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ABSTRACT
This paper presents EXE, an effective bug-finding tool that
automatically generates inputs that crash real code. Instead
of running code on manually or randomly constructed input,
EXE runs it on symbolic input initially allowed to be “any-
thing.” As checked code runs, EXE tracks the constraints
on each symbolic (i.e., input-derived) memory location. If a
statement uses a symbolic value, EXE does not run it, but
instead adds it as an input-constraint; all other statements
run as usual. If code conditionally checks a symbolic ex-
pression, EXE forks execution, constraining the expression
to be true on the true branch and false on the other. Be-
cause EXE reasons about all possible values on a path, it
has much more power than a traditional runtime tool: (1)
it can force execution down any feasible program path and
(2) at dangerous operations (e.g., a pointer dereference), it
detects if the current path constraints allow any value that
causes a bug. When a path terminates or hits a bug, EXE
automatically generates a test case by solving the current
path constraints to find concrete values using its own co-
designed constraint solver, STP. Because EXE’s constraints
have no approximations, feeding this concrete input to an
uninstrumented version of the checked code will cause it to
follow the same path and hit the same bug (assuming deter-
ministic code).

EXE works well on real code, finding bugs along with
inputs that trigger them in: the BSD and Linux packet filter
implementations, the udhcpd DHCP server, the pcre regular
expression library, and three Linux file systems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools, Symbolic execution

General Terms
Reliability, Languages

Keywords
Bug finding, test case generation, constraint solving, sym-
bolic execution, dynamic analysis, attack generation.
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1. INTRODUCTION
Attacker-exposed code is often a tangled mess of deeply-

nested conditionals, labyrinthine call chains, huge amounts
of code, and frequent, abusive use of casting and pointer
operations. For safety, this code must exhaustively vet in-
put received directly from potential attackers (such as sys-
tem call parameters, network packets, even data from USB
sticks). However, attempting to guard against all possible
attacks adds significant code complexity and requires aware-
ness of subtle issues such as arithmetic and buffer overflow
conditions, which the historical record unequivocally shows
programmers reason about poorly.

Currently, programmers check for such errors using a com-
bination of code review, manual and random testing, dy-
namic tools, and static analysis. While helpful, these tech-
niques have significant weaknesses. The code features de-
scribed above make manual inspection even more challeng-
ing than usual. The number of possibilities makes man-
ual testing far from exhaustive, and even less so when com-
pounded by programmer’s limited ability to reason about all
these possibilities. While random “fuzz” testing [35] often
finds interesting corner case errors, even a single equality
conditional can derail it: satisfying a 32-bit equality in a
branch condition requires correctly guessing one value out
of four billion possibilities. Correctly getting a sequence of
such conditions is hopeless. Dynamic tools require test cases
to drive them, and thus have the same coverage problems
as both random and manual testing. Finally, while static
analysis benefits from full path coverage, the fact that it
inspects rather than executes code means that it reasons
poorly about bugs that depend on accurate value informa-
tion (the exact value of an index or size of an object), point-
ers, and heap layout, among many others.

This paper describes EXE (“EXecution generated Exe-
cutions”), an unusual but effective bug-finding tool built to
deeply check real code. The main insight behind EXE is that
code can automatically generate its own (potentially highly
complex) test cases. Instead of running code on manually
or randomly constructed input, EXE runs it on symbolic in-
put that is initially allowed to be “anything.” As checked
code runs, if it tries to operate on symbolic (i.e., input-
derived) expressions, EXE replaces the operation with its
corresponding input-constraint; it runs all other operations
as usual. When code conditionally checks a symbolic ex-
pression, EXE forks execution, constraining the expression
to be true on the true branch and false on the other. When a
path terminates or hits a bug, EXE automatically generates
a test case that will run this path by solving the path’s con-



straints for concrete values using its co-designed constraint
solver, STP.

EXE amplifies the effect of running a single code path
since the use of STP lets it reason about all possible values
that the path could be run with, rather than a single set of
concrete values from an individual test case. For instance,
a dynamic memory checker such as Purify [30] only catches
an out-of-bounds array access if the index (or pointer) has
a specific concrete value that is out-of-bounds. In contrast,
EXE identifies this bug if there is any possible input value
on the given path that can cause an out-of-bounds access to
the array. Similarly, for an arithmetic expression that uses
symbolic data, EXE can solve the associated constraints for
values that cause an overflow or a division/modulo by zero.
Moreover, for an assert statement, EXE can reason about
all possible input values on the given path that may cause
the assert to fail. If the assert does not fail, then either (1)
no input on this path can cause it to fail, (2) EXE does not
have the full set of constraints, or (3) there is a bug in EXE.

The ability to automatically generate input to execute
paths has several nice features. First, EXE can test any
code path it wishes (and given enough time, exhaust all
of them), thereby getting coverage out of practical reach
from random or manual testing. Second, EXE generates
actual attacks. This ability lets it show that external forces
can exploit a bug, improving on static analysis, which often
cannot distinguish minor errors from showstoppers. Third,
the EXE user sees no false positives: re-running input on
an uninstrumented copy of the checked code either verifies
that it hits a bug or automatically discards it if not.

Careful co-design of EXE and STP has resulted in a sys-
tem with several novel features. First, STP primitives let
EXE build constraints for all C expressions with perfect ac-
curacy, down to a single bit. (The one exception is floating-
point, which STP does not handle.) EXE handles pointers,
unions, bit-fields, casts, and aggressive bit-operations such
as shifting, masking, and byte swapping. Because EXE is
dynamic (it runs the checked code) it has access to all the in-
formation that a dynamic analysis has, and a static analysis
typically does not. All non-symbolic (i.e., concrete) opera-
tions happen exactly as they would in uninstrumented code,
and produce exactly the same values: when these values ap-
pear in constraints they are correct, not approximations. In
our context, what this accuracy means is that if (1) EXE
has the full set of constraints for a given path, (2) STP can
produce a concrete solution from those constraints, and (3)
the path is deterministic, then rerunning the checked system
on these concrete values will force the program to follow the
same exact path to the error or termination that generated
this set of constraints.

In addition, STP provides the speed needed to make per-
fect accuracy useful. Aggressive customization makes STP
often 100 times faster than more traditional constraint solvers
while handling a broader class of examples. Crucially, STP
efficiently reasons about constraints that refer to memory us-
ing symbolic pointer expressions, which presents more chal-
lenges than one may expect. For example, given a con-
crete pointer a and a symbolic variable i with the constraint
0 ≤ i ≤ n, then the conditional expression if(a[i] == 10)

is essentially equivalent to a big disjunction: if(a[0] ==

10 || . . . || a[n] == 10). Similarly, an assignment a[i]

= 42 represents a potential assignment to any element in the
array between 0 and n.

The result of these features is that EXE finds bugs in real
code, and automatically generates concrete inputs to trigger
them. It generates evil packet filters that exploit buffer over-
runs in the very mature and audited Berkeley Packet Filter
(BPF) code as well as its Linux equivalent (§ 5.1). It gen-
erates packets that cause invalid memory reads and writes
in the udhcpd DHCP server (§ 5.2), and bad regular expres-
sions that compromise the pcre library (§ 5.3), previously
audited for security holes. In prior work, it generated raw
disk images that, when mounted by a Linux kernel, would
crash it or cause a buffer overflow [46].

Both EXE and STP are contributions of this paper, which
is organized as follows. We first give an overview of the entire
system (§ 2), then describe STP and its key optimizations
(§ 3), and do the same for EXE (§ 4). Finally, we present
results (§ 5), discuss related work (§ 6), and conclude (§ 7).

