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ABSTRACT
This paper describes an efficient and robust approach to
provide a safe execution environment for an entire operat-
ing system, such as Linux, and all its applications. The
approach, which we call Secure Virtual Architecture (SVA),
defines a virtual, low-level, typed instruction set suitable for
executing all code on a system, including kernel and applica-
tion code. SVA code is translated for execution by a virtual
machine transparently, offline or online. SVA aims to en-
force fine-grained (object level) memory safety, control-flow
integrity, type safety for a subset of objects, and sound anal-
ysis. A virtual machine implementing SVA achieves these
goals by using a novel approach that exploits properties of
existing memory pools in the kernel and by preserving the
kernel’s explicit control over memory, including custom al-
locators and explicit deallocation. Furthermore, the safety
properties can be encoded compactly as extensions to the
SVA type system, allowing the (complex) safety checking
compiler to be outside the trusted computing base. SVA
also defines a set of OS interface operations that abstract all
privileged hardware instructions, allowing the virtual ma-
chine to monitor all privileged operations and control the
physical resources on a given hardware platform. We have
ported the Linux kernel to SVA, treating it as a new archi-
tecture, and made only minimal code changes (less than 300
lines of code) to the machine-independent parts of the kernel
and device drivers. SVA is able to prevent 4 out of 5 mem-
ory safety exploits previously reported for the Linux 2.4.22
kernel for which exploit code is available, and would pre-
vent the fifth one simply by compiling an additional kernel
library.

Categories and Subject Descriptors: D.4.6 [Operating
Systems] Security and Protection; D.4.7 [Operating Systems]
Organization and Design; D.3.4 [Programming Languages]
Processors;

General Terms: Design, reliability, security
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1. INTRODUCTION
Despite many advances in system security, most major op-

erating systems remain plagued by security vulnerabilities.
One major class of such vulnerabilities is memory safety er-
rors, such as buffer overruns, double frees, and format string
errors. Rapidly spreading malware like Internet worms, es-
pecially those that use “self-activation” [49], exploit such er-
rors because such attacks can be carried out in large num-
bers of systems quickly and fully automatically. Weaver et
al. estimate that buffer overflow and other attacks due to
the use of C/C++ represent roughly 50% of all attacks in
the last 20 years [49].

Safe programming languages, such as Java and C#, guar-
antee that such errors do not occur, but “commodity” op-
erating systems like Linux, FreeBSD, Mac OS, Solaris and
Windows (as well as security-sensitive software such as Open-
SSH and Apache) are all written using C and C++, and
hence enjoy none of the safety guarantees of safe languages.

Furthermore, a safe execution environment can foster new
avenues for innovation in commodity systems. Several pre-
vious research projects have studied novel OS design strate-
gies that exploit a safe execution environment, by using
safe languages like Modula 3 (e.g,. SPIN [5]), Java (e.g.,
JX, JavaOS, KaffeOS, and others [19, 36, 23, 9, 4]), C#
(e.g., Singularity [24]), ML (ML/OS [17]), and Haskell (sev-
eral experimental kernels [22]). For example, SPIN allows
user programs to create untrusted, safe kernel extensions
for higher performance. Singularity allows a single address
space to be shared by user processes and the kernel and uses
typed communication channels for interprocess communica-
tion [16]. Many such design innovations are fundamentally
impractical without a safe execution environment.

A less obvious (but, in the long term, perhaps even more
important) issue is that many higher-level security problems
could be addressed effectively by a combination of compiler
and run-time techniques (Section 9 lists some examples).
The compiler-based virtual machines1 underlying systems

1Throughout this paper, we use the term “virtual machine” to
refer to a run-time system implementing a virtual instruction set
architecture, such as the Java Virtual Machine. This differs from
the literature on hypervisors, in which the term virtual machine
refers to a single instance of a guest OS.



like JavaOS, JX, or Singularity make it possible to apply
sophisticated compiler techniques on the OS and its appli-
cations. Most practical security research, however, focuses
on systems in widespread use rather than novel experimental
operating systems.

All three of the above goals – memory safety, novel de-
sign opportunities, and more powerful security solutions –
can be enabled with a single new (but very ambitious) strat-
egy: using a safe, compiler-based virtual machine capable of
hosting a complete commodity operating system and security-
sensitive system software. Such a VM would provide a safe
execution environment for most or all of the kernel and sys-
tem software, largely eliminating memory safety errors and
enabling some of the novel OS design ideas to be incorpo-
rated. Also, if a practical, compiler-based virtual machine
is available to host a commodity OS, security researchers
could begin to explore novel approaches for a wide range of
challenging security problems, combining the compiler ca-
pabilities with run-time monitoring in the OS or the VM.

There have been several previous approaches for enforc-
ing various safety guarantees for commodity OS code, as
discussed in Section 8. On the one hand, approaches like
Software Fault Isolation [47] or XFI [45] enforce isolation be-
tween coarse-grained components but do not provide “fine-
grained safety guarantees” (e.g., for individual buffers, point-
ers, or heap objects) needed for a safe execution environ-
ment. At the other extreme, language-based approaches
such as Cyclone [20, 6] and Deputy [50] provide a safe ex-
ecution environment but have only been applied to specific
components, appear difficult to extend to a complete kernel,
and require significant changes or annotations to existing
kernel code.

