testing/ui-testing/espresso-testing.html. (May 2018).

[31] Google. 2018. Testing UI for Multiple Apps | Android Developers. https:
//developer.android.com/training/testing/ui-testing/uiautomator-testing.html.
(May 2018).

[32] Google. 2018. Wish - Shopping Made Fun. https://play.google.com/store/apps/
details?id=com.contextlogic.wish&hl=en. (2018).

[33] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi. 2015. Mosaic: cross-platform user-
interaction record and replay for the fragmented android ecosystem. In 2015
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS) (ISPASS ’15). 215–224.

[34] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. 2016. WATERFALL:
An Incremental Approach for Repairing Record-replay Tests of Web Applica-
tions. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2016). 751–762.

[35] Benedikt Hauptmann and Maximilian Junker. 2011. Utilizing user interface
models for automated instantiation and execution of system tests. In Proceedings
of the First International Workshop on End-to-End Test Script Engineering. ACM,
8–15.

[36] GangHu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, Effectively
Detecting Mobile App Bugs with AppDoctor. In Proceedings of the 2014 ACM
European Conference on Computer Systems (EUROSYS ’14).

[37] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile Yet Lightweight
Record-and-replay for Android. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2015). 349–366.

[38] Si Huang, Myra B. Cohen, and Atif M. Memon. 2010. Repairing GUI Test Suites Us-
ing a Genetic Algorithm. In Proceedings of the 2010 Third International Conference
on Software Testing, Verification and Validation (ICST ’10). 245–254.

[39] AmazonWeb Services Inc. 2018. What is DevOps? - AmazonWeb Services (AWS).
https://aws.amazon.com/devops/what-is-devops/. (2018).

[40] ThoughtWorks Inc. 2018. Continuous integration | ThoughtWorks. https://www.
thoughtworks.com/continuous-integration. (2018).

[41] Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM
Trans. Softw. Eng. Methodol. 11, 2 (April 2002), 256–290.

[42] Jouko Kaasila. 2015. Mobile Game Test Automation Using Real De-
vices. https://developers.google.com/google-test-automation-conference/2015/
presentations#Day1LightningTalk2. (Dec. 2015).

[43] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Op-
timization. In 3rd International Conference for Learning Representations (ICLR
2015).

[44] Edmund Lam, Peilun Zhang, and Bor-Yuh Evan Chang. [n. d.]. ChimpCheck:
Property-based Randomized Test Generation for Interactive Apps. (Onward!
2017).

[45] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,
Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and Replay for Android: Are
We There Yet in Industrial Cases?. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017). 854–859.

[46] Mathias Landhäusser and Walter F. Tichy. 2012. Automated Test-case Generation
by Cloning. In Proceedings of the 7th International Workshop on Automation of
Software Test (AST ’12). 83–88.

[47] Daniele Zuddas Leonardo Mariani, Mauro Pezzè. 2018. Augusto: Exploiting
Popular Functionalities for the Generation of Semantic GUI Tests with Oracles.
In Proceedings of the 40th International Conference on Software Engineering (ICSE
2018).

[48] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in Large Software Code.
In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE-13). 306–315.

[49] Cucumber Limited. 2018. Cucumber. https://cucumber.io/. (2018).

https://www.androidrank.org/listcategory?category=&sort=4&price=all
http://theblog.adobe.com/10-dos-donts-mobile-ux-design/
http://theblog.adobe.com/10-dos-donts-mobile-ux-design/
https://www.cryptopp.com/
http://appium.io/
http://appium.io/
https://www.openssl.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://play.google.com/store/apps/details?id=bbc.mobile.news.ww
https://play.google.com/store/apps/details?id=bbc.mobile.news.ww
https://developer.android.com/studio/test/espresso-test-recorder.html
https://developer.android.com/studio/test/espresso-test-recorder.html
https://play.google.com/store/apps/details?id=com.groupon
https://play.google.com/store/apps/details?id=com.groupon
https://play.google.com/store/apps/details?id=com.thehomedepot
https://play.google.com/store/apps/details?id=com.thehomedepot
https://play.google.com/store/apps/details?id=com.jackthreads.android
https://play.google.com/store/apps/details?id=com.jackthreads.android
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/MonkeyRunner.html
http://developer.android.com/tools/help/MonkeyRunner.html
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/webviews
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/webviews
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://play.google.com/store/apps/details?id=com.contextlogic.wish&hl=en
https://play.google.com/store/apps/details?id=com.contextlogic.wish&hl=en
https://aws.amazon.com/devops/what-is-devops/
https://www.thoughtworks.com/continuous-integration
https://www.thoughtworks.com/continuous-integration
https://developers.google.com/google-test-automation-conference/2015/presentations#Day1LightningTalk2
https://developers.google.com/google-test-automation-conference/2015/presentations#Day1LightningTalk2
https://cucumber.io/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Gang Hu, Linjie Zhu, and Junfeng Yang

