
W4118: threads and synchronization

Instructor: Junfeng Yang

Outline

 Thread definition

 Multithreading models

 Synchronization

2

Threads

 Threads: separate streams of executions that
share an address space
 Allows one process to have multiple point of

executions, can potentially use multiple CPUs

 Thread control block (TCB)
 Program counter (EIP on x86)

 Other registers

 Stack

 Very similar to processes, but different

3

Single and multithreaded processes

Threads in one process share code, data, files, …

4

Why threads?

 Express concurrency
 Web server (multiple requests), Browser (GUI +

network I/O + rendering), …

 Efficient communication
 Using a separate process for each task can be

heavyweight

for(;;) {
 struct request *req = get_request();
 create_thread(process_request, req);
}

5

Threads vs. Processes

 A thread has no data
segment or heap

 A thread cannot live on its
own, it must live within a
process

 There can be more than one
thread in a process, the first
thread calls main() & has the
process’s stack

 Inexpensive creation

 Inexpensive context
switching

 Efficient communication

 If a thread dies, its stack is
reclaimed

• A process has code/data/heap &
other segments

• A process has at least one
thread

• Threads within a process share
code/data/heap, share I/O, but
each has its own stack &
registers

• Expensive creation

• Expensive context switching

• Interprocess communication can
be expressive

• If a process dies, its resources
are reclaimed & all threads die

6

Using threads

 Through thread library
 E.g. pthread, Win32 thread

 Common operations
 create/terminate

 suspend/resume

 priorities and scheduling

 synchronization

7

Example pthread functions

 int pthread_create(pthread_t *thread, const pthread_attr_t
*attr, void *(*start_routine)(void*), void *arg);

 Create a new thread to run start_routine on arg

 thread holds the new thread’s id

 Can be customized via attr

 int pthread_join(pthread_t thread, void **value_ptr);

 Wait for thread termination, and retrieve return value in
value_ptr

 void pthread_exit(void *value_ptr);

 Terminates the calling thread, and returns value_ptr to
threads waiting in pthread_join

8

pthread creation example

void* thread_fn(void *arg)
{
 int id = (int)arg;
 printf("thread %d runs\n", id);
 return NULL;
}
int main()
{
 pthread_t t1, t2;
 pthread_create(&t1, NULL, thread_fn, (void*)1);
 pthread_create(&t2, NULL, thread_fn, (void*)2);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return 0;
} One way to view threads: function

calls, except caller doesn’t wait for
callee; instead, both run concurrently

$ gcc –o threads threads.c –Wall –lpthread
$ threads
thread 1 runs
thread 2 runs

9

Outline

 Thread definition

 Multithreading models

 Synchronization

10

Multithreading models

 Where to support threads?

 User threads: thread management done by
user-level threads library; kernel knows
nothing

 Kernel threads: threads directly supported by
the kernel
 Virtually all modern OS support kernel threads

11

User vs. Kernel Threads

Example from Tanenbaum, Modern Operating Systems 3 e,

(c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

12

User vs. Kernel Threads (cont.)

 Pros: fast, no system call for
creation, context switch

 Cons: kernel doesn’t know
one thread blocks, all threads
in the process blocks

• Cons: slow, kernel does
creation, scheduling, etc

• Pros: kernel knows one
thread blocks, schedule
another

No free lunch!

13

Multiplexing User-Level Threads

 A thread library must map user threads to kernel threads

 Big picture:
 kernel thread: physical concurrency, how many cores?

 User thread: application concurrency, how many tasks?

 Different mappings exist, representing different tradeoffs

 Many-to-One: many user threads map to one kernel
thread, i.e. kernel sees a single process

 One-to-One: one user thread maps to one kernel thread

 Many-to-Many: many user threads map to many kernel
threads

14

Many-to-One

 Many user-level threads
map to one kernel thread

 Pros
 Fast: no system calls

required
 Portable: few system

dependencies

 Cons
 No parallel execution of

threads
• All thread block when one

waits for I/O

15

One-to-One

 One user-level thread
maps to one kernel
thread

 Pros: more concurrency
 When one blocks, others

can run
 Better multicore or

multiprocessor
performance

 Cons: expensive
 Thread operations involve

kernel
 Thread need kernel

resources

16

Many-to-Many

 Many user-level threads
map to many kernel
threads (U >= K)
 Supported some versons

of BSD, and Windows

 Pros: flexible
 OS creates kernel threads

for physical concurrency
 Applications creates user

threads for application
concurrency

 Cons: complex
 Most programs use 1:1

mapping anyway

17

Two-level

 Similar to M:M,
except that a user
thread may be
bound to kernel
thread

18

Other thread design issues

 Semantics of fork() system calls

 Does fork() duplicate only the calling thread or
all threads?