In this paper, we describe a Secure Virtual Architecture
and its implementation, both designed to support modern
operating systems efficiently and with relatively little change
to the guest OS. SVA provides a safe execution environment
for a kernel and (selected) application code. Porting a ker-
nel to SVA requires no major design changes; it is similar to,
but significantly simpler than, porting to a new hardware ar-
chitecture because SVA provides simple abstractions for the
privileged operations performed by a kernel. Furthermore,
the compilation and execution process is largely transparent:
most application or kernel developers would see no change
when running SVA code (unless they inspect object code).

The safety guarantees SVA provides, listed in detail in Sec-
tion 4.9, include memory safety, control-flow integrity, type
safety for a subset of objects, and support for sound pro-
gram analysis. These guarantees are close to, but slightly
weaker than, the safety guarantees provided by a safe lan-
guage like Java, C#, or Modula-3. There are two essential
weaknesses which occur because we preserve the low-level
memory model of C: (a) dangling pointer references can oc-
cur but are rendered harmless, i.e., they cannot violate the
safety guarantees (although they may still represent poten-
tial logical errors); and (b) arbitrary, explicit casts are per-
mitted, as in C. (In fact, we support the full generality of
C code with no required source changes.) These compro-
mises allow us to achieve a fairly strong degree of safety for
commodity OSs while minimizing kernel porting effort.

SVA is also designed to ensure that the (relatively com-
plex) safety checking compiler does not need to be a part
of the trusted computing base. The compiler can generate
code in the SVA virtual instruction set, and a simple type

checker can ensure that the code meets the safety require-
ments of SVA. This provides a robust implementation strat-
egy for enforcing the safety properties of SVA. Furthermore,
higher-level security properties (e.g., information flow [35] or
security automata [48]) expressible as types can be encoded
compactly in SVA code, enabling robust implementations of
sophisticated security-checking strategies.

The next section gives an overview of the SVA design.
Section 3 describes the virtual instruction set and the ker-
nel boot and execution process. Section 4 explains the ap-
proach to enforcing safety in SVA. Section 5 explains the
SVA type system and type checker, which help minimize
the SVA trusted computing base. Section 6 describes how
we ported the Linux kernel to SVA. Section 7 presents our
experimental evaluation, including performance overheads,
effectiveness at catching previously reported kernel exploits,
and static metrics on the effectiveness of the safety checking
compiler. Finally, Section 8 compares SVA with previous
work, and Section 9 concludes with a brief summary and
our goals for ongoing and future work.

2. OVERVIEW OF THE SVA APPROACH
The broad goals of the SVA project are to provide a

safe execution environment for commodity operating sys-
tems and the security-critical programs that run on them,
and (in future work) to incorporate novel solutions to higher-
level security problems that combine OS, virtual machine,
and compiler techniques. This paper focuses on the first
goal. We aim to achieve this goal under two major con-
straints: (a) have only a small impact on performance, and
(b) require small porting effort and few OS design changes
on the part of OS developers.

Figure 1: System Organization with SVA

Figure 1 shows the system organization with SVA. Briefly,
SVA defines a virtual, low-level, typed instruction set suit-
able for executing all code on a system, including kernel and
application code. Part of the instruction set is a set of oper-
ations (collectively called SVA-OS) that encapsulate all the
privileged hardware operations needed by a kernel. SVA also
defines a few constraints that kernel memory allocators must
satisfy and a few operations they must implement. Safety
properties such as memory safety and type safety (and in the
future, also higher-level security properties, such as some of
those listed in Section 9) are encoded as extensions of this in-
struction set and its type system. The system implementing
the virtual instruction set is responsible for verifying that an



executable “bytecode” (i.e., virtual object code) file satisfies
the desired safety properties. We refer to this system as a
Secure Virtual Machine (SVM) and the virtual object code
that it executes as “bytecode.”

The SVA design builds on two key technologies from our
previous research: the LLVM virtual instruction set defini-
tion (which supports a sophisticated and widely-used com-
piler infrastructure) [27, 1], and the SAFECode principles
for efficient safety enforcement for unmodified C code [11,
12]. These are described briefly in Sections 3.2 and 4.1.
SVA extends the LLVM virtual instruction set to add OS
support operations, as described in Section 3. SVA extends
the safety strategy in SAFECode to work in a full-fledged
commodity kernel, as described in Section 4.