2. EXE OVERVIEW
This section gives an overview of EXE. We illustrate EXE’s

main features by walking the reader through the simple code
example in Figure 1. When EXE checks this code, it ex-
plores each of its three possible paths, and finds two errors:
an illegal memory write (line 12) and a division by zero (line
16). Figure 2 gives a partial transcript of a checking run.

To check their code with EXE, programmers only need
to mark which memory locations should be treated as hold-
ing symbolic data whose values are initially entirely uncon-
strained. These memory locations are typically the input to
the program. In the example, the call make symbolic(&i)

(line 4) marks the four bytes associated with the 32-bit vari-
able i as symbolic. They then compile their code using the
EXE compiler, exe-cc, which instruments it using the CIL
source-to-source translator [36]. This instrumented code is
then compiled with a normal compiler (e.g., gcc), linked
with the EXE runtime system to produce an executable (in
Figure 2, ./a.out), and run.

As the program runs, EXE executes each feasible path,
tracking all constraints. When a program path terminates,
EXE calls STP to solve the path’s constraints for concrete
values. A path terminates when (1) it calls exit(), (2) it
crashes, (3) an assertion fails, or (4) EXE detects an error.
Constraint solutions are literally the concrete bit values for
an input that will cause the given path to execute. When
generated in response to an error, they provide a concrete
attack that can be launched against the tested system.

The EXE compiler has three main jobs. First, it inserts
checks around every assignment, expression, and branch in
the tested program to determine if its operands are con-
crete or symbolic. An operand is defined to be concrete
if and only if all its constituent bits are concrete. If all
operands are concrete, the operation is executed just as in
the uninstrumented program. If any operand is symbolic,
the operation is not performed, but instead passed to the
EXE runtime system, which adds it as a constraint for the
current path. For the example’s expression p = (char *)a

+ i * 4 (line 8), EXE checks if the operands a and i on
the right hand side of the assignment are concrete. If so,
it executes the expression, assigning the result to p. How-
ever, since i is symbolic, EXE instead adds the constraint
that p equals (char∗)a + i ∗ 4. Note that because i can be
one of four values (0 ≤ i ≤ 3), p simultaneously refers to
four different locations a[0], a[1], a[2] and a[3]. In addition,
EXE treats memory as untyped bytes (§ 3.2) and thus does



1 : #include <assert.h>
2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.
20: if(t == 2)
21: assert(i == 1);
22: else

23: assert(i == 3);
24: }

Figure 1: A contrived, but complete C program (simple.c) that
generates five test cases when run under EXE, two of which
trigger errors (a memory overflow at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assume it runs on a 32-bit little-endian machine.

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibility. Consider the if-statement at line 5,
if(i >= 4). Since i is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path’s constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expression could have any possible value that could cause ei-
ther (1) a null or out-of-bounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path as-
serts that the condition does not occur and continues execu-
tion (to find more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE detects
if any input exists on that path that causes the error. Sim-
ilarly, if the check passes, then no input exists that causes
the error on that path — i.e., the path has been verified as
safe under all possible input values.

These checks find two errors in our example. First, the
symbolic index *p in the expression a[*p] (line 12) can cause
an out-of-bounds error because *p can equal 4: the pointer

p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] references an illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err) and a test case
(test2.out), and on the other that i 6= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err) and
a test case (test3.out) and exits. The other path adds the
constraint that i 6= 0 and continues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply because it tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion’s false path, hitting its error handling code. Fur-
ther, if STP cannot find any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercise for the more energetic
reader. Even a cursory attempt should show the trickiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
like to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)



add(i < 4) add(i >= 4)

8000

i >= 4

in bounds(a[*p])

a[i] == 0

i == 1i ==3

test1.out

add(out of bounds (a[*p]))

t == 2

kill path

add(in bounds (a[*p]))

add(a[i] == 0)add(a[i] != 0)

add(t == 2)add(t != 2)

Invalid InvalidValid Valid

kill path

2000

test2.out

0000

test3.out

1000

test5.out

3000

test4.out

“memory overflow!”

“division by zero!”

test4.out

Figure 3: Execution for the simple C program in Figure 1:
EXE generates five test cases, two of which are errors.

The paths followed by EXE are shown graphically in Fig-
ure 3. The branch points (both explicit and implicit) where
EXE forks a new process are represented by rhombuses, and
the test cases it generates by sequences of four bytes.

Mechanically, at each run of the instrumented code, EXE
creates a new directory and, for each path, creates two files:
one to hold the concrete bytes it generates, the other to hold
the values for each decision (1 to take the true branch, 0 to
take the false). The choice points enable easy replay of a
single path for debugging. The values can either be read
back by using a trivial driver (which EXE provides) or used
completely separately from EXE.

In our example, the three paths and two errors lead to
five pairs of files that hold (1) concrete byte values for i

(these files have the suffix .out) and (2) the branch deci-
sions for that path (suffix .forks). EXE creates a symbolic
link exe-last pointing to the most recent output directory.
The two errors are in .err files. If we look at the contents
of the file for the division bug (test3.out), it shows that
each byte of i is zero, which when concatenated in the right
order and treated as an unsigned 32-bit quantity equals 0,
as required. The branch decision states that we take the
false branch at line 5, followed by the (implicit) false branch
of the memory overflow check at line 9, and finally the (im-
plicit) true branch of the division check at line 16. Similarly,
the concrete values for the pointer error are byte 0 equals 2
and bytes 1, 2, 3 equal 0, which when concatenated yields
the 32-bit value 2 as needed.

3. KEY FEATURES OF STP
This section gives a high-level overview of STP’s key fea-

tures, including the support it provides to EXE for accu-
rately modeling memory. It then describes the optimizations
STP performs, and shows experimental numbers evaluating
their efficiency.

EXE’s constraint solver is, more precisely, a decision pro-
cedure for bitvectors and arrays. Decision procedures are
programs which determine the satisfiability of logical for-
mulas that can express constraints relevant to software and

hardware, and have been a mainstay of program verification
for several decades. In the past, these decision procedures
have been based on variations of Nelson and Oppen’s cooper-
ating decision procedures framework [37] for combining a col-
lection of specialized decision procedures into a more com-
prehensive decision procedure capable of handling a more
expressive logic than any of the specialized procedures can
do individually.

The Nelson-Oppen approach has two downsides. When-
ever a specialized decision procedure can infer that two ex-
pressions are equal, it must do so explicitly and commu-
nicate the equality to the other specialized decision proce-
dures, which can be expensive. Worse, the framework tends
to lead to a web of complex dependencies, which makes its
code difficult to understand, tune, or get right. These prob-
lems hampered CVCL [6, 7], a state-of-the-art decision pro-
cedure that we implemented previously.

Our CVCL travails motivated us to simplify the design of
STP by exploiting the extreme improvement in SAT solvers
over the last decade. STP forgoes Nelson-Oppen contor-
tions, and instead preprocesses the input through the ap-
plication of mathematical and logical identities, and then
eagerly translates constraints into a purely propositional log-
ical formula that it feeds to an off-the-shelf SAT solver (we
use MiniSAT [21]). As a result, the STP implementation
has four times less code than CVCL, yet often runs orders
of magnitude faster. STP is also more modular, because
its pieces work in isolation. Modularity and simplicity help
constraint solvers as they do everything else. In a sense,
STP can be viewed as the result of applying the systems
approach to constraint solving that has worked so well in
the context of SAT: start simple, measure bottlenecks on
real workloads, and tune to exactly these cases. STP was
recently judged the co-winner of the QF UFBV32 (32-bit
bitvector) division of the SMTLIB competition [1] held as a
satellite event of CAV 2006 [3].