[50] Cucumber Limited. 2018. Gherkin Syntax: Cucumber. https://docs.cucumber.io/
gherkin/. (2018).

[51] M. Linares-Vásquez, A. Holtzhauer, and D. Poshyvanyk. 2016. On automatically
detecting similar Android apps. In 2016 IEEE 24th International Conference on
Program Comprehension (ICPC). 1–10.

[52] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013). 224–234.

[53] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 599–609.

[54] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis (ISSTA 2016). 94–105.

[55] Ke Mao, Mark Harman, and Yue Jia. 2017. Crowd Intelligence Enhances Auto-
mated Mobile Testing. In Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2017). 16–26.

[56] Leonardo Mariani, Mauro Pezze, and Mauro Santoro. 2017. GK-Tail+: An Ef-
ficient Approach to Learn Precise Software Models. In Proceedings of the 39th
International Conference on Software Engineering (ICSE ’17).

[57] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale Continuous Testing. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP ’17). 233–242.

[58] Atif M Memon. 2007. An event-flow model of GUI-based applications for testing.
Software Testing Verification and Reliability 17, 3 (2007), 137–158.

[59] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. 1999. Using a Goal-driven
Approach to Generate Test Cases for GUIs. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99). 257–266.

[60] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. 2001. Hierarchical GUI
Test Case Generation Using Automated Planning. IEEE Trans. Softw. Eng. 27, 2
(2001), 144–155.

[61] Atif M. Memon and Mary Lou Soffa. 2003. Regression Testing of GUIs. In Proceed-
ings of the 9th European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE-11). 118–127.

[62] AminMilani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Leveraging Existing
Tests in Automated Test Generation for Web Applications. In Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineering (ASE
’14). 67–78.

[63] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
2016. Reducing Combinatorics in GUI Testing of Android Applications. In Pro-
ceedings of the 38th International Conference on Software Engineering (ICSE ’16).
559–570.

[64] Hacker News. 2015. https://news.ycombinator.com/item?id=9293445. (March
2015).

[65] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N. Nguyen, and Danny Dig. 2016. API Code Recommen-
dation Using Statistical Learning from Fine-grained Changes. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). 511–522.

[66] Diego Ongaro and et al. 2018. Raft Consensus Algorithm. https://raft.github.io/
#implementations. (July 2018).

[67] Diego Ongaro and John K Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm.. In USENIX Annual Technical Conference. 305–319.

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[69] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
myths and realities of test-suite evolution. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. ACM,
33.

[70] Z. Qin, Y. Tang, E. Novak, and Q. Li. 2016. MobiPlay: A Remote Execution
Based Record-and-Replay Tool for Mobile Applications. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE) (ICSE ’16). 571–582.

[71] Rudolf Ramler and Klaus Wolfmaier. 2006. Economic Perspectives in Test Au-
tomation: Balancing Automated and Manual Testing with Opportunity Cost. In
Proceedings of the 2006 International Workshop on Automation of Software Test
(AST ’06). 85–91.

[72] Andreas Rau, Jenny Hotzkow, and Andreas Zeller. 2018. Efficient GUI Test
Generation by Learning from Tests of Other Apps. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings (ICSE
’18). 370–371.

[73] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari Balakrishnan. 2014.
Automatic and scalable fault detection for mobile applications. In Proceedings
of the 12th annual international conference on Mobile systems, applications, and
services. ACM, 190–203.

[74] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In ACM SIGPLAN Notices, Vol. 49. ACM, 419–428.

[75] Renas. 2016. Robotium framework for test automation. http://www.robotium.org.
(Sept. 2016).