Porting an existing kernel to SVA includes three steps.
First, the target-dependent layer of the kernel is ported to
use the SVA-OS interface. This is similar to porting to a
new architecture, but potentially simpler because the SVA-
OS operations are slightly higher-level and more abstract.
At the end of this step, there will be no explicit assembly
code in the kernel. Second, a few well-defined changes are
required in kernel memory allocators, to implement two sim-
ple constraints on object alignment and memory reuse. SVA
requires no other changes to the allocation strategies used
within these allocators. More importantly, except for these
allocator changes, the target-independent code of a kernel
needs no other general class of changes for an initial correct
port to SVA (there can be system-specific design inconsis-
tencies that must be fixed, as we found for the signal-handler
dispatch mechanism in Linux). Finally, some optional im-
provements to kernel code can significantly improve the anal-
ysis precision and hence the safety guarantees provided by
SVA. Sections 3.3, 4.4 and 6.3 describe these three kinds of
changes in general terms, and Section 6 describes the specific
changes we made to port the Linux kernel to SVA.

The steps by which kernel or secure application code is
compiled and executed on SVA are as follows. A front-end
compiler translates source code to SVA bytecode. A safety
checking compiler (which may be part of the front end or
separate) transforms kernel or application bytecode to im-
plement the safety properties we provide. This code is then
shipped to end-user systems. At install time or load time,
a bytecode verifier checks the safety properties of the byte-
code and a translator transparently converts the bytecode
into native code for a particular processor. The verifica-
tion and translation process can happen offline (to maximize
performance) or online (to enable additional functionality).
When translation is done offline, the translated native code
is cached on disk together with the bytecode, and the pair
is digitally signed together to ensure integrity and safety
of the native code. In either case, kernel modules and de-
vice drivers can be dynamically loaded and unloaded (if the
kernel supports it) because both the bytecode verifier and
translator are intraprocedural and hence modular (unlike
the safety-checking compiler). Moreover, modules can be
dynamically loaded whether they were compiled with the
safety checking compiler or were left as external “unknown”
code; obviously, including them improves the SVA safety
guarantees as described in Section 4.

An important issue that we do not address in this paper
is kernel recovery after a safety error is detected at run-
time. Several systems, including Vino [37], Nooks [42, 44]
and SafeDrive [50], provide strategies for recovering a com-

modity kernel from a fault due to a device driver or other
extension. SVA does not yet include any specific mecha-
nisms for recovery, and investigating recovery mechanisms
(including these existing techniques, which should be com-
patible with SVA) is a subject of future work.

3. THE SVA INSTRUCTION SET AND
EXECUTION

The SVA virtual instruction set has two parts: the core
computational instructions (SVA-Core), which are used by
all software running on SVA for computation, control flow,
and memory access, and the OS support operations (SVA-
OS). Below, we describe the virtual instruction set and the
execution strategy for a kernel running on the SVA virtual
machine (SVM).

3.1 Instruction Set Characteristics
The SVA-Core instructions and the SVA object file for-

mat are inherited directly from the LLVM compiler infras-
tructure [27]. LLVM (and hence, SVM) defines a single,
compact, typed instruction set that is used both as the in-
memory compiler internal representation (IR) and the ex-
ternal, on-disk “bytecode” representation. This is a simple,
RISC-like, load-store instruction set on which detailed op-
timizations can be expressed directly, like a machine lan-
guage, but unlike a machine language, it also enables so-
phisticated analysis and transformation. There are four ma-
jor differences from native hardware instruction sets. First,
memory is partitioned into code (a set of functions), glob-
als, stack, and other memory. Second, every function has
an explicit control flow graph with no computed branches.
Third, the instruction set uses an “infinite” virtual register
set in Static Single Assignment (SSA) form, making many
dataflow analyses simple and powerful. Fourth, the instruc-
tion set is typed, and all instructions are type-checked. The
type system enables advanced techniques for pointer anal-
ysis and array dependence analysis. Unsafe languages like
C and C++ are supported via explicit cast instructions, a
detailed low-level memory model, and explicit control over
memory allocation and deallocation.

An SVA object file (called a Module) includes functions,
global variables, type and external function declarations,
and symbol table entries. Because this code representa-
tion can be analyzed and transformed directly, it simplifies
the use of sophisticated compiler techniques at compile-time,
link-time, load-time, run-time, or “idle-time” between pro-
gram runs [27]. In fact, both the safety checking compiler
and the bytecode verifier operate on the same code represen-
tation. Furthermore, because the bytecode language is also
designed for efficient just-in-time code generation,2 the byte-
code verification and translation steps can easily be done at
load-time for dynamically loaded modules.

3.2 SVA-Core Instructions
The SVA-Core instruction set includes instructions for or-

dinary arithmetic and logical operations, comparisons that
produce a boolean value, explicit conditional and uncondi-
tional branches, typed indexing into structures and arrays,
loads and stores, function calls, and both heap and stack
memory allocation and deallocation. Heap objects can be

2The underlying LLVM optimizer and JIT are robust and efficient
enough to be used in production systems like Mac OS X.



