
W4118 Operating Systems

Instructor: Junfeng Yang

1

Outline

� Introduction to scheduling

� Scheduling algorithms

2

Direction within course

� Until now: interrupts, processes, threads,
synchronization
� Mostly mechanisms

� From now on: resources
� Resources: things processes operate upon

• E.g., CPU time, memory, disk space

� Mostly policies

3

Types of resource

� Preemptible
� OS can take resource away, use it for something
else, and give it back later
• E.g., CPU

� Non-preemptible
� OS cannot easily take resource away; have to wait
after the resource is voluntarily relinquished
• E.g., disk space

� Type of resource determines how to manage

4

Decisions about resource

� Allocation: which process gets which resources
� Which resources should each process receive?

� Space sharing: Controlled access to resource

� Implication: resources are not easily preemptible

� Scheduling: how long process keeps resource
� In which order should requests be serviced?

� Time sharing: more resources requested than can be
granted

� Implication: Resource is preemptible

5

Role of Dispatcher vs. Scheduler

� Dispatcher

� Low-level mechanism

� Responsibility: context switch

� Scheduler
� High-level policy

� Responsibility: deciding which process to run

� Could have an allocator for CPU as well
� Parallel and distributed systems

6

When to schedule?

� When does scheduler make decisions?
When a process

1. switches from running to waiting state
2. switches from running to ready state
3. switches from waiting to ready
4. terminates

� Minimal: nonpreemptive
� ?

� Additional circumstances: preemptive
� ?

7

Outline

� Introduction to scheduling

� Scheduling algorithms

8

Overview of scheduling algorithms

� Criteria: workload and environment

� Workload
� Process behavior: alternating sequence of CPU and
I/O bursts

� CPU bound v.s. I/O bound

� Environment
� Batch v.s. interactive?

� Specialized v.s. general?

9

Scheduling performance metrics

� Min waiting time: don’t have process wait long
in ready queue

� Max CPU utilization: keep CPU busy

� Max throughput: complete as many processes
as possible per unit time

� Min response time: respond immediately

� Fairness: give each process (or user) same
percentage of CPU

10

First-Come, First-Served (FCFS)

� Simplest CPU scheduling algorithm
� First job that requests the CPU gets the CPU

� Nonpreemptive

� Implementation: FIFO queue

11

Process Arrival Time Burst Time

P
1

0 7

P
2

0 4

P
3

0 1

P
4

0 4

� Gantt chart

� Average waiting time: (0 + 7 + 11 + 12)/4 = 7.5

Example of FCFS

P1 P2 P3 P4Schedule:

12

P3

Arrival order: P
3

P
2

P
4

P
1

� Gantt chart

� Average waiting time: (9 + 1 + 0 + 5)/4 = 3.75

Example of FCFS: different arrival order

P1P2 P4Schedule:

13

FCFS advantages and disadvantages

� Advantages
� Simple

� Fair

� Disadvantages
� waiting time depends on arrival order

� Convoy effect: short process stuck waiting for long
process

� Also called head of the line blocking

14

Shortest Job First (SJF)

� Schedule the process with the shortest time

� FCFS if same time

15

Process Arrival Time Burst Time

P
1

0 7
P

2
2 4

P
3

4 1
P

4
5 4

� Gantt chart

� Average waiting time: (0 + 6 + 3 + 7)/4 = 4

Example of SJF (w/o preemption)

P1 P2 P3 P4

P1 P2P3 P4Schedule:

Arrival:

16

Shortest Job First (SJF)

� Schedule the process with the shortest time
� FCFS if same time

� Advantages
� Minimizes average wait time. Provably optimal

� Disadvantages
� Not practical: difficult to predict burst time

• Possible: past predicts future

� May starve long jobs

17

Shortest Remaining Time First (SRTF)

� If new process arrives w/ shorter CPU burst
than the remaining for current process,
schedule new process
� SJF with preemption

� Advantage: reduces average waiting time

18

� Gantt chart

� Average waiting time: (9 + 1 + 0 + 2)/4 = 3

Example of SRTF

P1 P2 P3 P4

P1 P2 P3 P4Schedule:

Arrival:

P2 P1

19

Round-Robin (RR)

� Practical approach to support time-sharing

� Run process for a time slice, then move to
back of FIFO queue

� Preempted if still running at end of time-slice

� How to determine time slice?

20

� Gantt chart with time slice = 3

� Average waiting time: (8 + 8 + 5 + 7)/4 = 7

� Average response time: (0 + 1 + 5 + 5)/4 = 2.75

� # of context switches: 7

Example of RR: time slice = 3

P1 P2 P3 P4Arrival:

Queue: P1

P2

P1

P1

P2

P1

P3

P2

P1

P3

P4

P2 P1

P3

P4

P2 P1

P3

P4

P2 P1

P4

P2 P1

P4

P2 P1

P4

P4

21

� Gantt chart with time slice = 1

� Average waiting time: (8 + 6 + 1 + 7)/4 = 5.5

� Average response time: (0 + 0 + 1 + 2)/4 = 0.75

� # of context switches: 14

Example of RR: smaller time slice

P1 P2 P3 P4Arrival:

Queue: P1

P1

P2

P1

P3

P2

P1

P4

P2 P1

P4

P4

P2

P1P1

P1

P3

P4

P2

P1

P4

P2 P1

P4

P2 P1

P4

P2P1

P4

P2 P1

P4

P2 P1

P4 P1

P4

22

� Gantt chart with time slice = 10

� Average waiting time: (0 + 5 + 7 + 7)/4 = 4.75

� Average response time: same

� # of context switches: 3 (minimum)

Example of RR: larger time slice

P1 P2 P3 P4Arrival:

Queue: P1

P2

P1 P1

P3

P2 P3

P4

P2 P3

P4

P4P1

P3

P2

P4

23

RR advantages and disadvantages

� Advantages
� Low response time, good interactivity

� Fair allocation of CPU across processes

� Low average waiting time when job lengths vary widely

� Disadvantages
� Poor average waiting time when jobs have similar lengths

• Average waiting time is even worse than FCFS!

� Performance depends on length of time slice
• Too high � degenerate to FCFS

• Too low � too many context switches, costly

24

Priorities

� A priority is associated with each process

� Run highest priority ready job (some may be
blocked)

� Round-robin among processes of equal priority

� Can be preemptive or nonpreemptive

� Representing priorities

� Typically an integer

� The larger the higher or the lower?

25

Setting priorities

� Priority can be statically assigned
� Some always have higher priority than others

� Problem: starvation

� Priority can be dynamically changed by OS
� Aging: increase the priority of processes that wait
in the ready queue for a long time

26

Priority inversion

� High priority process depends on low priority
process (e.g. to release a lock)
� Another process with in-between priority arrives?

� Solution: priority inheritance
� Inherit highest priority of waiting process

� Must be able to chain multiple inheritances

� Must ensure that priority reverts to original value