Recently, several other decision procedures have been based
on eager translation to SAT, including Saturn[45], UCLID[11],
and Cogent[15]. Saturn is a static program analysis frame-
work that translates C operations to SAT. It does not di-
rectly deal with arrays, so it avoids many interesting prob-
lems and optimizations. UCLID implements features such as
arrays and arbitrary precision integer arithmetic, but does
not focus on bitvector operations. Cogent is perhaps the
most similar in architecture and purpose to STP. Judging
from the published descriptions of these systems, STP’s fo-
cus on optimizations for arrays is unique (and uniquely im-
portant for use with EXE). STP also has simplifications on
word-level operations that are not discussed in the descrip-
tion of Cogent. (At this time, it is difficult to do side-by-side
performance comparisons because of lack of common bench-
marks and input syntax; Saturn, UCLID and Cogent also
didn’t participate in the SMTLIB competition.)

3.1 STP primitives
System code often treats memory as untyped bytes, and

observes a single memory location in multiple ways. For
example, by casting signed variables to unsigned, or (in the
code we checked) treating an array of bytes as a network
packet, inode, packet filter, etc. through pointer casting.

As a result, STP also views memory as untyped bytes.
It provides only three data types: booleans, bitvectors, and
arrays of bitvectors. A bitvector is a fixed-length sequence



of bits. For example, 0010 is a constant, 4-bit bitvector
representing the constant 2. With the exception of floating-
point, which STP does not support, all C operators have
a corresponding STP operator that can be used to impose
constraints on bitvectors. STP implements all arithmetic
operations (even non-linear operations such as multiplica-
tion, division and modulo), bitwise boolean operations, re-
lational operations (less than, less than or equal, etc.), and
multiplexers, which provide an “if-then-else” construct that
is converted into a logical formula (similar to C’s ternary op-
erator). In addition, STP supports bit concatenation and bit
extraction, features EXE makes extensive use of in order to
translate untyped memory into properly-typed constraints.

STP implements its bitvector operations by translating
them to operations on individual bits. There are two ex-
pression types: terms, which have bitvector values, and for-
mulas, which have boolean values. If x and y are 32-bit
bitvector values, x + y is a term returning a 32-bit result,
and x + y < z is a formula. In the implementation, terms
are converted into vectors of boolean formulas consisting
entirely of single bit operations (AND, XOR, etc.). Each
operation is converted in a fairly obvious way: for exam-
ple, a 32-bit add is implemented as a ripple-carry adder.
Formulas are converted into DAGs of single bit operations,
where expressions with identical structure are represented
uniquely (expression nodes are looked up in a hash table
whenever they are created to see whether an identical node
already exists). Simple boolean optimizations are applied as
the nodes are created; for example, a call to create a node
for AND(x, FALSE) will just return the FALSE node. The
resulting boolean DAG is then converted to CNF by the
standard method of naming intermediate nodes with new
propositional variables.

3.2 Mapping C code to STP constraints
EXE represents each symbolic data block as an array of

8-bit bitvectors. The main advantage of using bitvectors is
that they, like the C memory blocks that they represent, are
essentially untyped. This property allows us to easily ex-
press constraints that refer to the same memory in different
ways; each read of memory generates constraints based on
the static type of the read (e.g., int, unsigned, etc.) but
these types do not persist.

EXE uses STP to solve constraints on input as follows.
First, it tracks what memory locations in the checked code
hold symbolic values. Second, it translates expressions to
bitvector based constraints. We discuss each step below.

Initially, there are no symbolic bytes in the checked code.
When the user marks a byte-range, b, as symbolic, EXE calls
into STP to create a corresponding, identically-sized array
bsym, and records in a table that b corresponds to bsym.
In Figure 1 (line 4), the call to make the 32-bit variable i

symbolic causes EXE to allocate a bitvector array isym with
four 8-bit elements and record that the concrete address of
i (&i) corresponds to it.

As the program executes, the table mapping concrete bytes
to STP bitvectors grows in exactly two cases:

1. v = e: where e is a symbolic expression (i.e., has at
least one symbolic operand). EXE builds the sym-
bolic expression esym representing e, and records that
&v maps to it. Note that EXE does not allocate a
new STP variable in this case but instead will substi-
tute esym for v in subsequent constraints. EXE re-

moves this mapping when v is overwritten with a con-
crete value or deallocated. In Figure 1 (line 8), EXE
records the fact that p maps to the symbolic expres-
sion (char∗)a+isym∗4 and substitutes any subsequent
use of p’s value with this expression. (Note that a is
replaced by the actual base address of array a in the
program.)

2. b[e]: where e is a symbolic expression and b is a con-
crete array. Since STP must reason about the set of
values that b[e] could reference, EXE imports b into
STP by allocating an identically-sized STP array bsym,
and initializing it to have the same (constant) contents
as b. It then records that b maps to bsym and removes
this mapping only when the array is deallocated.

In Figure 1 (line 12), the array expression a[*p] causes
EXE to allocate asym, a 16-element array of 8-bit bitvec-
tors, and assert that:

asym = {1, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0}

Each expression e used in a symbolic operation is con-
structed in the following way. For each read of size n of a
storage location l in e, EXE checks if l is concrete. If so, the
read of l is replaced by its concrete value (i.e., a constant).
Otherwise, EXE breaks down l into its corresponding bytes
b0, . . . , bn−1. It then builds a symbolic expression with the
same size as l by concatenating each byte’s (possibly sym-
bolic) value. For each byte bi it queries its data structures
to check if bi is symbolic. If not, it uses its current concrete
value (an 8-bit constant), otherwise it looks up and uses its
symbolic expression (bi)sym.

For example, in Figure 1 (line 8), EXE builds the sym-
bolic expression corresponding to (char*)a + i*4 as fol-
lows. EXE determines that the first read of a is concrete
and so replaces a with its concrete address (denoted a)
represented as a 32-bit bitvector constant. It then deter-
mines that i is symbolic, and thus breaks it down into
its four bytes, which are mapped to their corresponding
STP bitvector array elements isym[0], isym[1], isym[2], and
isym[3]. Then, the four bitvectors are concatenated to ob-
tain the expression isym[3] @ isym[2] @ isym[1] @ isym[0]
(where “@” denotes bitvector concatenation), which corre-
sponds to the four-byte read of i. Finally, the constant 4

is replaced by the corresponding 32-bit bitvector constant
0...00000100. The resulting expression is

a + (isym[3]@isym[2]@isym[1]@isym[0]) ∗ 0...00000100

A limitation of STP is that it does not support point-
ers directly. EXE emulates symbolic pointer expressions by
mapping them as an array reference at some offset. For each
pointer p in the checked code, EXE tracks the data object
to which p points by instrumenting all allocation and deal-
location sites as well as all pointer arithmetic expressions
(standard techniques developed by bounds-checking compil-
ers [41]). For example, in Figure 1 (line 4), EXE records that
p points to the data block a of size 16. Then, when EXE en-
counters a pointer dereference *p: (1) it looks up the block
b to which pointer p refers; (2) looks up the corresponding
STP array bsym associated with b; and (3) computes the
(possibly symbolic) offset of p from the base of the object it
points to (i.e., o = p - b). EXE can then use the symbolic
expression bsym[isym + osym] in symbolic constraints.



However, STP’s lack of pointer support means that when
EXE encounters a double-dereference **p of a symbolic pointer
p it concretizes the first dereference (*p), fixing it to one of
the possibly many storage locations it could refer to. (How-
ever, the result of **p can still be a symbolic expression.)
This situation has rarely shown up in practice (see § 4.3),
but we are working on removing it.

3.3 The key to speed: fast array constraints
The main bottleneck in STP when used in EXE is almost

always reasoning about arrays. This subsection discusses
STP’s key array optimizations.