Name Description
sva.save.integer(void * buffer) Save the Integer State of the native processor in to the memory pointed to by buffer.
sva.load.integer(void * buffer) Load the Integer State stored in buffer back on to the processor. Execution re-

sumes at the instruction immediately following the sva.save.integer() instruction
that saved the state.

sva.save.fp(void * buffer, int always) Save the FP State of the native processor or FPU to the memory pointed to by
buffer. If always is 0, state is only saved if it has changed since the last sva.load.fp().
Otherwise, save state unconditionally.

sva.load.fp(void * buffer) Load the FP State of the native processor (or FPU) from a memory buffer previously
used by sva.save.fp().

Table 1: Functions for Saving and Restoring Native Processor State

Name Description
sva.icontext.save(void* icp, void* isp) Save Interrupt Context icp into memory pointed to by isp as Integer State.
sva.icontext.load(void* icp, void* isp) Load Integer State isp into Interrupt Context pointed to by icp.
sva.icontext.commit(void* icp) Commit the entire Interrupt Context icp to memory.
sva.ipush.func(void* icp, int (*f)(...),
...)

Modify the state in Interrupt Context icp so that function f has been called with
the given arguments. Used in signal handler dispatch.

sva.was.privileged(void* icp) Return 1 if Interrupt Context icp was running in privileged mode; else, return 0.

Table 2: Functions for Manipulating the Interrupt Context

allocated using explicit malloc and free instructions that
are (typically) lowered to call the corresponding standard
library functions; however, some heap objects may be allo-
cated via other functions (e.g., custom allocators) that may
not be obvious to the compiler. The instruction set also sup-
ports fundamental mechanisms for implementing exceptions
(including C++ exceptions and C’s setjmp/longjmp), and
multithreaded code.

We extended the LLVM instruction set with atomic mem-
ory access instructions (atomic load-increment-store and
compare-and-swap) and a memory write barrier instruction
for the SVA-Core instruction set. These instructions can
support an OS kernel, multi-threaded userspace applica-
tions, and libraries.

3.3 SVA-OS Instructions
We developed a set of extensions (SVA-OS) to the core

instruction set (exposed as an API) to provide low-level
mechanisms that are normally implemented in a kernel using
hand-written assembly code [8]. An important design choice
is that SVA-OS provides only mechanisms, not policies; the
policies are left to the OS kernel. These operations allow the
SVM to monitor and control privileged OS operations as all
such operations are performed by the SVM. These instruc-
tions must provide two critical services to the OS. First, the
OS needs mechanisms to manipulate privileged hardware re-
sources such as the page and interrupt vector tables. Second,
the OS requires instructions to efficiently save, restore, and
manipulate the processor state.

Privileged hardware operations, such as I/O functions,
MMU configuration functions, and the registration of inter-
rupt and system call handlers, are straightforward (and are
not shown here). For every such operation, we added a new
SVA-OS function to provide the necessary functionality.

The state manipulation instructions require some novel
techniques. Ideally, the OS and other external tools should
save, restore and manipulate state in terms of objects visible
at the virtual instruction set level (such as the virtual reg-
isters). Supporting such functionality is necessary (e.g., for
debugging) but would be very inefficient and is unnecessary

for critical path operations like context-switching or signal
delivery. Our solution is to allow the OS to save and restore
native processor state directly (but opaquely) using a set of
high level, well defined functions (as shown in Table 1).

We divided the opaque native state into two components.
The control state consists of a program’s control registers
(including privileged registers) and general-purpose regis-
ters. The floating point (FP) state includes all floating
pointer registers. There are separate instructions for sav-
ing and loading control state and FP state. Since many OS
kernels and programs do not use FP state, it can be saved
lazily so that the critical paths (e.g., context switching) need
not be lengthened by always saving the floating point state
of the processor.

On an interrupt or system call, the SVM must save native
state to memory before handing control over to the ker-
nel. SVM is able to take advantage of processor features
for low latency interrupts (e.g. shadow registers) by cre-
ating an interrupt context. This abstraction represents the
interrupted control state of the processor. On entry to the
kernel, the SVM saves the subset of the control state that
will be overwritten by the OS kernel on the kernel stack; all
other control state is left on the processor. The OS kernel
is then given a handle to the interrupt context which it can
manipulate using the instructions in Table 2. In most cases,
the OS kernel need not commit the entire interrupt context
to memory; however, it can use the sva.icontext.save or
sva.icontext.commit instructions for those cases in which
it does (e.g., context switching, signal delivery).

3.4 The SVA Boot and Execution Strategy
The Secure Virtual Machine (SVM) implements SVA by

performing bytecode verification, translation, native code
caching and authentication, and implementing the SVA-OS
instructions on a particular hardware architecture. Section 2
briefly discussed the high level steps by which a SVA kernel
is loaded and executed. Here, we describe some additional
details of the process.

On system boot, a native code boot loader will load both
the SVM and OS kernel bytecode and then transfer con-



trol to the SVM. The SVM will then begin execution of
the operating system, either by interpreting its bytecode or
translating its bytecode to native code. For handling ap-
plication code during normal operation, the SVM can use
callbacks into the operating system to retrieve cached native
code translations. These translations can be cryptographi-
cally signed to ensure that they have not been modified.