• Running threads? Threads trapped in system call?

 Linux fork() copies only the calling thread

 Signal handling

 Which thread to deliver signals to?

 Segmentation fault kills process or thread?

19

Thread pool

 Problem:
 Creating a thread for each request: costly

• And, the created thread exits after serving a request

 More user request More threads, server overload

 Solution: thread pool
 Pre-create a number of threads waiting for work
 Wake up thread to serve user request --- faster than

thread creation
 When request done, don’t exit --- go back to pool
 Limits the max number of threads

20

Outline

 Thread definition

 Multithreading models

 Synchronization

21

Banking example
int balance = 0;
int main()
{
 pthread_t t1, t2;
 pthread_create(&t1, NULL, deposit, (void*)1);
 pthread_create(&t2, NULL, withdraw, (void*)2);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf(“all done: balance = %d\n”, balance);
 return 0;
}

void* deposit(void *arg)
{
 int i;
 for(i=0; i<1e7; ++i)
 ++ balance;
}

void* withdraw(void *arg)
{
 int i;
 for(i=0; i<1e7; ++i)
 -- balance;
}
 22

Results of the banking example

$ gcc –Wall –lpthread –o bank bank.c
$ bank
all done: balance = 0
$ bank
all done: balance = 140020
$ bank
all done: balance = -94304
$ bank
all done: balance = -191009

 Why?

23

A closer look at the banking example

$ objdump –d bank
…
08048464 <deposit>:
… // ++ balance
8048473: a1 80 97 04 08 mov 0x8049780,%eax
8048478: 83 c0 01 add $0x1,%eax
804847b: a3 80 97 04 08 mov %eax,0x8049780
…

0804849b <withdraw>:
… // -- balance
80484aa: a1 80 97 04 08 mov 0x8049780,%eax
80484af: 83 e8 01 sub $0x1,%eax
80484b2: a3 80 97 04 08 mov %eax,0x8049780
…

24

One possible schedule

mov 0x8049780,%eax

add $0x1,%eax

mov %eax,0x8049780

mov 0x8049780,%eax

sub $0x1,%eax

mov %eax,0x8049780

time

CPU 0 CPU 1

One deposit and one withdraw,
balance unchanged. Correct

eax0: 0

eax0: 1

balance: 0

balance: 1

eax1: 1

eax1: 0

balance: 0

25

Another possible schedule

mov 0x8049780,%eax

add $0x1,%eax

mov %eax,0x8049780

mov 0x8049780,%eax

sub $0x1,%eax

mov %eax,0x8049780

time

CPU 0 CPU 1

eax0: 0

eax0: 1

balance: 0

balance: -1

eax1: 0

eax1: -1

balance: 1

One deposit and one withdraw,
balance becomes less. Wrong!

26

Race condition

 Definition: a timing dependent error involving
shared state

 Can be very bad
 “non-deterministic:” don’t know what the output will be,

and it is likely to be different across runs

 Hard to detect: too many possible schedules

 Hard to debug: “heisenbug,” debugging changes timing so
hides bugs (vs “bohr bug”

27

How to avoid race conditions?

 Atomic operations: no other
instructions can be interleaved,
executed “as a unit” “all or
none”, guaranteed by hardware

 A possible solution: create a
super instruction that does
what we want atomically
 add $0x1, 0x8049780

 Problem
 Can’t anticipate every possible

way we want atomicity

 Increases hardware
complexity, slows down other
instructions

// ++ balance
mov 0x8049780,%eax
add $0x1,%eax
mov %eax,0x8049780
…

// -- balance
mov 0x8049780,%eax
sub $0x1,%eax
mov %eax,0x8049780
…

28

Layered approach to synchronization

Hardware-provided low-level
atomic operations

High-level synchronization
primitives

Properly synchronized application

 Hardware provides simple low-level atomic
operations, upon which we can build high-level,
synchronization primitives, upon which we can
implement critical sections and build correct
multi-threaded/multi-process programs

29

Example synchronization primitives

 Low-level atomic operations
 On uniprocessor, disable/enable interrupt

 On x86, aligned load and store of words

 Special instructions:
• test-and-set (TSL), compare-and-swap (XCHG)

 High-level synchronization primitives
 Lock

 Semaphore

 Monitor

30

