EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang

Joint work with Can Sar, Paul Twohey, Ben Pfaff,
Dawson Engler and Madan Musuvathi

"Mom, Google Ate My GMaill"

Posted Thursday, December 25, 2006 at 12:19 PM P

Mom, Google Ate My GMail!

Update:|f you are ready to give up your
and are considering switching to all-Goo; I ec ‘ ru n C
one of us has done, be warned that the

simple and fraught with risk. An increasi

Forum &bout Contact Company Index Advertise Archives Cool Jobs
complaining that their emails, accounts

) . For nearly 10 da ¢ Previous post Next post »
M | I cleaning out thy December 28 2006

kG wrote to us thi:

Just when we v
better. (If vou are you one of the victin
try and get to Google people and see wi

Gmail Disaster: Reports Of Mass Email Deletions

Michael Arrington 133 comments »
on [what else) Google Threads, a user wi

Just a week after I wrote "Uh Oh, Gmail Just Got Perfect”

Not only weare surprlsed that these a number of users started complaining 7 that all of their — e
company like Google but we are piss Gmail emails and contacts were auto deleted. m l
our internet life. . :

The first message, posted on the Google Groups forum on ba kO BETA

p

December 19, stated “Found my account clean..nothing in
Inbox, contacts ,sent mail..How can all these information residing in different folders disappear?
How o write to gmail help team to restore the account. . is it possible?. . Where to report this
abuse?. Any help . .Welcome. . Thanks in advance ps101”

Login | Register

\ Current issue | ¥ Subscribe | ¥ Blogs | Events | eSeminars | White papers | RSS /XML | Jobs

4

GCN Home > 020904 issue

Flash: Software wings its way to Mars rovers

By Patricia Daukantas, GCN Staff

@ Story Tools: Print this | Email this | Purchase a Reprint | Link to this page

NASA's twin Mars rovers have been receiving medicinal shots of software over the agency's Deep Space
MNetwark.

The updates let Ea
flight software devel

oh, said Roger Klemm, a

Lastweek, Spirit wa Spirit had fallen into a
mysterious commuy > - h memory for the flash file
system.

The rover's computq - trying to reboot itself,

Klemm said.

Engineers comma ‘ a checkdisk routine.

They discovered the

. Certain blocks are
armat Spirit's flash
pm the flash memory of

Each rover has 256
reserved for dedicaf]
memaory. The progrd
the second rover, O

Most of the code is written in C, running under the \WWWorks 5.3.1 operating system from YWind River Systems
Inc. of Alameda, Calif. Afew files are in assembhly language, and one module is in C++.

Engineers at NASA Langley Research Center in Hampton, Va., adapted a flight-mechanics application,
ariginally developed in the 1970s for planning shuttle missions, to model the complex interactions of the Spirit
and Opponrunity rovers' hardware and software.

Before the landings, NASA executed multiple simulations of parachute, rover capsule and hack shell hehavior
during entry into the Martian atmosphere, said Eric Queen, a Langley research engineer.

Why check storage systems?

a Storage system errors: some of the most serious
= machine crash
= data loss
= data corruption

0 Code complicated, hard to get right

= Conflicting goals: speed, reliability (recover from
any failures and crashes)

0 Typical ways to find these errors: ineffective
= Manual inspection: strenuous, erratic

= Randomized testing (e.g. unplug the power cord): blindly
throwing darts

= Error report from mad users

Goal: build tools to automatically find
storage system errors

Sub-goal: comprehensive, lightweight, general

EXPLODE [OSDIO6]

0 Comprehensive: adapt ideas from model checking

Q General, real: check live systems
= Can run (on Linux, BSD), can check, even w/o source code

Q Fast, easy
= Check a new storage system: 200 lines of C++ code
= Port to a new OS: 1 kernel module + optional modification

O Effective

- 17 storage systems: 10 Linux FS, Linux NFS, Soft-RAID, 3
version control, Berkeley DB, VMware

= Found serious data-loss in all

QO Subsumes FiSC [OSDIO4, best paper]

Outline

j> Overview

0 Checking process
0 Implementation

0 Example check: crashes during recovery are
recoverable

a Results

Long-lived bug fixed in 2 days in the
IBM Journaling file system (JFS)

0 Serious
= Loss of an entire FS!
» Fixed in 2 days with our complete trace

a Hard to find

= 3 years old, ever since the first version

Dave Kleikamp (IBM JFS): "I really appreciate
your work finding and recreating this bug. I'm
sure this has bitten us before, but it's usually
hard to go back and find out what causes the

file system to get messed up so bad”

Events to trigger the JFS bug

creat("/f");
w/gu Buffer

5-char system call, Cache
not a typo (in mem)

fsck.jfs

Disk

File system recovery /
utility, run after reboot

Orphan file removed.
Legal behavior for file
systems

Events to trigger the JFS bug

creat("/f");
Buffer

bug under low Cache
mem (design flaw) (in mem)

flush "/"
crash! Disk i
/ dangling
fsck.jfs pointer!
VAN “fix" by zeroing,

File system recovery

: I
utility, run after reboot entire FS gone

10

Overview

User-written
Checker

creat("/f")