STP is an implementation of logic, so it is a purely func-
tional language. The logic has one-dimensional arrays that
are indexed by bitvectors and contain bitvectors. The oper-
ations on arrays are read(A, i), which returns the value at
location A[i] where A is an array and i is an index expres-
sion of the correct type, and write(A, i, v), which returns a
new array with the same value as A at all indexes except i,
where it has the value v. Array reads and writes can appear
as subexpressions of an if-then-else construct, denoted by
ite(c, a, b), where c is the condition, a the then expression,
and b the else expression.

STP eliminates array expressions by translating them to
bitvector primitives (which it then translates to SAT). This
is accomplished through two main transformations. The
first, read-over-write, eliminates all write(A, i, v) expres-
sions: 1

read(write(A, i, v), j) ⇒ ite(i = j, v, read(A, j))

The second eliminates all read expressions via a trans-
formation mentioned in [11] that enforces the axiom that
if two indexes is and it are the same, then read(A, is) and
read(A, it) should return the same value. Mechanically, STP
first replaces each occurrence of a read read(A, ij) with a
new variable vj , and then for each two terms is, it ever used
to index into the same array A, it adds the array axiom:

is = it ⇒ vs = vt

For example, consider the formula:

(read(A, i1) = e1) ∧ (read(A, i2) = e2) ∧ (read(A, i3) = e3)

The transformed result would be:

(v1 = e1) ∧ (v2 = e2) ∧ (v3 = e3) ∧ (i1 = i2 ⇒ v1 = v2)∧

(i1 = i3 ⇒ v1 = v3) ∧ (i2 = i3 ⇒ v2 = v3)

Read elimination expands each formula by n(n − 1)/2
nodes, where n is the number of syntactically distinct in-
dex expressions. Unfortunately, this blowup is lethal for
arrays of a few thousand elements, which occur frequently
in EXE. Fortunately, while finessing this problem appears
hard in general, two optimizations we developed work well
on the constraints generated by EXE.

The array substitution optimization reduces the number
of array variables by substituting out all constraints of the
form read(A, c) = e, where c is a constant and e does not
contain another array read. Programs often index into ar-
rays using constant indexes, so this is a case that occurs of-
ten in practice (see § 4.3). The optimization has two passes.

1Note that a write makes sense only inside a read node. A
write node by itself has no effect, and can be ignored.

The first pass builds a substitution table with the left-hand-
side of each such equation (read(A, c)) as the key and the
right-hand-side (e) as the value, and then deletes the equa-
tion from the EXE query. The second pass over the expres-
sion replaces each occurrence of a key by the correspond-
ing table entry. Note that for soundness, if we encounter a
second equation whose left-hand-side is already in the ta-
ble, the second equation is not deleted and the table is not
changed. For our example, if we saw a subsequent equation
read(A, i1) = e4 we would leave it; the second pass of the
algorithm would rewrite it as e1 = e4.

The second optimization, array-based refinement, delays
the translation of array reads with non-constant indexes,
in effect introducing some laziness into STP’s handling of
arrays, in the hope of avoiding the O(n2) blowup from the
read elimination transformation. Its main trick is to solve a
less-expensive approximation of the formula, check the result
in the original formula, and try again with a more accurate
approximation if the result is incorrect.

Initially, all array read expressions are replaced by vari-
ables to yield an approximation of the original formula. The
resulting logical formula is under-constrained, since it ig-
nores the array axioms that require that array reads return
the same values when indexes are the same. If the resulting
under-constrained formula is not satisfiable, there is no solu-
tion for the original formula and STP returns unsatisfiable.

If, however, the SAT solver finds a solution to the under-
constrained formula, then that solution is not guaranteed to
be correct because it could violate one of the array axioms.
For example, suppose STP is given the formula (read(A, 0) =
0)∧(read(A, i) = 1). STP would first apply the substitution
optimization by deleting the constraint read(A, 0) = 0 from
the formula, and inserting the pair (read(A, 0), 0)) in the
substitution table. Then, it would replace read(A, i) by a
new variable vi, thus generating the under-constrained for-
mula vi = 1. Suppose STP finds the solution i = 1 and
vi = 1. STP then translates the solution to the variables of
the original formula to get (read(A, 0) = 0) ∧ (read(A, 1) =
1). This solution is satisfiable in the original formula as
well, so STP terminates since it has found a true satisfying
assignment.

However, suppose that STP finds the solution i = 0 and
vi = 1. Under this solution, the original formula evaluates
to (read(A, 0) = 0) ∧ (read(A, 0) = 1), which gives 0 = 1.
Hence, the solution to the under-constrained formula is not
a solution to the original formula. When this happens, it
must be because some array axiom was violated. STP adds
array axioms to the formula and solves again until it gets a
correct result. There are many policies for adding axioms,
any of which is correct and will terminate so long as all of
the axioms are added in the worst case. The current policy,
which seems to work well, is to find an array index term
for which at least one axiom is violated, then add all of the
axioms involving that term. In our example, it will add
the axiom i = 0 ⇒ read(A, i) = read(A, 0). Then, the pro-
cess of finding a satisfying assignment is repeated, by calling
the SAT solver on the new under-constrained formula. The
result must satisfy the newly added axioms, which the pre-
vious assignment violated, so the algorithm will not repeat
assignments and will not violate previously added axioms.
This process must terminate since there are only finitely
many array axioms.

In the worst case, the algorithm will add all n(n − 1)/2



Solver Total Time Timeouts
CVCL 60,366s 546
STP (no optimizations) 3,378s 36
STP (substitution) 1,216s 1
STP (refinement) 624s 1
STP (simplifications) 336s 0
STP (subst+refinement) 513s 1
STP (simplif+subst) 233s 0
STP (simplif+refinement) 220s 0
STP (all optimizations) 110s 0

Table 1: STP vs.CVCL. Queries time out (are aborted) after
60 seconds, which underestimates performance differences,
since they could run for much longer. Using this conservative
estimate, fully optimized STP is roughly 30X faster than the
unoptimized version and 550X faster than CVCL and has no
timeouts.

array axioms, at which time it is guaranteed to return a cor-
rect result because there are no more axioms it can violate.
However, in practice, this loop will often terminate quickly
because the formula can be proved unsatisfiable without all
the array axioms, or because it luckily finds a true satisfying
assignment without adding all the axioms.

Besides the above mentioned optimizations, STP imple-
ments several boolean and mathematical identities. These
identities, or simplifications, also dramatically reduce the
size of the input, before it is fed to the SAT solver. Some
example identities include associativity and commutativity
laws for addition and multiplication, distribution of mul-
tiplication by constants over addition, and combining like
terms (e.g., x + (−x) is simplified to 0).

All these optimizations have made it possible to deal with
fairly large constant arrays when there are relatively few
non-constant index expressions, which is sufficient to permit
considerable progress in using EXE on real examples.

3.4 Measured performance
Table 1 gives experimental measurements for these op-

timizations. The experiment consists of running different
versions of STP and our old solver, CVCL, over the perfor-
mance regression suite we have built up of 8495 test cases
taken from our test programs. The experiments for all solvers
were run on a Pentium 4 machine at 3.2 GHz, with 2 GB
of RAM and 512 KB of cache. The table gives the times
taken by CVCL, baseline STP with no optimizations, STP
with a subset of all optimizations enabled, and STP with
full optimizations, i.e. substitution, array-based refinement,
and simplifications. The third column shows the number of
examples on which each solver timed out. The timeout was
set at 60 seconds, and is added as penalty to the time taken
by the solver (but in fact causes us to grossly underestimate
the time taken by CVCL and earlier versions of STP since
they could run for many minutes or even hours on some of
the examples).

The baseline STP is nearly 20 times faster than CVCL,
and more interestingly times out in far fewer cases. The fully
optimized version of STP is about 30 times faster than the
unoptimized version, almost 550 times faster than CVCL,
and there are no timeouts.

