
W4118: dynamic memory allocation

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

 Dynamic memory allocation overview

 Heap allocation strategies

 Memory management review
 Copy-on-write

1

Dynamic memory allocation

 Static (compile time) allocation is not possible
for all data

 Two ways of dynamic allocation
 Stack allocation

• Restricted, but simple and efficient

 Heap allocation
• More general, but less efficient

• More difficult to implement

2

Dynamic allocation issue: fragmentation

 Fragment: small trunks of free memory, too
small for future allocation requests “holes”
 External fragment: visible to system

 Internal fragment: visible to process (e.g. if allocate
at some granularity)

 Goal
 Reduce number of holes

 Keep holes large

 Stack fragmentation v.s. heap fragmentation

3

Typical heap implementation

 Data structure: free list
 Chains free blocks together

 Allocation
 Choose block large enough for request

 Update free list

 Free
 Add block back to list

 Merge adjacent free blocks

4

Heap allocation strategies

 Best fit
 Search the whole list on each allocation

 Choose the smallest block that can satisfy request

 Can stop search if exact match found

 First fit
 Choose first block that can satisfy request

 Worst fit
 Choose largest block (most leftover space)

 Which is better?

5

Example

 Free space: 2 blocks, size 20 and 15

 Workload 1: allocation requests: 10 then 20

 Workload 2: allocation requests: 8, 12, then 13

6

Best fit

First fit

Worse fit

Request of 20: fail!

Best fit

First fit

Worse fit

Request of 13: fail!

Request of 20: fail!

Request of 13: fail!

Comparison of allocation strategies

 Best fit
 Tends to leave very large holes and very small holes

 Disadvantage: very small holes may be useless

 First fit:
 Tends to leave “average” size holes

 Advantage: faster than best fit

 Worst fit:
 Simulation shows that worst fit is worst in terms of

storage utilization

7

Buddy allocator motivation

 Allocation requests: frequently 2^n
 E.g., allocation physical pages in Linux

 Generic allocation strategies: overly generic

 Fast search (allocate) and merge (free)
 Avoid iterating through free list

 Avoid external fragmentation for req of 2^n

 Keep physical pages contiguous

8

Real: used in FreeBSD and Linux

9

Buddy allocator implementation

 Data structure
 N free lists of blocks of size 2^0, 2^1, …, 2^N

 Allocation restrictions: 2^k, 0<= k <= N

 Allocation of 2^k:
 Search free lists (k, k+1, k+2, …) for appropriate size

• Recursively divide larger blocks until reach block of correct size

• Insert “buddy” blocks into free lists

 Free
 Recursively coalesce block with buddy if buddy free

Buddy
allocation
example

10

p1 = alloc(2^0)

freelist[3] = {0}

freelist[0] = {1}, freelist[1] = {2}

freelist[2] = {4}

p2 = alloc(2^2)

freelist[0] = {1}, freelist[1] = {2}

free(p2)
freelist[3] = {0}

free(p1)

freelist[2] = {0}

11

Pros and cons of buddy allocator

 Advantages
 Fast and simple compared to general dynamic

memory allocation
 Avoid external fragmentation by keeping free

physical pages contiguous

 Disadvantages
 Internal fragmentation

• Allocation of block of k pages when k != 2^n

12

Slab allocator

 Motivation:
 Frequent (de)allocationof certain kernel objects

• E.g., file struct and inode
 Other allocators: overly general; assume variable size

 Slab: cache of “slots”
 Slot size = object size
 Free memory management = bitmap
 Allocate: set bit and return slot
 Free: clear bit

 Real: used in FreeBSD and Linux, implemented on
top of buddy page allocator, for objects smaller
than a page

Memory management review

13

Multiple address spaces co-exist

AS1

AS2

AS3

14
Logical view Physical view

max

max

max

0

0

0

max

0

Memory Management Unit (MMU)

 Map program-generated address (virtual
address) to hardware address (physical
address) dynamically at every reference

 Check range and permissions

 Programmed by OS

15

CPU MMU MEMORY

Virtual Addresses

Physical Addresses

Page translation

 Address bits = page number + page offset

 Translate virtual page number (vpn) to physical
page number (ppn) using page table

 pa = page_table[va/pg_sz] + va%pg_sz

16

CPU vpn off ppn off

Page table

ppn vpn

Memory

ppn

Page protection

 Implemented by associating protection bits
with each virtual page in page table

 Protection bits
 present bit: map to a valid physical page?

 read/write/execute bits: can read/write/execute?

 user bit: can access in user mode?

 x86: PTE_P, PTE_W, PTE_U

 Checked by MMU on each memory access

17

18

A cool trick: copy-on-write

 In fork(), parent and child often share
significant amount of memory
 Expensive to copy all pages

 COW Idea: exploit VA to PA indirection
 Instead of copying all pages, share them

 If either process writes to shared pages, only then
is the page copied

 Real: used in virtually all modern OSes

18

How to implement COW?

 (Ab)use page protection

 Mark pages as read-only in both parent and
child address space

 On write, page fault occurs

 In page fault handler, distinguish COW fault
from real fault
 How?

 Copy page and update page table if COW fault

19