—aln

—— can be either very sophisticated =
or very simple

:BToy checker: crash=fter creat("/f")
— Sh‘auJ_A_nA:I-_lALa_a_zu_l_A_l_A_-Eu_a_'hlnh*‘ 1o

User-written checker:

JFS

Linux Kernel

Hardware

User code

[l Our code

“crash-disk"
fsck.jfs — (i) \/

fsck.jfs — (i) X
fsck.jfs — (i) \/

EKM = EXPLODE kernel module
11

Outline

a QOverview

) Checking process

0 Implementation

0 Example check: crashes during recovery are
recoverable

a Results

12

One core idea from model checking:
explore all choices

0 Bugs are often triggered by corner cases

a How to find? Drive execution down to these
tricky corner cases

Principle
When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

Result: rare events appear as of ten as common ones

13

Crashes (Overview slide revisit)

User-written
Checker

“crash-disk"

fsck.jfs
1
! fsck.jfs
JFS
/)57
i EQ fsck.jfs
Linux Kernel
Hardware

14

External choices

a Fork and do every possible operation

Explore generated
states as well

Users write code to
check FS valid.
EXPLODE "amplifies”

15

Internal choices

0 Fork and explore all internal choices

struct block* read_block (int i) {
struct block *b;

if (b = cache_lookup(i))))

return b;
return(disk_read (i);)

}

16

Users expose choices using choose(N)

a To explore N-choice point, users instrument
code using choose(N) (also used in other model
checkers)

a choose(N): N-way fork, return K in K'th kid

struct block* read_block (int i) { cache_lookup (int i) {
struct block *b; ___——1" [if(choose(2) == 0)

if (b = cache_lookup(i))) return NULL;
return b; // normal lookup
return disk_read (i);
))

a Optional. Instrumented only 7 places in Linux

17

Crash X External X Internal

18

Speed: skip same states

Abstract and hash
a state, discard if
seen.

19

Outline

a Overview

0 Checking process

> Implementation

= FiSC, File System Checker, [OSDIO4], best paper
- EXPLODE, storage system checker, [OSDIO6]

0 Example check: crashes during recovery are recoverable

O Results

20

Checking process

(S0 = checkpoint())

enqueue(S0)

while(queue not empty){
S = dequeue()

for each action in S {
(restore(Si)
do action
(S’ = checkpoint()
if(S" Is new)
enqueue(S’)

h
How to checkpoint and restore a live OS?

21

FiSC: jam OS into tool

°
Checker

"

User Mode Linux

v

Linux Kernel
Hardware

a

User code [I] Our code

Pros
- Comprehensive, effective
= No model, check code
= Checkpoint and restore: easy

Cons

« Intrusive. Build fake
environment. Hard to check
anything new. Months for
new OS, 1 week for new FS

Many tricks, so complicated

that we won best paper
OSDI 04

22

EXPLODE: jam tool into OS

User Mode Linux

Linux Kernel

User-written
Checker

Hardware

JFS

Linux Kernel

User code [I] Our code

Hardware

EKM = EXPLODE kernel module

23

EKM lines of code

OS Lines of code
Linux 2.6 1915
FreeBSD 6.0 1210

EXPLODE kernel modules (EKM) are

small and easy to write

24

How to checkpoint and restore
a live OS kernel?

Checker i

[

JFS

Linux Kernel

Hardware

0 Hard to checkpoint
live kernel memory

Q Virtual machine? No
« VMware: no source
= Xen: not portable
» heavyweight

Q There's a better
solution for storage
systems

25

Checkpoint: save actions instead of bits

state = list of actions
checkpoint S = save (creat, cache miss)
restore = re-initialize, creat, cache miss

re-initialize = unmount, mkfs

J\ — /creat €= ——
<>

Utility that clears Utility to
in-mem state of a tate createan |n
storage system |+pqq empty FS space

(stateless search).

We use it only to reduce intrusiveness

26

Q

Deterministic replay
Storage system: isolated subsystem

Non-deterministic kernel scheduling decision

- Opportunistic fix: priorities

Non-deterministic interrupt

= Fix: use RAM disks, no interrupt for checked system

Non-deterministic kernel calls by other code

= Fix: filter by thread IDs. No in interrupt

Worked well in practice
= Mostly deterministic
- Worst case: auto-detect & ignore non-repeatable errors

27

Outline

Q Overview
0 Checking process

0 Implementation

: »Example check: crashes during recovery are
recoverable

a Results

Why check crashes during recovery?

Q Crashes are highly correlated
= Often caused by kernel bugs, hardware errors
= Reboot, hit same bug/error

What to check?

a fsck once == fsck & crash, re-run fsck
= fsck(crash-disk) to completion, */a" recover'ed‘} Bugl
. fsck(crash-disk) and crash, fsck, */a" gone ug:

a Powerful heuristic, found interesting bugs (wait
until results)

29

How to check crashes during recovery?