4. EXE OPTIMIZATIONS
This section presents optimizations EXE uses and mea-

sures their effectiveness on five benchmarks. We first present
two optimizations: caching constraints to avoid calling STP
(§ 4.1), and removing irrelevant constraints from the queries
EXE sends to STP (§ 4.2). We then measure the cumulative
improvement of these optimizations, and provide an empiri-
cal feel for what symbolic execution looks like, including the
time spent in various parts of EXE, and a description of the
symbolic slice through the code (§ 4.3). Finally, we discuss
and measure EXE’s search heuristics (§ 4.4).

4.1 Constraint caching
EXE caches the result of satisfiability queries and con-

straint solutions in order to avoid calling STP when possible.
This cache is managed by a server process so that multiple
EXE processes (created by forking at each conditional) can
coordinate. Before invoking STP on a query q, an EXE pro-
cess prints q as a string, computes an MD4 cryptographic
hash of this string, and sends this hash to the server. The
server checks its persistent cache (a file) and if it gets a hit,
returns the result. If not, the EXE process does a local STP
query and then sends the (hash, result) pair back to the
server. Constraint solutions are cached in a similar way.

4.2 Constraint independence optimization
This section describes one of EXE’s most important opti-

mizations, constraint independence, which exploits the fact
that we can often divide the set of constraints EXE tracks
into multiple independent subsets of constraints. Two con-
straints are considered to be independent if they have dis-
joint sets of operands (i.e. disjoint sets of array reads).

For example, assume EXE tracks the following set of three
constraints:

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4]) ∧ (A[7] = A[8])
We can divide this set into two subsets of independent con-
straints

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4])

and
A[7] = A[8]

and solve them separately.
Breaking a constraint into multiple independent subsets

has two benefits. First, EXE can discard irrelevant con-
straints when it asks STP if a constraint c is satisfiable, with
a corresponding decrease in cost. Instead of sending all the
constraints collected so far to STP, EXE only sends the sub-
set of constraints sc to which c belongs, ignoring all other
constraints. The worst case, when no irrelevant constraints
are found, costs no more than the original query (omitting
the small cost of computing the independent subsets).

Second, this optimization yields additional cache hits, since
a given a subset of independent constraints may have ap-
peared individually in previous runs. Conversely, including
all constraints vastly increases the chance that at least one
is different and so gets no cache hit. To illustrate, assume
we have the following code fragment, which operates on two
unconstrained symbolic arrays A and B:

if (A[i] > A[i+1]) {
...

}
if (B[j] + B[j-1] == B[j+1]) {

...
}



There are four paths through this code; EXE will thus cre-
ate four processes. After forking and following each branch,
EXE checks if the path is satisfiable. Without the constraint
independence optimization, each of these four satisfiability
queries will differ and miss in the cache. However, if the
optimization is applied, some queries repeat. For example,
when the second branch is reached, two of the four queries
will be

(A[i] > A[i + 1]) ∧ (B[j] + B[j − 1] = B[j + 1])

and

(A[i] ≤ A[i + 1]) ∧ (B[j] + B[j − 1] = B[j + 1])

which both devolve to

B[j] + B[j − 1] = B[j + 1]

since, in each query, the first constraint is unrelated to the
last one, and its satisfiability was already determined when
EXE reached the first branch.

Real programs often have many independent branches,
which introduce many irrelevant constraints. These add up
quickly. For example, assuming n consecutive independent
branches (the example above is such an instance for n =
2), EXE will issue 2(2n − 1) queries to STP (for each if

statement, we issue two queries to check if both branches
are possible). The optimization exponentially reduces this
query count to 2n (two queries the first time we see each
branch), since the rest of the time we find the result in the
cache.

We compute the constraint independence subsets by con-
structing a graph G, whose nodes are the set of all array
reads used in the given set of constraints. For the first ex-
ample in the section, the set of nodes is {A[1], A[2], A[3],
A[4], A[7], A[8]}. We add an edge between nodes ni and nj

of G if and only if there exists a constraint c that contains
both as operands. Once the graph G is constructed, we ap-
ply a standard algorithm to determine G’s connected com-
ponents. Finally, for each connected component, we create a
corresponding independent subset of constraints by adding
all the constraints that contain at least one of the nodes in
that connected component. At the implementation level, we
don’t construct the graph G explicitly. Instead, we keep the
nodes of G in a union-find structure [17], which we update
each time we add a new constraint.

There are two additional issues that our algorithm has
to take into account. First, an array read may contain a
symbolic index. In this case, we are conservative, and merge
all the elements of that array into a single subset.

The second issue relates to array writes. Since EXE and
STP arrays are functional, each array read explicitly con-
tains an ordered list of all array writes performed so far.
Each array write is remembered as a pair consisting of the
location that was updated, and the expression that was writ-
ten to that location. When processing this list of array
writes, we are again conservative, and merge all the expres-
sions written into the array (the right hand side of each array
write) into the subset of the original read. In addition, if any
array write is performed at a symbolic index, we merge all
the elements of the array into a single subset.

4.3 Experiments
We evaluate our optimizations on five benchmarks. These

benchmarks consist of the three applications discussed in

bpf expat pcre tcpdump udhcpd
Test cases 7333 360 866 2140 328
None 30.6 28.4 31.3 28.2 30.4
Caching 32.6 30.8 34.4 27.0 36.4
Independence 17.8 25.2 10.0 24.9 30.5
All 10.3 26.3 7.5 23.6 32.1
STP cost 6.9 24.6 2.8 22.4 23.1

Table 2: Optimization measurements, times in minutes.
STP cost gives time spent in STP when all optimizations
are enabled.Tables 3, 4, and 5 explore the fully optimized
run (All) in more detail.

Section 5, bpf, pcre, and udhcpd, to which we added two
more: expat, an XML parser library, and tcpdump, a tool for
printing out the headers of packets on a network interface
that match a boolean expression.

We run each benchmark under four versions of EXE: no
optimization, caching only, independence only, and finally
with both optimizations turned on. As a baseline, we run
each benchmark for roughly 30 minutes using the unopti-
mized version of EXE, and record the number of test cases
n that this run generates. We then run the other versions
until they generate n test cases. All experiments are per-
formed on a dual-core 3.2 GHz Intel Pentium D machine
with 2 GB of RAM, and 2048 KB of cache.

Table 2 gives the number of test cases generated, as well
as the runtime for each optimization combination. Full op-
timization (“All”) significantly sped up two of five bench-
marks: bpf by roughly a factor of three, and pcre by more
than a factor of four. Both tcpdump and expat had marginal
improvements (20% and 7% faster respectively), but udhcpd
slows down by 5.6%. As the last row shows, with the ex-
ception of pcre, the time spent in STP represents by far the
dominant cost of EXE checking.

Table 3 breaks down the full optimization run. As its first
three rows show, caching without independence is not a win
— its overhead (see Table 2) actually increases runtime for
most applications, varying between 6.5% for bpf and 19.7%
for pcre. With independence, the hit rate jumps sharply for
both bpf and pcre (and, to a lesser extent, tcpdump), due
to its removal of irrelevant constraints. The other two appli-
cations show no benefit from these optimizations — udhcpd

has no independent constraints and expat has no cache hits.
The average number of independent subsets (row 3) shows
how interdependent our constraints are, varying from over
2,800 subsets for expat to only 1 (i.e., no independent con-
straints) for udhcpd.

The next three rows (4–6) measure the overhead spent in
various parts of EXE. Reassuringly, the cost of independence
is near zero. On the other hand, cache lookup overhead (row
5) is significant, due almost entirely to our naive implemen-
tation. On each cache lookup (§ 4.1), EXE prints the query
as a string and then hashes it. As the table shows (row 6) the
cost of printing the string dominates all other cache lookup
overheads. Obviously, we plan to eliminate this inefficiency
in the next version of the system.

