
EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang

Joint work with Can Sar, Paul Twohey, Ben Pfaff,
Dawson Engler and Madan Musuvathi

2

“Mom, Google Ate My GMail!”

3

4

Why check storage systems?

 Storage system errors: some of the most serious
 machine crash

 data loss

 data corruption

 Code complicated, hard to get right

 Conflicting goals: speed, reliability (recover from
any failures and crashes)

 Typical ways to find these errors: ineffective
 Manual inspection: strenuous, erratic

 Randomized testing (e.g. unplug the power cord): blindly
throwing darts

 Error report from mad users

5

Goal: build tools to automatically find
storage system errors

Sub-goal: comprehensive, lightweight, general

6

EXPLODE [OSDI06]

 Comprehensive: adapt ideas from model checking

 General, real: check live systems
 Can run (on Linux, BSD), can check, even w/o source code

 Fast, easy
 Check a new storage system: 200 lines of C++ code
 Port to a new OS: 1 kernel module + optional modification

 Effective

 17 storage systems: 10 Linux FS, Linux NFS, Soft-RAID, 3
version control, Berkeley DB, VMware

 Found serious data-loss in all

 Subsumes FiSC [OSDI04, best paper]

7

Outline

 Overview

 Checking process

 Implementation

 Example check: crashes during recovery are
recoverable

 Results

8

 Serious
 Loss of an entire FS!

 Fixed in 2 days with our complete trace

 Hard to find
 3 years old, ever since the first version

Long-lived bug fixed in 2 days in the
IBM Journaling file system (JFS)

Dave Kleikamp (IBM JFS): “I really appreciate
your work finding and recreating this bug. I'm
sure this has bitten us before, but it's usually
hard to go back and find out what causes the
file system to get messed up so bad”

9

f f

Events to trigger the JFS bug

Buffer
Cache
(in mem)

Disk

/

/
creat(“/f”);

flush “/f”

crash!

fsck.jfs

5-char system call,
not a typo

File system recovery
utility, run after reboot

Orphan file removed.
Legal behavior for file
systems

10

/ f

Events to trigger the JFS bug

Buffer
Cache
(in mem)

Disk

/

/
creat(“/f”);

flush “/”

crash!
dangling
pointer! fsck.jfs

bug under low
mem (design flaw)

“fix” by zeroing,
entire FS gone! File system recovery

utility, run after reboot

11

Overview

Linux Kernel

JFS

User-written
Checker

f /
/

f

creat(“/f”)

Our code User code

/ f

void mutate() {
 creat(“/old”);
 sync();
 creat(“/f”);
 check_crash_now();
}

void check() {
 int fd = open(“/old”,
 O_RDONLY);
 if (fd < 0)
 error(“lost old!”);
 close(fd);
}

EKM

EXPLODE
Runtime

fsck.jfs

fsck.jfs

fsck.jfs

check()

check()

check()

/root

old

/root

/root

old f

/root

old

EKM = EXPLODE kernel module

Hardware

“crash-disk”

Toy checker: crash after creat(“/f”)
should not lose any old file that is
already persistent on disk User-written checker:

can be either very sophisticated
or very simple

12

Outline

 Overview

 Checking process

 Implementation

 Example check: crashes during recovery are
recoverable

 Results

13

One core idea from model checking:
explore all choices

 Bugs are often triggered by corner cases

 How to find? Drive execution down to these
tricky corner cases

 Principle
When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

Result: rare events appear as often as common ones

14

Linux Kernel

JFS

User-written
Checker

f /

/

f

/ f EKM

EXPLODE
Runtime

fsck.jfs

fsck.jfs

fsck.jfs

check()

check()

check()

/root

Crashes (Overview slide revisit)

“crash-disk”
/root

old

/root

old f

/root

old

Hardware

15

External choices

/root

a

…

…

 Fork and do every possible operation

Explore generated
states as well

Users write code to
check FS valid.
EXPLODE “amplifies”

/root

b a

/root

c a

/root

/root

a

16

struct block* read_block (int i) {
 struct block *b;
 if ((b = cache_lookup(i)))
 return b;
 return disk_read (i);
}

Internal choices

 Fork and explore all internal choices

/root

a

/root

b a

/root

b a

/root

a

17

Users expose choices using choose(N)

 To explore N-choice point, users instrument
code using choose(N) (also used in other model
checkers)

 choose(N): N-way fork, return K in K’th kid

 Optional. Instrumented only 7 places in Linux

cache_lookup (int i) {
 if(choose(2) == 0)
 return NULL;
 // normal lookup
 …
}

struct block* read_block (int i) {
 struct block *b;
 if ((b = cache_lookup(i)))
 return b;
 return disk_read (i);
}

18

Crash X External X Internal

/root

a

…

/root

b a

/root

c a

/root

/root

a

…

19

Speed: skip same states

/root

a

…

/root

b a

/root

c a

/root

/root

a

/root

b a c

Abstract and hash
a state, discard if
seen.

