
W4118: advanced scheduling

Instructor: Junfeng Yang

•References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

 Advanced scheduling issues
 Multilevel queue scheduling

 Multiprocessor scheduling issues

 Real-time scheduling

 Scheduler examples
 xv6 scheduler

 Linux O(1) schedulier

1

Motivation

 No one-size-fits-all scheduler
 Different workloads

 Different environment

 Building a general scheduler that works well
for all is difficult!

 Real scheduling algorithms are often more
complex than the simple scheduling algorithms
we’ve seen

Combining scheduling algorithms

 Multilevel queue scheduling: ready queue is
partitioned into multiple queues

 Each queue has its own scheduling algorithm
 Foreground processes: RR

 Background processes: FCFS

 Must choose scheduling algorithm to schedule
between queues. Possible algorithms
 RR between queues

 Fixed priority for each queue

Outline

 Advanced scheduling issues
 Multilevel queue scheduling

 Multiprocessor scheduling issues

 Real-time scheduling

 Scheduling in Linux
 Scheduling algorithm

 Setting priorities and time slices

 Other implementation issues

4

Multiprocessor scheduling issues

 Shared-memory Multiprocessor

 How to allocate processes to CPU?

CPU0 CPU1 CPU2 CPU3

processes

5

Symmetric multiprocessor

 Architecture

 Small number of CPUs

 Same access time to main memory

 Private cache

CPU0 CPU1 CPU2 CPU3

Shared Memory

$ $ $ $

6

Global queue of processes

 One ready queue shared across all CPUs

 Advantages
 Good CPU utilization
 Fair to all processes

 Disadvantages
 Not scalable (contention for global queue lock)
 Poor cache locality

 Linux 2.4 uses global queue

CPU0 CPU1 CPU2 CPU3

7

Per-CPU queue of processes

 Static partition of processes to CPUs

 Advantages
 Easy to implement
 Scalable (no contention on ready queue)
 Better cache locality

 Disadvantages
 Load-imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilization

CPU0 CPU1 CPU2 CPU3

8

Hybrid approach

 Use both global and per-CPU queues

 Balance jobs across queues

 Processor Affinity
 Add process to a CPU’s queue if recently run on the CPU

• Cache state may still present

 Linux 2.6 uses a very similar approach

CPU0 CPU1 CPU2 CPU3

9

SMP: “gang” scheduling

 Multiple processes need coordination
 Should be scheduled simultaneously

 Scheduler on each CPU does not act independently
 Coscheduling (gang scheduling): run a set of processes

simultaneously
 Global context-switch across all CPUs

CPU0 CPU1 CPU2 CPU3

10

Real-time scheduling

 Real-time processes have timing constraints
 Expressed as deadlines or rate requirements

 E.g. gaming, video/music player, autopilot…

 Hard real-time systems – required to complete a
critical task within a guaranteed amount of time

 Soft real-time computing – requires that critical
processes receive priority over less fortunate
ones

 Linux supports soft real-time

11

Outline

 Advanced scheduling issues
 Multilevel queue scheduling

 Multiprocessor scheduling issues

 Real-time scheduling

 Scheduler examples
 xv6 scheduler

 Linux O(1) schedulier

12

xv6 scheduler

 One global queue across all CPUs

 Local scheduling algorithm: RR

 scheduler() in proc.c

13

Linux O(1) scheduler goals

 Avoid starvation

 Boost interactivity
 Fast response to user despite high load
 Achieved by inferring interactive processes and dynamically

increasing their priorities

 Scale well with number of processes
 O(1) scheduling overhead

 SMP goals
 Scale well with number of processors
 Load balance: no CPU should be idle if there is work
 CPU affinity: no random bouncing of processes

 Reference: Linux/Documentation/sched-design.txt

14

Algorithm overview

 Multilevel Queue Scheduler
 Each queue associated with a priority

 A process’s priority may be adjusted dynamically

 Two classes of processes
 Real-time processes: always schedule highest priority

processes

• FCFS (SCHED_FIFO) or RR (SCHED_RR) for processes
with same priority

 Normal processes: priority with aging

• RR for processes with same priority (SCHED_NORMAL)

• Aging is implemented efficiently

15

runqueue data structure

 Two arrays of priority queues
 active and expired

 Total 140 priorities [0, 140)

 Smaller integer = higher priority

16

Scheduling algorithm for normal processes

1. Find highest priority non-empty queue in rq-
>active; if none, simulate aging by swapping
active and expired

2. next = first process on that queue

3. Adjust next’s priority

4. Context switch to next

5. When next used up its time slice, insert next
to the right queue the expired array and call
schedule() again

17

18

Aging: the traditional algorithm

for(pp = proc; pp < proc+NPROC; pp++) {

 if (pp->prio != MAX)

 pp->prio++;

 if (pp->prio > curproc->prio)

 reschedule();

}

Problem: O(N). Every process is examined on
each schedule() call!

This code is taken almost verbatim from 6th
Edition Unix, circa 1976.

Simulate aging

 Swapping active and expired gives low
priority processes a chance to run

 Advantage: O(1)

 Processes are touched only when they
start or stop running

19

Find highest priority non-empty queue

 Time complexity: O(1)
 Depends on the number of priority levels, not

the number of processes

 Implementation: a bitmap for fast look up
 140 queues 5 integers
 A few compares to find the first non-zero bit
 Hardware instruction to find the first 1-bit

• bsfl on Intel

20

Real-time scheduling

 Linux has soft real-time scheduling
 No hard real-time guarantees

 All real-time processes are higher priority
than any conventional processes

 Processes with priorities [0, 99] are real-time

 Process can be converted to real-time via
sched_setscheduler system call

21

Real-time policies

 First-in, first-out: SCHED_FIFO

 Static priority

 Process is only preempted for a higher-priority
process

 No time quanta; it runs until it blocks or yields
voluntarily

 RR within same priority level

 Round-robin: SCHED_RR

 As above but with a time quanta

 Normal processes have SCHED_NORMAL
scheduling policy

22

Multiprocessor scheduling

 Per-CPU runqueue

 Possible for one processor to be idle while
others have jobs waiting in their run queues

 Periodically, rebalance runqueues
 Migration threads move processes from one runque

to another

 The kernel always locks runqueues in the same
order for deadlock prevention

23

Adjusting priority

 Goal: dynamically increase priority of interactive
process

 How to determine interactive?
 Sleep ratio
 Mostly sleeping: I/O bound
 Mostly running: CPU bound

 Implementation: per process sleep_avg
 Before switching out a process, subtract from sleep_avg

how many ticks a task ran
 Before switching in a process, add to sleep_avg how many

ticks it was blocked up to MAX_SLEEP_AVG (10 ms)

24

Calculating time slices

 Stored in field time_slice in struct task_struct

 Higher priority processes also get bigger time-slice

 task_timeslice() in sched.c
 If (static_priority < 120) time_slice = (140-static_priority) *

20

 If (static_priority >= 120) time_slice = (140-static_priority)
* 5

25

Example time slices

Priority: Static Pri Niceness Quantum

Highest 100 -20 800 ms

High 110 -10 600 ms

Normal 120 0 100 ms

Low 130 10 50 ms

Lowest 139 20 5 ms

26