Table 4 breaks down the queries sent to STP. The first
three rows give the total number of: queries, constraints,
and nodes. These last two numbers give a feel for query
complexity: bpf is the easiest case (a small number of con-
straints, with roughly five nodes per constraint), whereas
udhcpd is the worst with 688 nodes per constraint.

The next two rows give the number of non-linear con-



bpf expat pcre tcpdump udhcpd

1 Cache hit rate 92.8% 0% 83% 35% 9.1%
2 Hit rate w/o independence 0.1% 0% 17.5% 12.6% 9.1%
3 Avg. # of independent subsets 19 2,824 122 13 1
4 Independence overhead 0m 0m .1m 0m 0m
5 Cache lookup cost 1.1m 1.2m 1.9m 0.4m 2.1m
6 % of lookup spent printing 72% 96% 84% 90% 95%

Table 3: Optimization breakdown

bpf expat pcre tcpdump udhcpd
1 # of queries (cache misses) 162,959 5,427 188,481 22,242 3,572
2 Total # of constraints 402,496 9,649,411 3,478,517 1,268,316 626, 795
3 Total # of nodes 2,048,704 32,711,503 17,844,792 20,673,550 431,705,056
4 # non-linear constraints 3,758 10,679 95,623 343,312 508,096
5 % constraints non-linear 0.9% 0.1% 2.8% 27.1% 81.1%
6 Reads from symbolic array 405,501 11,788,264 3,757,238 1,619,843 3,855, 965
7 % sym. array reads with sym. index 0.3% 0.3% 2.9% 7.8% 62.9%
8 Writes to symbolic array 62 2,310,903 706,214 0 0
9 % sym. array writes with sym. index 100% 0% 1.8% 0% 0%

Table 4: Dynamic counts from queries sent to STP.

straints (row 4) and their percentage (row 5) of the total
constraints (from row 2). Non-linear constraints contain one
or more non-linear operators — multiplication, division, or
modulo — whose right hand side is not a constant power of
two. In general, the more non-linear operations, the slower
constraint solving gets, as the SAT circuits that STP con-
structs for these operations are expensive. For our bench-
marks, only udhcpd has a large number of non-linear con-
straints, which translates into a large amount of time spent
in STP.

The final four rows (6–9) give the number of reads and
writes from and to symbolic data blocks, and the percentage
of these that use symbolic indexes. While there are many
array operations, with the exception of udhcpd, very few
use symbolic indexes, which explains why the STP array
substitution optimization (§ 3.3) was such a big win.

Table 5 gives more dynamic execution counts from the full
optimization runs. The first row gives the number of bytes
initially marked as symbolic; this represents the size of the
symbolic filter and data in bpf, the size of the XML expres-
sion to be parsed in expat, the packet length in udhcpd and
tcpdump, and the regular expression pattern length in pcre.

The next row (row 2) gives the total number of dynamic
statements executed (assignments, branches, parameter and
return value passing) across all paths executed by EXE,
while the next (row 3) gives the percentage that are sym-
bolic. For our benchmarks, this percentage varies from only
8.46% for expat to 41.70% for tcpdump. This numbers are
encouraging and validate our approach of mixing concrete
and symbolic execution, which lets us ignore a large amount
of code in the programs we check.

The next three rows (4–6) look at symbolic branches, in-
cluding the implicit branches EXE does for checking. Row
4 gives the total number of explicit symbolic branch points
and row 5 the percentage of these branch points that had
both branches feasible. (EXE pruned the other branches
because the path’s constraints were not satisfiable.) On our
benchmarks, EXE was able to prune more than 80% of the
branches it encountered, with the exception of udhcpd where
it pruned (only) 47.18% of the branches. These results are

reassuring for scalability – while the potential number of
paths in the search space grows exponentially with the num-
ber of symbolic branches, the actual growth is much smaller:
real code appears to have many dependencies between pro-
gram points.

Row 6 measures the average number of symbolic branches
(both implicit and explicit) per path. This number is large:
ranging from around 38 up to 200 branches, which means
that random guessing would have a hard time satisfying all
the branches to get to the end of one path, much less the
hundreds or thousands that EXE can systematically explore.

Row 7 gives the total number of times EXE performed a
symbolic check. (In addition to these checks, EXE performs
many more similar concrete checks.) Row 8 shows how many
times EXE had to concretize a pointer because it encoun-
tered a symbolic dereference of a symbolic pointer (§ 3.2).
This situation occurs in only one of our five benchmarks,
tcpdump. Finally, row 9 shows that no uninstrumented func-
tions were called with symbolic data as arguments.

4.4 Search heuristics
When EXE forks execution, it must pick which branch to

follow first. By default, EXE uses depth-first search (DFS),
picking randomly between the two branches. DFS keeps the
current number of processes small (linear in the depth of
the process chain), but works poorly in some cases. For
example, if EXE encounters a loop with a symbolic variable
as a bound, DFS can get “stuck” since it attempts to execute
the loop as many times as possible, thus potentially taking
a very long time to exit the loop.

In order to overcome this problem, we use search heuristics
to drive the execution along “interesting” execution paths
(e.g., that cover unexplored statements). After a fork call,
each forked EXE process calls into a search server with a
description of its current state (e.g., its current file, line
number, and backtrace) and blocks until the server replies.
The search server examines all blocked processes and picks
the best one in terms of some heuristic that is more global
than simply picking a random branch to follow. Our current
heuristic uses a mixture of best-first and depth-first search.
The search server picks the process blocked at the line of
code run the fewest number of times and then runs this



bpf expat pcre tcpdump udhcpd
1 Symbolic input size (bytes) 96 10 16 84 548
2 Total statements run (not unique) 298,195 41,345 423,182 40,097 15,258
3 % of statements symbolic 29.2% 8.5% 34.7% 41.7% 23.6% %
4 Explicit symbolic branch points 77,024 1,969 98,138 11,425 888
5 % with both branches feasible 11.3% 19.3% 0.9% 19.4% 52.8%
6 Avg. # symbolic branches per path 38.33 43.44 55.72 103.37 200.14
7 Symbolic checks 1,490 904 4,451 552 1,535
8 Pointer concretizations 0 0 0 73 0
9 Symbolic args. to uninstr. calls 0 0 0 0 0

Table 5: Dynamic counts from EXE execution runs.

Figure 4: Best-first search vs. depth-first search.

process (and its children) in a DFS manner for a while. It
then picks another best-first candidate and iterates. This
is just one of many possible heuristics, and the server is
structured so that new heuristics are easy to plug in.

We experimentally evaluate our best-first search (BFS)
heuristic in the context of one of our benchmarks, the Berke-
ley Packet Filter (BPF) (described in more detail in § 5.1).
We start two separate executions of EXE, one using DFS
and the other using BFS. We let both EXE executions run
until they achieved full basic block coverage. Figure 4 com-
pares BFS to DFS in terms of basic block coverage. (For
visual clarity the graph only shows block coverage for the
first 1500 test cases, as only a few blocks are missing from
the coverage by these test cases.) BFS converges to full
coverage more than twice as fast as DFS: 7,956 test cases
versus 18,667. More precisely, EXE gets 91.74% block cov-
erage, since there are several basic blocks in BPF that EXE
cannot reach, such as dead code (e.g. the failure branch
of asserts), or branches that do not depend on the input
marked as symbolic.

Figure 5 then compares EXE against random testing also
in terms of basic block coverage. We generate one million
random test cases of the same size as those generated by
EXE, and run these random test cases through a lightly-
instrumented version of BPF that records basic block cov-
erage. These test cases only cover 56.96% of the blocks in
BPF; EXE achieves the same coverage in only 75 tests when
using BFS. Even more strikingly, these million random test
cases yield only 131 unique paths through the code, while
each of EXE’s test cases represents a unique path.