Since the SVM translates all code on the system (including
the OS kernel), it is able to exercise a great degree of control
over software execution. It can inline reference monitors [15]
during code generation; it can choose to execute software in
less privileged processor modes (similar to hypervisors like
Xen [13]). Using either or both of these techniques allows
the SVM to mediate access to privileged processor resources
(like the MMU) and to enforce a wide range of policies.

In our design, we aim to run both SVM code and kernel
code at the highest privilege level (e.g., level 0 on x86). Our
system is designed assuming the safety checking techniques
in Section 4 are used to prevent the kernel from corrupt-
ing SVM data. Our current work does this for the SVA-
Core instructions; we will address the SVA-OS instructions
in future work. Designers of a security-critical system may
choose to add an extra layer of defense and run kernel code
at a lower privilege level than SVM, similar to hypervisors
like VMWare or Xen. The required use of a trap to change
privilege level when making a“hypercall” to SVM would add
some additional overhead but should not require any other
significant change to the approach.

The SVM uses two methods to obtain memory for its own
execution. First, it reserves a portion of physical memory
for its initial use (“bootstrap”); this memory is used for code
and internal data needed during system boot before the OS
kernel has become active. The amount of memory needed for
bootstrap is fixed and statically determinable; the current
version of SVM reserves about 20KB. Second, during normal
system operation, the SVM uses callback functions provided
by the OS to obtain memory from and release memory to the
OS. Since the SVM mediates all memory mappings, it can
ensure that the memory pages given to it by the OS kernel
are not accessible from the kernel or any other program on
the system.

4. ENFORCING SAFETY FOR KERNEL
CODE

In this section, we first give some brief background on
SAFECode, our previous work on enforcing fine grained
safety properties for stand-alone C programs. (SVA uses
SAFECode directly to provide a safe execution environment
for stand-alone programs.) We then identify three major
challenges that arise when we apply the safety principles in
SAFECode to a commodity kernel. In the subsequent sec-
tions, we present our solution to each of the three challenges.
We end by summarizing concretely the specific safety guar-
antees SVA provides for kernel code.

4.1 Background: The SAFECode Approach
for Enforcing Safety for C Programs

The SAFECode compiler and run-time system together
enforce the following safety properties for a complete, stan-
dalone C program with no manufactured addresses [11, 12,
10]:

(T1) Control-flow integrity : A program will never execute
an instruction sequence that violates the compiler-com-
puted control flow graphs and call graph.

(T2) Type safety for a subset of objects: All objects in type-
homogeneous partitions (defined below) are accessed
or indexed according to their compiler-inferred type,
or arrays of that type.

(T3) Array bounds safety : All accesses to array objects (in-
cluding strings) fall within the array bounds.

(T4) No uninitialized pointer dereferences: All successful
loads, stores, or calls use correctly initialized pointers.

(T5) No double or illegal frees: Dynamic deallocation oper-
ations will only be performed for live (not previously
deallocated) objects with a legal pointer to the start
of the allocated object.

(T6) Sound analysis: A sound operational semantics [11]
is enforced, incorporating a flow-insensitive points-to
graph, call graph, and a subset of type information,
usable by compilers and static analysis tools to imple-
ment sound higher-level analyses.

Note that dangling pointer dereferences (i.e., read or write
after free) are not prevented. Nevertheless, SAFECode en-
sures that the other guarantees are not violated.

SAFECode enforces these properties through a combi-
nation of program analysis and run-time checks, with no
changes to source code of programs and without preventing
the explicit deallocation of objects. Briefly, the SAFECode
principles are as follows.

The compiler is given (or computes) a call graph, a“points-
to graph” representing a static partition of all the memory
objects in the available part of the program [29], and type
information for a subset of the partitions as explained below.
It automatically transforms the program (using an algorithm
called Automatic Pool Allocation [28]) so that memory ob-
jects in distinct partitions (nodes in the points-to graph)
are allocated in different logical “pools” of memory. Indi-
vidual object allocation and deallocation operations occur
at exactly the same locations as the original program but
use the appropriate pool. Stack and global objects are reg-
istered with the pool to which they were assigned by the
pointer analysis, and stack objects are deregistered when
returning from the parent function. A key property SAFE-
Code exploits is that, with a suitable pointer analysis, many
partitions (and therefore the corresponding run-time pools)
are type-homogeneous (TH), i.e., all objects allocated in the
pool are of a single (known) type or are arrays of that type.

The fundamental sources of memory safety violations in
C programs include uninitialized variable references, array
bounds violations (including format string errors), dangling
pointer references, and a variety of illegal type casts (in-
cluding improper arguments to function calls). SAFECode
prevents these violations and enforces the guarantees above
as follows:

• It prevents uninitialized variable references via data-
flow analysis (for local variables) and via initialization
of allocated memory to ensure a hardware-detected
fault on dereferences (for all other pointer variables).