…

20

Outline

 Overview

 Checking process

 Implementation

 FiSC, File System Checker, [OSDI04], best paper

 EXPLODE, storage system checker, [OSDI06]

 Example check: crashes during recovery are recoverable

 Results

21

Checking process

S0

…

How to checkpoint and restore a live OS?

S0 = checkpoint()
enqueue(S0)
while(queue not empty){
 S = dequeue()
 for each action in S {
 restore(S)
 do action
 S’ = checkpoint()
 if(S’ is new)
 enqueue(S’)
 }
}

22

FiSC: jam OS into tool

 Pros
 Comprehensive, effective

 No model, check code

 Checkpoint and restore: easy

 Cons
 Intrusive. Build fake

environment. Hard to check
anything new. Months for
new OS, 1 week for new FS

 Many tricks, so complicated
that we won best paper
OSDI 04

FiSC

User Mode Linux

JFS

User-written
Checker

Linux Kernel

Hardware

Our code User code

23

EXPLODE: jam tool into OS

FiSC

User Mode Linux

JFS

User-written
Checker

Linux Kernel

Hardware

Our code User code

JFS

User-written
Checker

Linux Kernel

Hardware

EKM

EKM = EXPLODE kernel module

EXPLODE
Runtime

24

EKM lines of code

OS Lines of code

Linux 2.6 1,915

FreeBSD 6.0 1,210

EXPLODE kernel modules (EKM) are
small and easy to write

25

How to checkpoint and restore
a live OS kernel?

JFS

Checker

Linux Kernel

Hardware

EKM

EXPLODE
Runtime

 Hard to checkpoint
live kernel memory

 Virtual machine? No
 VMware: no source

 Xen: not portable

 heavyweight

 There’s a better
solution for storage
systems

26

S0

…

S

Checkpoint: save actions instead of bits

state = list of actions
checkpoint S = save (creat, cache miss)
restore = re-initialize, creat, cache miss

re-initialize = unmount, mkfs

creat

Redo-to-restore-state idea used in
model checking to trade time for space
(stateless search).

We use it only to reduce intrusiveness

Utility that clears
in-mem state of a
storage system

Utility to
create an
empty FS

27

Deterministic replay

 Storage system: isolated subsystem

 Non-deterministic kernel scheduling decision
 Opportunistic fix: priorities

 Non-deterministic interrupt
 Fix: use RAM disks, no interrupt for checked system

 Non-deterministic kernel choose() calls by other code
 Fix: filter by thread IDs. No choose() in interrupt

 Worked well in practice
 Mostly deterministic

 Worst case: auto-detect & ignore non-repeatable errors

28

Outline

 Overview

 Checking process

 Implementation

 Example check: crashes during recovery are
recoverable

 Results

29

What to check?

 fsck once == fsck & crash, re-run fsck
 fsck(crash-disk) to completion, “/a” recovered

 fsck(crash-disk) and crash, fsck, “/a” gone

 Powerful heuristic, found interesting bugs (wait
until results)

Why check crashes during recovery?

 Crashes are highly correlated
 Often caused by kernel bugs, hardware errors

 Reboot, hit same bug/error

Bug!

30

How to check crashes during recovery?

fsck.jfs

“crash-disk”

fsck.jfs

fsck.jfs

fsck.jfs

EXPLODE
Runtime

“crash-crash-disk”

same as ?

same as ?

same as ?