Figure 5: EXE with best-first search vs. random testing.

5. USING EXE TO FIND BUGS
This section presents three case studies that use EXE to

find bugs in: (1) two packet filter implementations, (2) the
udhcpd DHCP server, and (3) the pcre Perl compatible reg-
ular expressions library. We also summarize a previous effort
of applying EXE to file system code.

5.1 Packet filters
Many operating systems allow programs to specify packet

filters which describe the network packets they want to re-
ceive. Most packet filter implementations are variants of
the Berkeley Packet Filter (BPF) system. BPF filters are
written in a pseudo-assembly language, downloaded into the
kernel, validated by the BPF system, and then applied to
incoming packets. We used EXE to check the packet fil-
ter in both FreeBSD and Linux. FreeBSD uses BPF, while
Linux uses a heavily modified version of it. EXE found two
buffer overflows in the former and four errors in the latter.
BPF is one particularly hard test of EXE — small, heavily-
inspected and mature code, written by programmers known
for their skill.

A filter is an array of instructions specifying an opcode
(code), a possible memory offset to read or write (k), and
several other fields. The BPF interpreter iterates over this
filter, executing each opcode’s corresponding action. This
loop is the main source of vulnerabilities but is hard to test
exhaustively (e.g., hitting all opcodes even once using ran-
dom testing takes a long time).

We used a two-part checking process. First, we marked a
fixed-sized array of filter instructions as symbolic and passed



s[0].code = BPF STX; // also: (BPF LDX|BPF MEM)
s[0].k = 0xfffffff0UL;
s[1].code = BPF RET;

Figure 6: A BPF filter of death

// Code extracted from bpf validate. Rejects
// filter if opcode’s memory offset is more than
// BPF MEMWORDS.
// Forgets to check opcodes LDX and STX!
if((BPF CLASS(p−>code) == BPF ST
| | (BPF CLASS(p−>code) == BPF LD &&

(p−>code & 0xe0) == BPF MEM))
&& p−>k >= BPF MEMWORDS )
return 0;

. . .
// Code extracted from bpf filter: pc points to current
// instruction. Both cases can overflow mem[pc->k].

case BPF LDX|BPF MEM:
X = mem[pc−>k]; continue;

. . .
case BPF STX:

mem[pc−>k] = X; continue;

Figure 7: The BPF code Figure 6’s filter exploits.

it to the packet filter validation routine bpf validate, which
returns 1 if it considers a filter legal. For each valid filter,
we then mark a fixed-size byte array (representing a packet)
as symbolic and run the filter interpreter bpf filter on the
symbolic filter with the symbolic packet, thus checking the
filter against all possible data packets of that length.

This checking illustrates one of EXE’s interesting features:
it turns interpreters into generators of the programs they can
interpret. In our example, running the BPF interpreter on
a symbolic filter causes it to generate all possible filters of
that length, since each branch of the interpreter will fork
execution, adding a constraint corresponding to the opcode
it checked.

Figure 6 shows one of the two filters EXE found that cause
buffer overflows in FreeBSD’s BPF. The bug can occur when
the opcode of a BPF instruction is either BPF STX or BPF LDX

| BPF MEM. As shown in Figure 7, bpf validate forgets to
bounds check the memory offset given by these instructions,
as it does for instructions with opcodes BPF ST or BPF LD |

BPF MEM. This missing check means these instructions can
write or read arbitrary offsets off the fixed-sized buffer mem,
thus crashing the kernel or allowing a trivial exploit.

Linux had a trickier example. EXE found three filters
that can crash the kernel because of an arithmetic over-
flow in a bounds check, shown in Figure 8. As with BPF,

// other filters that cause this error:
// code = (BPF LD|BPF B|BPF IND)
// code = (BPF LD|BPF H|BPF IND)
s[0].code = BPF LD|BPF B|BPF ABS;
s[0].k = 0x7fffffffUL;
s[1].code = BPF RET;
s[1].k = 0xfffffff0UL;

Figure 8: A Linux filter of death

static inline void *
skb header pointer(struct sk buff *skb,

int offset, int len, void *buffer) {

int hlen = skb headlen(skb);

// Memory overflow. offset=s[0].k; a filter
// can make this value very large, causing
// offset + len to overflow, trivially passing
// the bounds check.
if (offset + len <= hlen)

return skb−>data + offset;

Figure 9: The Linux code Figure 8’s filter exploits.

the offset field (k) causes the problem. Here, the code to
interpret BPF LD instructions eventually calls the function
skb header pointer, which computes an offset into a given
packet’s data and returns it. This routine is passed s[0].k

as the offset parameter, and values 4 or 2 as the len pa-
rameter. It extracts the size of the current message header
into hlen and checks that offset + len ≤ hlen. How-
ever, the filter can cause offset to be very large, which
means the signed addition offset + len will overflow to a
small value, passing the check, but then causing that very
large offset value to be added to the message data pointer.
This allows attackers to easily crash the machine. This error
would be hard to find with random testing. Its occurrence
in highly-visible, widely-used code, demonstrates that such
tricky cases can empirically withstand repeated manual in-
spection.

5.2 A complete server: udhcpd
We also checked udhcpd-0.9.8, a clean, well-tested user-

level DHCP server. We marked its input packet as symbolic,
and then modified its network read call to return a packet
of at most 548 bytes. After running udhcpd long enough to
generate 596 test cases, EXE detected five different mem-
ory errors: four-byte read overflows at lines 213 and 214 in
dhcpd.c and three similar errors at lines 79, 94, and 99 in
options.c. These errors were not found when we tested the
code using random testing. EXE generated packets to trig-
ger all of these errors, one of which is shown in Figure 10.
We confirmed these errors by rerunning the concrete error
packets on an uninstrumented version of udhcpd while mon-
itoring it with valgrind, a tool that dynamically checks for
some types of memory corruption and storage leaks [38].

5.3 Perl Compatible Regular Expressions
The pcre library [39] is used by several popular open-

source projects, including Apache, PHP, and Postfix. For
speed, pcre provides a routine pcre compile, which com-
piles a pattern string into a regular expression for later use.
This routine has been the target of security advisories in the
past [40].

We checked this routine by marking a null-terminated pat-
tern string as symbolic and then passing it to pcre compile.
EXE quickly found a class of issues with this routine in a
recent version of pcre (6.6). The function iterates over the
provided pattern twice, first to do basic error checking and
to estimate how much memory to allocate for the compiled
pattern, and second to do actual compilation. The bugs



Offset Hex value
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010 0000 0000 0000 0000 0000 0000 5A00 0000
.... ....
00F0 2100 00F9 0000 0000 0000 0000 0000 0000
.... ....
01E0 0000 0000 0000 0000 0000 0000 2734 0000
01F0 0000 0000 0000 0000 0000 0000 0000 0000
0200 0000 0000 0000 0000 0000 0000 0000 3500
0210 030F 0000 0000 0000 0000 0000 0000 0000
0220 0032 0036

Figure 10: An EXE generated packet that causes an out-of-
bounds read in udhcpd.