• It prevents array bounds violations using an exten-
sion [10] of the Jones-Kelly approach for detecting ar-
ray bounds violations [26]. This extension uses a sep-
arate run-time search tree (a splay tree) in each pool
to record all array objects at run-time, and looks up
pointer values in this table to check for bounds viola-
tions. This strategy allows SAFECode to avoid using
“fat pointers” for tracking array bounds at run-time;
fat pointers, when used inside structures or variables
that are accessible from library functions, are known
to cause significant compatibility problems [32, 25, 3].

• Simple compile-time type-checking is sufficient to en-
sure type safety of objects in type-homogeneous pools.
Dangling pointers to these objects cannot compromise
type safety as long as the run-time allocator does not
release memory of one pool to be used by any other
pool, until the first pool is “dead”; in practice, SAFE-
Code releases memory of a pool only when the pool
is unreachable [12]. For pointers to objects in non-TH
pools, run-time “pool bounds checks” at dereference
ensure the pointer target lies within the pool.3 Dan-
gling pointers to stack frames are prevented by pro-
moting stack objects into heap objects where needed.

• SAFECode enforces control-flow integrity by generat-
ing native code itself (preventing illegal branches to
data areas), preventing writes to code pages, and using
run-time checks to ensure that indirect function calls
match the call targets computed by the compiler’s call
graph analysis.

• Finally, the soundness of the operational semantics,
which requires correctness of the given analysis infor-
mation (i.e., the call graph, points-to graph, and type
information for TH partitions) follows directly from
the previous safety properties[11].

Partitioning memory into logical pools corresponding to
the pointer analysis has several critical benefits for the SAFE-
Code approach:

• Type-homogeneity directly gives type safety for some
objects.

• Type-homogeneous pools and run-time checks for non-
TH pools together make dangling pointers harmless.

• No run-time checks are needed on dereferences of a
pointer between TH pools.

• Using a separate splay tree per pool and eliminating
scalar objects from the splay tree in TH pools make
array bounds checking orders-of-magnitude faster than
the original Jones-Kelly method. In fact, it is enough
to make this approach practical [10].

Note that the SAFECode guarantees are weaker than a
safe language like Java or C#. In particular, SAFECode
does not prevent or detect dangling pointers to freed memory
(safe languages prevent these by using automatic memory
management) and permits flexible pointer casts at the cost

3We could instead perform more precise “object bounds” checks,
using the same search trees as for array bounds violations. That is
what we do in SVA.

of type safety for a subset of memory. The SAFECode ap-
proach provides a useful middle ground between completely
safe languages and unsafe ones like C/C++ as it does not
impose much performance overhead, does not require auto-
matic memory management, is able to detect all types of
memory safety errors other than dangling pointer uses, and
is applicable to the large amount of legacy C/C++ code.

4.2 SAFECode for a Kernel: Challenges
We use the SAFECode compiler directly in SVA for stand-

alone programs. Extending the SAFECode safety principles
from standalone programs to a commodity kernel, however,
raises several major challenges:

• The custom allocators used by kernels to manage both
correctness and performance during memory allocation
are incompatible with the pool allocation strategy that
is fundamental to SAFECode.

• Unlike standalone programs, a kernel contains many
entry and exit points from or to external code, and
many of these bring pointers into and out of the kernel.

• Unlike most applications, a kernel typically uses a num-
ber of “manufactured addresses,” i.e., where a prede-
fined integer value is used as an address, and these can
be difficult to distinguish from illegal addresses.

In the following subsections, we present our solution to
these challenges. Preserving custom allocators is, by far,
the most difficult issue and is a major focus of this section.

4.3 Integrating Safety Checking with Kernel
Allocators

The SAFECode approach critically depends on a spe-
cific custom allocation strategy, namely, pool allocation with
pools partitioned according to a pointer analysis. Kernels,
however, make extensive use of custom allocators, e.g., _al-
loc_bootmem, kmem_cache_alloc, kmalloc and vmalloc in
Linux, or the zalloc, kalloc and IOMalloc families of allo-
cators in the Darwin kernel of Mac OS X. Running SAFE-
Code directly on a kernel (even by identifying the kernel allo-
cators to the compiler) is impractical because the compiler-
generated allocation strategy would not work: the kernel
allocators ensure many complex correctness requirements,
e.g., pinning memory, alignment requirements, virtual mem-
ory mappings, and other issues.

The key insight underlying our solution is that a kernel
typically already uses pool allocation and furthermore, many
of the “pools” are type-homogeneous: distinct pools are cre-
ated for different kinds of heavily used kernel objects. For
example, a Darwin reference gives a partial list of 27 differ-
ent data types (or classes of data types) for which a separate
“zone” per data type is created using the zone allocator. In
Linux, at least 37 different “caches” are created using the
kmem_cache_create operation (not including the non-type-
homogeneous caches used within the more generic kmalloc

allocator). This suggests that if we can map existing ker-
nel pools with pointer-analysis partitions, we may be able
to achieve the safety benefits we seek without changing the
kernel’s custom allocators. We do so as follows.