“crash-disk”

— same as a ?

— same as a?
— same as a?

Problem: N blocks = 2”N crash-crash-disks.
Too many! Can prune many crash-crash-disks

“crash-crash-disk”

30

Simplified example

fsck(000)

Read(B1)=0
Write(B2, 1)
Write(B3, 1)
Read(B3) =1
Write(B1, 1)

a 3-block disk, B1, B2, B3
a each block is either O or 1
Q crash-disk = 000 (B1 to B3)

buffer cache: B2=1
buffer cache: B2=1, B3=1

buffer cache: B2=1, B3=1, B1=1
fsck(000) = 111

31

Naive strategy: 7 crash-crash-disks

crash-disk = 000
fsck(000) = 111

Read(B1)=0
Write(B2, 1)
Write(B3, 1)
Read(B3) =1

Write(B1, 1)

buffer cache: B2=1, B3=1, B1=1

fsc
fsc
fsc
fsc
fsc
fsc

fsc

000 + {B2=1}
- Z—
«(010) == 1117
K(001) == 1117
K(011) == 1117
K(100) == 111?
((110) == 1117
K(101) == 1117

K(111) == 111?

32

Optimization: exploiting determinism

crash-disk = 000 a For all practical purposes,
fsck(000) = 111 fsck is deterministic

= read same blocks = write
same blocks

Read(81) = O) 000 + {B2-1}

Write(B2, 1) L
Write(83. 1) 0 fsck(010) == 1112

(Read(B3)= D a fsck(000) doesn't read B2
Write(B1, 1)

a So, fsck(010) = 111

33

What blocks does fsck(000) actually read?

crash-disk = 000
fsck(000) = 111

(Read(B1) =@

Write(B2, 1)

@ri’re(B& D
(Read(B3) =
Write(Bl1, 1)

Read of B3 will get what we just
wrote. Can't depend on B3

fsck(000) reads/depends only on Bl1.
It doesn't matter what we write to

the other blocks.
fsck(0**) = 111

34

Prune crash-crash-disks matching 0**

crash-disk = 000
fsck(000) = 111

Read(B1)=0
Write(B2, 1)
Write(B3, 1)
Read(B3) =1
Write(Bl1, 1)

buffer cache: B2=1, B3=1, B1=1

-= 27 Can further
fsck(100) == 111? oEﬂmizde usri‘ng
this and other
fsck(110) == 1117 4 o
fsck(101) == 111?
fsck(111) == 1117

35

Outline

Q Overview
0 Checking process
0 Implementation

0 Example check: crashes during recovery are
recoverable

j> Results

36

Bugs caused by crashes during recovery

0 Found data-loss bugs in all three FS that use
logging (ext3, JFS, ReiserFS), total 5

a Strict order under normal operation:
= First, write operation to log, commit
= Second, apply operation to actual file system

a Strict (reverse) order during recovery:
= First, replay log to patch actual file system
= Second, clear log
« No order = corrupted FS and no log to patch it!

37

Bug in fsck.ext3

recover_ext3_journal(...) { \
/... journal_recover(...) {
retval = -journal_recover(journal); // replay the journal
/] ... /]...
// clear the journal // sync modifications to disk
e2fsck_journa|_re|ease(...) fsync_no_super ()
/] ...) N

:)
// Error! Empty macro, doesn’t sync data! v
#define fsync_no_super(dev) do {} while (0)

Q Code directly adapted from the kernel
0 But, fsync_no_super defined as NOP: “hard to implement”

38

FiSC Results (can reproduce in EXPLODE)

Error Type VFS | ext2 | ext3 | JFS | ReiserFS | total
Data loss N/A | N/A 1 8 1 10
False clean N/A | N/A 1 1 2
Security 2 2 1 3+2
Crashes 1 10 1 12
Other 1 1 1 3
Total 2 2 5 21 2 32

32 in total, 21 fixed, 9 of the remaining 11 confirmed

39

EXPLODE checkers lines of code and
errors found

Storage System Checked Checker | Bugs
10 file systems 5,477 18
CVS 68 1
Storage Subversion | ’(69 1 \
applications || “ExPENSIVE" 124 3 |
Berkeley DB 202 6
RAID FS + 137 2
Transparent NFS FS 4
subsystems
' \esx/tims) |\FS LY, ‘
Total 6,008 36

6 bugs per 1,000 lines of checker code

Related work

0 FS Testing
a Static (compile-time) analysis

0 Software model checking

41

Conclusion

a0 EXPLODE

= Comprehensive: adapt ideas from model checking
= General, real: check live systems in situ, w/o source code
- Fast, easy: simple C++ checking interface

O Results

= Checked 17 widely-used, well-tested, real-world storage
systems: 10 Linux FS, Linux NFS, Soft-RAID, 3 version
control, Berkeley DB, VMware

= Found serious data-loss bugs in all, over 70 bugs in total
= Many bug reports led to immediate kernel patches

42