[^[\0^\0]\*−?]{\0 [\−\‘[\0^\0]\‘]{\0
[\*−\‘[\0^\0]\‘−?]{\0 [\*−\‘[\0^\0]\‘−?]\0
[\*−\‘[\0^\0]\‘−?]\0 [\−\‘[\0^\0]\‘−]\0
(?#)\?[[[\0\0]\−]{\0 (?#)\?[[[\0\0]\−]\0
(?#)\?[[[\0\0]\[ ]\0 (?#)\?[:[[\0\0]\−]\0
(?#)\?[[[\0\0]\−]\0 (?#)\?[[[\0\0]\]\0
(?#)\?[[[\0\0][\0^\0]]\0 (?#)\?[[[\0\0][\0^\0]−]\0
(?#)\?[[[\0\0][\0^\0]\]\0 (?#)\?[=[[\0\0][\0^\0]\?]\0

Figure 11: EXE-generated regular expression patterns that
cause out-of-bounds writes (leading to aborts in glibc on free)
when passed as the first argument to pcre compile.

found included overflowing reads in the check posix syntax

helper function (pcre compile.c:1361-1363), called during the
first pass, as well as more dangerous overflowing reads and
writes in the compile regex and compile branch helpers
(illegal writes on pcre compile.c lines 3400-3401 and 3515-
3616), which are called during the compilation pass. While
the first problem may appear to be an innocent read past
the end of the buffer, it allows illegal expressions to enter
the second pass, causing more serious issues. The substring
“[\0^\0]” is especially dangerous because strings which end
with this sequence will cause pcre to skip over both null
characters and continue parsing unallocated or uninitialized
memory. Figure 11 show a representative sample of EXE-
generated patterns that trigger overflows in pcre, which in
turn cause glibc aborts. The author of the library fixed
the bug soon after being notified, and so the latest version
of pcre as of this writing (6.7) does not exhibit this problem.

5.4 Generating disks of death
We previously used EXE to generate disk images for three

file systems (ext2, ext3, and JFS) that when mounted would
crash or compromise the Linux kernel [46]. At a high level,
the checking worked as follows. We wrote a special device
driver that returned symbolic blocks to its callers. We then
compiled Linux using EXE and ran it as a user-level process
(so fork would work) and invoked the mount system call,
which caused the file system to read symbolic blocks, thereby
driving checking.

We found bugs in all three file systems, demonstrating
that EXE can handle complex systems code. Further, these
errors would almost certainly be beyond the reach of random
testing. For example, the Linux ext2 “read super block”
routine has over forty if-statements to check the data asso-
ciated with the super block. Any randomly-generated super
block must satisfy these tests before it can reach even the
next level of error checking, much less triggering the execu-
tion of “real code” that performs actual file system opera-
tions.

6. RELATED WORK
We described an initial, primitive version of EXE (then

called EGT) in an invited workshop paper [13]. EGT did not
support reads or writes of symbolic pointer expressions, sym-
bolic arrays, bit-fields, casting, sign-extension, arithmetic
overflow, and our symbolic checks. We also gave an overview
of EXE in the file system checking paper [46] discussed in
Section 5.4. That paper took EXE as a given and used it
to find bugs. In contrast, both STP and EXE are contribu-

tions of this paper, which we describe in more detail as well
as focus on a broader set of applications.

Simultaneously with our initial work [13], DART [27] also
generated test cases from symbolic inputs. DART runs the
tested unit code on random input and symbolically gathers
constraints at decision points that use input values. Then,
DART negates one of these symbolic constraints to generate
the next test case. DART only handles integer constraints
and devolves to random testing when pointer constraints are
used, with the usual problems of missed paths.

The CUTE project [42] extends DART by tracking sym-
bolic pointer constraints of the form: p = NULL, p 6= NULL, p
= q, or p 6= q. In addition, CUTE tracks constraints formed
by reading or writing symbolic memory at constant offsets
(such as a field dereference p→field), but unlike EXE it
cannot handle symbolic offsets. For example, the paper
on CUTE shows that on the code snippet a[i] = 0; a[j]

= 1; if (a[i] == 0) ERROR, CUTE fails to find the case
when i equals j, which would have driven the code down
both paths. In contrast to both DART and CUTE, EXE
has completely accurate constraints on memory, and thus
can (potentially) check code much more thoroughly.

CBMC is a bounded model checker for ANSI-C programs [14]
designed to cross-check an ANSI C re-implementation of
a circuit against its Verilog implementation. Unlike EXE,
which uses a mixture of concrete and symbolic execution,
CBMC runs code entirely symbolically. It takes (and re-
quires) an entire, strictly-conforming ANSI C program, which
it translates into constraints that are passed to a SAT solver.
CBMC provides full support for C arithmetic and control
operations, as well as reads and writes of symbolic mem-
ory. However, it has several serious limitations. First, it has
a strongly-typed view of memory, which prevents it from
checking code that accesses memory through pointers of dif-
ferent types. Second, because CBMC must translate the
entire program to SAT, it can only check stand-alone pro-
grams that do not interact with the environment (e.g., by
using system calls or even calling code for which there is no
source). Both of these limits seem to prevent CBMC from
checking the applications in this paper. Finally, CBMC un-
rolls all loops and recursive calls, which means that it may
miss bugs that EXE can find and also that it may execute
some symbolic loops more times than the current set of con-
straints allows.

Larson and Todd [34] present a system that dynamically
tracks primitive constraints associated with “tainted” data
(e.g., data that comes from untrusted sources such as net-
work packets) and warns when the data could be used in



a potentially dangerous way. They associate tainted inte-
gers with an upper and lower bound and tainted strings
with their maximum length and whether the string is null-
terminated. At potentially dangerous uses of inputs, such
as array references or calls to the string library, they check
whether the integer could be out of bounds, or if the string
could violate the library function’s contract. Thus, as EXE,
this system can detect an error even if it did not actually oc-
cur during the program’s concrete execution. However, their
system lacks almost all of the symbolic power that EXE pro-
vides. Further, they cannot generate inputs to cause paths
to be executed; users must provide test cases and they can
only check paths covered by these test cases.

Static checking and static input generation. There
has been much recent work on static bug finding, including
better type systems [20, 25, 23], static analysis tools [25, 5,
18, 19, 24, 12, 43], and statically solving constraints to gen-
erate inputs that would cause execution to reach a specific
program point or path [8, 28, 2, 4, 10]. The insides of these
tools look dramatically different from EXE. An exception is
Saturn [44], which expresses program properties as boolean
constraints and models pointers and heap data down to the
bit level. Dynamic analysis requires running code, static
analysis does not. Thus, static tools often take less work to
apply (just compile the source and skip what cannot be han-
dled), can check all paths (rather than only executed ones),
and can find bugs in code it cannot run (such as operating
systems code). However, because EXE runs code, it can
check much deeper properties, such as complex expressions
in assertions, or properties that depend on accurate value in-
formation (the exact value of an index or size of an object),
pointers, and heap layout, among many others. Further,
unlike static analysis, EXE has no false positives. However,
we view the two approaches as complementary: there is no
reason not to use lightweight static techniques and then use
EXE.

Software Model Checking. Model checkers have been
used to find bugs in both the design and the implementation
of software [31, 32, 9, 16, 5, 26, 47]. These approaches
often require a lot of manual effort to build test harnesses.
However, to some degree, the approaches are complementary
to EXE: the tests EXE generates could be used to drive
the model checked code, similar to the approach embraced
by the Java PathFinder (JPF) project [33]. JPF combines
model checking and symbolic execution to check applications
that manipulate complex data structures written in Java.
JPF differs from EXE in that it does not have support for
untyped memory (not needed because Java is a strongly
typed language) and does not support symbolic pointers.

Dynamic techniques for test and input generation.

Past dynamic input generation work seem to focus on gen-
erating an input to follow a specific path, motivated by the
problem of answering programmer queries as to whether
control can reach a specific statement or not [22, 29]. EXE
instead focuses on bug finding, in particular the problems of
exhausting all input-controlled paths and universal check-
ing, neither addressed by prior work.

7. CONCLUSION
We have presented EXE, which uses robust, bit-level ac-

curate symbolic execution to find deep errors in code and
automatically generate inputs that will hit these errors. A
key aspect of EXE is its modeling of memory and its co-

designed, fast constraint solver STP. We have applied EXE
to a variety of real, tested programs where it was powerful
enough to uncover subtle and surprising bugs.
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