First, as part of the porting process, kernel developers
must identify the allocation routines to the compiler and
specify which ones should be considered “pool allocators”;



1 MetaPool MP1, MP2;
2
3 s t ru c t f i b i n f o ∗ f i b c r e a t e i n f o (
4 const s t r uc t rtmsg ∗ r , s t ru c t ke rn r ta ∗ rta ,
5 const s t r uc t nlmsghdr ∗ nlh , i n t ∗ errp ) {
6 . . .
7 // look up ob j ec t bounds and then check the access
8 getBounds(MP1, & f ib p rops , & s , & e ) ;
9 boundscheck( s , & f i b p r ops [ r−>rtm type ] . scope , e )

10 i f ( f i b p r ops [ r−>rtm type ] . scope > r−>rtm scope )
11 goto e r r i n v a l ;
12 . . .
13 f i = kmalloc ( s i z e o f (∗ f i )+nhs∗ s i z e o f ( s t ruc t
14 f i b nh ) , GFP KERNEL) ;
15 pchk reg obj (MP2, f i , 9 6 , NULL, SVA KMALLOC) ;
16 . . .
17 //check bounds for memset without lookup s ince
18 //we know the s t a r t and s i z e from the kmalloc
19 boundscheck( f i , ( char ∗) f i + 95 , ( char ∗) f i + 96 ) ;
20 memset( f i , 0 , s i z e o f (∗ f i )+nhs∗ s i z e o f ( . . . ) ) ;
21
22 //check that r ta i s a v a l i d ob j ec t
23 lscheck (MP1, r t a ) ;
24 i f ( rta−>r t a p r i o r i t y ) {
25 //check that rta−>r t a p r i o r i t y i s v a l i d
26 temp = rta−>p r i o r i t y ;
27 lscheck (MP2, temp ) ;
28 f i −>f i b p r i o r i t y = ∗ temp ;
29 }
30 . . .
31 }

fib_props

Points-to Node: H

rta

fi

Points-to Node: GHA

temp

rta_priority

Figure 2: Example code fragment from the Linux kernel,
and a part of the points-to graph for it. Square boxes are
nodes representing memory objects. Ovals represent virtual
registers.

the rest are treated as ordinary allocators. The existing in-
terface to both kinds of allocators are not modified. For
each allocator, routines must be specified for object alloca-
tion and deallocation and, for pool allocators, the routines
for creation, initialization and destruction. The specific re-
quirements for porting kernel allocators are described in Sec-
tion 4.4.

The primary goal of the analysis, then, is to correlate
kernel pools and other kernel objects with the static parti-
tions of memory objects (i.e., nodes in the points-to graph)
computed by pointer analysis. The compiler does not use
the Automatic Pool Allocation transformation to partition
memory into pools.

The output of pointer analysis is a points-to graph in
which each node represents a distinct partition of objects
in the analyzed part of the program [29]. An assumption
in both SAFECode and SVA is that the pointer analysis is
a “unification-style” algorithm [41], which essentially implies
that every pointer variable in the program points to a unique
node in the points-to graph. A single node may represent
objects of multiple memory classes including Heap, Stack,
Global, Function or Unknown. Figure 2 shows a part of a
points-to graph for a code fragment from the Linux kernel.
The G and H flags on the node pointed to by fi indicate that

the node includes global objects as well as heap objects such
as the one allocated with kmalloc at line 13.

Given the points-to graph, the compiler creates a global
metapool variable for each node in the graph, e.g., MP1 and
MP2 in the example. A metapool is simply a set of data
objects that map to the same points-to node and so must
be treated as one logical pool by the safety checking al-
gorithm. Metapool variables, like the pool descriptors in
SAFECode [11], are used as run-time representations of each
points-to graph partition, recording run-time information
(“metadata”) about objects to enable run-time checks. They
are also represented as types on pointer variables to be
checked by the bytecode verifier. Using a global variable for
each metapool avoids the need to pass metapool variables
between functions.

At every heap allocation point, identified using the ker-
nel allocator functions specified during porting, we insert a
pchk.reg.obj operation to register the allocated object in
the appropriate metapool (the one mapped to the pointer
variable in which the allocation result is stored), e.g., at line
15 of Figure 2. Similarly, the compiler inserts a pchk.drop.

obj operation at every deallocation point. These two oper-
ation signatures are shown in Table 3.

The compiler also inserts pchk.reg.obj operations to reg-
ister all global and stack-allocated objects, and pchk.drop.

obj to drop stack objects at function exits. Global ob-
ject registrations are inserted in the kernel “entry” function,
where control first enters during the boot process. Stack-
allocated objects that may have reachable pointers after
the parent function returns (which can be identified directly
from the points-to graph) are converted to be heap allocated
using a kernel-specified allocator, and deallocated at func-
tion return. This tolerates dangling pointers in the same
way as heap objects: by controlling the reuse within TH
pools and performing run-time checks within non-TH pools.