Problem: N blocks  2^N crash-crash-disks.
Too many! Can prune many crash-crash-disks

31

Simplified example

 3-block disk, B1, B2, B3

 each block is either 0 or 1

 crash-disk = 000 (B1 to B3)

Read(B1) = 0

Write(B2, 1)

Write(B3, 1)

Read(B3) = 1

Write(B1, 1)

fsck(000)

fsck(000) = 111

buffer cache: B2=1, B3=1, B1=1

buffer cache: B2=1

buffer cache: B2=1, B3=1

32

Naïve strategy: 7 crash-crash-disks

Read(B1) = 0

Write(B2, 1)

Write(B3, 1)

Read(B3) = 1

Write(B1, 1)

fsck(000) = 111
fsck(010) == 111?

fsck(001) == 111?

fsck(011) == 111?

fsck(100) == 111?

fsck(110) == 111?

fsck(101) == 111?

fsck(111) == 111?

buffer cache: B2=1, B3=1, B1=1 crash-disk = 000

000 + {B2=1}

33

Optimization: exploiting determinism

 For all practical purposes,
fsck is deterministic
 read same blocks  write

same blocks

 fsck(010) == 111?

 fsck(000) doesn’t read B2

 So, fsck(010) = 111

Read(B1) = 0

Write(B2, 1)

Write(B3, 1)

Read(B3) = 1

Write(B1, 1)

fsck(000) = 111

crash-disk = 000

000 + {B2=1}

34

What blocks does fsck(000) actually read?

Read(B1) = 0

Write(B2, 1)

Write(B3, 1)

Read(B3) = 1

Write(B1, 1)

fsck(000) = 111

fsck(000) reads/depends only on B1.
It doesn’t matter what we write to
the other blocks.

 fsck(0**) = 111

Read of B3 will get what we just
wrote. Can’t depend on B3

crash-disk = 000

35

Prune crash-crash-disks matching 0**

Read(B1) = 0

Write(B2, 1)

Write(B3, 1)

Read(B3) = 1

Write(B1, 1)

fsck(000) = 111
fsck(010) == 111?

fsck(001) == 111?

fsck(011) == 111?

fsck(100) == 111?

fsck(110) == 111?

fsck(101) == 111?

fsck(111) == 111?

buffer cache: B2=1, B3=1, B1=1

Can further
optimize using
this and other
ideas

crash-disk = 000

36

Outline

 Overview

 Checking process

 Implementation

 Example check: crashes during recovery are
recoverable

 Results

37

Bugs caused by crashes during recovery

 Found data-loss bugs in all three FS that use
logging (ext3, JFS, ReiserFS), total 5

 Strict order under normal operation:
 First, write operation to log, commit

 Second, apply operation to actual file system

 Strict (reverse) order during recovery:
 First, replay log to patch actual file system

 Second, clear log

 No order  corrupted FS and no log to patch it!

38

Bug in fsck.ext3

recover_ext3_journal(…) {
 // …
 retval = -journal_recover(journal);
 // …
 // clear the journal
 e2fsck_journal_release(…)
 // …
}

journal_recover(…) {
 // replay the journal
 //…
 // sync modifications to disk
 fsync_no_super (…)
}

 Code directly adapted from the kernel

 But, fsync_no_super defined as NOP: “hard to implement”

// Error! Empty macro, doesn’t sync data!
#define fsync_no_super(dev) do {} while (0)

39

FiSC Results (can reproduce in EXPLODE)

Error Type VFS ext2 ext3 JFS ReiserFS total

Data loss N/A N/A 1 8 1 10

False clean N/A N/A 1 1 2

Security 2 2 1 3 + 2

Crashes 1 10 1 12

Other 1 1 1 3

Total 2 2 5 21 2 32

32 in total, 21 fixed, 9 of the remaining 11 confirmed

40

EXPLODE checkers lines of code and
errors found

Storage System Checked Checker Bugs

10 file systems 5,477 18

Storage
applications

CVS 68 1

Subversion 69 1

“EXPENSIVE” 124 3

Berkeley DB 202 6

Transparent
subsystems

RAID FS + 137 2

NFS FS 4

VMware
GSX/Linux

FS 1

Total 6,008 36

6 bugs per 1,000 lines of checker code

41

Related work

 FS Testing

 Static (compile-time) analysis

 Software model checking

42

Conclusion

 EXPLODE
 Comprehensive: adapt ideas from model checking

 General, real: check live systems in situ, w/o source code

 Fast, easy: simple C++ checking interface

 Results
 Checked 17 widely-used, well-tested, real-world storage

systems: 10 Linux FS, Linux NFS, Soft-RAID, 3 version
control, Berkeley DB, VMware

 Found serious data-loss bugs in all, over 70 bugs in total

 Many bug reports led to immediate kernel patches