[76] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1988. Learning
representations by back-propagating errors. In Neurocomputing: Foundations of
Research. Chapter Learning Representations by Back-propagating Errors, 696–
699.

[77] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-code. In Pro-
ceedings of the 38th International Conference on Software Engineering (ICSE ’16).
1157–1168.

[78] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. 2016. A Survey on
Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9 (Sept
2016), 805–824.

[79] R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Proceedings of the
Ninth International Conference on Document Analysis and Recognition - Volume 02
(ICDAR ’07). 629–633.

[80] Yoonki Song, Suresh Thummalapenta, and Tao Xie. 2007. UnitPlus: Assisting
Developer Testing in Eclipse. In Proceedings of the 2007 OOPSLA Workshop on
Eclipse Technology eXchange (eclipse ’07). 26–30.

[81] Fang-Hsiang Su, J. Bell, G. Kaiser, and S. Sethumadhavan. 2016. Identifying
functionally similar code in complex codebases. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 1–10.

[82] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). 245–256.

[83] Jeffrey Svajlenko and Chanchal K. Roy. 2017. CloneWorks: A Fast and Flexible
Large-scale Near-miss Clone Detection Tool. In Proceedings of the 39th Interna-
tional Conference on Software Engineering Companion (ICSE-C ’17). 177–179.

[84] Tommi Takala, Mika Katara, and Julian Harty. 2011. Experiences of system-
level model-based GUI testing of an Android application. In Software Testing,
Verification and Validation (ICST), 2011 IEEE Fourth International Conference on.
IEEE, 377–386.

[85] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: Mining Anno-
tations from Comments and Code to Detect Interrupt Related Concurrency Bugs.
In Proceedings of the 33rd International Conference on Software Engineering (ICSE
’11). 11–20.

[86] OpenCV team. 2018. OpenCV library. http://opencv.org/. (2018).
[87] UI/Application Exerciser Monkey 2018. UI/Application Exerciser Monkey. (June

2018). http://developer.android.com/tools/help/monkey.html.
[88] Marlon Vieira, Johanne Leduc, Bill Hasling, Rajesh Subramanyan, and Juergen

Kazmeier. 2006. Automation of GUI testing using a model-driven approach. In
Proceedings of the 2006 international workshop on Automation of software test.
ACM, 9–14.

[89] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep Learning Code Fragments for Code Clone Detection. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE 2016). 87–98.

[90] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. 1981. The Effect of Modular-
ization and Comments on Program Comprehension. In Proceedings of the 5th
International Conference on Software Engineering (ICSE ’81). 215–223.

[91] Xamarin. 2018. Calaba.sh - Automate Acceptance Testing for iOS and Android
Apps. http://calaba.sh/. (2018).

[92] R. Yandrapally, G. Sridhara, and S. Sinha. 2015. Automated Modularization of
GUI Test Cases. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. 44–54.

[93] Tianyi Zhang and Miryung Kim. 2017. Automated Transplantation and Differ-
ential Testing for Clones. In Proceedings of the 39th International Conference on
Software Engineering (ICSE ’17). 665–676.

https://docs.cucumber.io/gherkin/
https://docs.cucumber.io/gherkin/
https://news.ycombinator.com/item?id=9293445
https://raft.github.io/#implementations
https://raft.github.io/#implementations
http://www.robotium.org
http://opencv.org/
http://developer.android.com/tools/help/monkey.html
http://calaba.sh/

	Abstract
	1 Introduction
	2 Overview
	2.1 Example
	2.2 Workflow

	3 Recognizing canonical screens and widgets
	3.1 Classifying screens
	3.2 Classifying widgets

	4 Writing test flows
	4.1 Language to write flows
	4.2 Creating a test library

	5 Applying a test library to a new app
	5.1 Configuration and customization
	5.2 Synthesizing full tests

	6 Implementation
	6.1 Capturing screen layout
	6.2 Post-processing of the captured layout

	7 Evaluation
	7.1 RQ1: amount of sharing across apps
	7.2 RQ2: accuracy recognizing screens and widgets
	7.3 RQ3: robustness
	7.4 RQ4: absolute manual labor savings in creating tests
	7.5 RQ5: relative manual labor savings to complete test automation
	7.6 RQ6: effectiveness in bug finding

	8 Limitations and future work
	9 Related Work
	10 Conclusion
	References