One key requirement for achieving our guarantees is that
all memory managed as a single pool of memory (i.e., with
internal reuse) must be registered in a single metapool: if
it was spread across multiple metapools, a dangling pointer
from one metapool could point to a different metapool, which
could violate both type-safety (if one metapool is TH and
any of the other metapools is of a different type) and sound
pointer analysis (since each metapool represents a distinct
node in the points-to graph). If a single kernel pool (e.g., a
single kmem_cache_t object in Linux) maps to two or more
partitions, we merge the points-to graph nodes for those
partitions into a single graph node (effectively making the
points-to analysis less precise, but still correct). Note that
the converse – multiple kernel pools in a single metapool –
needs no special handling for achieving our guarantees. (We
only need to deregister all “remaining” objects that are in a
kernel pool when a pool is destroyed.)

For the same reason, for ordinary allocators (e.g., kmal-
loc in Linux), all the memory managed by the allocator
has to be treated as a single metapool because it may have
full internal reuse. We effectively must merge all metapools
(and hence all points-to graph nodes) that represent objects
with a particular ordinary allocator. In some cases, how-
ever, an ordinary allocator is internally implemented as a
default version of a pool allocator, e.g., kmalloc internally
just uses kmem_cache_alloc. By exposing that relationship,
as explained in Section 6, the kernel developer can reduce
the need for unnecessary merging.



At this point, the safety-checking compiler has successfully
mapped kernel pools and all pointer variables (including
pointers to globals and stack allocated objects) to metapool
variables. The compiler finally encodes the list of metapools
and these mappings as type attributes on the SVA byte-
code. This bytecode will later be presented to the verifier,
which type-checks the program (as described in Section 5),
and then inserts the necessary run-time checks, as described
below. The specific ways in which we applied the overall
strategy above to the Linux kernel is described in Section 6.

4.4 Kernel Allocator Changes
The kernel’s allocators must fulfill several responsibilities

in order to support the run-time checks needed for our mem-
ory safety strategy:

• The kernel source code must identify which allocators
can be treated as pool allocators, and declare the al-
location and deallocation functions used for each dis-
tinct allocator. The kernel must also provide an or-
dinary (non-pool) allocation interface that is available
throughout a kernel’s lifetime for stack-to-heap promo-
tion. Internally, this interface could be implemented to
use distinct allocators at different times (e.g., during
boot vs. normal operation).

• Each allocator must provide a function that returns
the size of an allocation given the arguments to the
allocation function. This allows the compiler to insert
pchk.reg.obj operations with the correct size.

• A type-homogeneous pool allocator must allocate ob-
jects aligned at the type size (or integer multiples there-
of) to ensure that references using a dangling pointer
do not cause a type conversion when accessing a newly
allocated object.

• A kernel pool allocator must not release freed memory
back for use by other pools, though it can reuse mem-
ory internally (technically, it can also release memory
to other pools within the same metapool, though we
do not currently provide such a mechanism).

• Kernel allocators must initialize memory to zero on
each allocation (the first page of virtual memory should
be unmapped to generate a fault if accessed).

Except for the third and fourth restrictions – on object
alignment and memory release – there are no other changes
to the allocation strategy or to the internal metadata used
by the allocator. Note that these porting requirements are
difficult to verify, i.e., SVA trusts the kernel developer to
perform these changes correctly. However, performing all
object registration and deregistration under compiler control
and avoiding adding any metadata to the kernel allocators
reduces the level of trust placed on the kernel developer.

4.5 Run-time Checks
The SVM verifier is responsible for inserting run-time

checks into the kernel bytecode, logically as a part of type-
checking the code. The run-time checks work as follows.

Each metapool maintains a splay tree to record the ranges
of all registered objects. The run-time checks use these splay
trees to identify legal objects and their bounds. The run-
time checks SVM performs are:

1. Bounds Check: A bounds check must be performed for
any array indexing operation that cannot be proven
safe at compile-time, e.g., the checks at lines 9 and
19 in Figure 2. In the SVA instruction set, all index-
ing calculations are performed by the getelementptr

instruction which takes a source pointer and a list of
indexes and calculates a new address based upon the
index list and the source pointer’s type. A bound-

scheck operation verifies that the source and desti-
nation pointer belong to the same object within the
correct metapool.

If the SVM verifier can determine the bounds expres-
sions for the target object of the source pointer, those
bounds can be used directly, as at line 19 in the exam-
ple. Otherwise, the verifier must insert a getBounds

operation to verify that the object is in the correct
metapool and then use the fetched bounds of that ob-
ject for the check.

Bounds checks should be performed on structure in-
dexing operations. However, since these operations are
usually safe and the performance overheads often out-
weigh any safety benefits gained, we have chosen not
to perform structure indexing checks in our prototype.

2. Load-store check: A check must be performed on any
load or store through a pointer obtained from a non-
type-homogeneous metapool since such pointer values
may come from arbitrary type casts instead of through
legal, verified pointer operations. The lscheck opera-
tion is used to verify that the pointer points to a legal
object within the correct metapool. Lines 23 and 27
show two examples of such checks.

3. Indirect Call Check: An indirect call check verifies
that the actual callee is one of the functions predicted
by the call graph by checking against the set of such
functions. As with load-store checks, this check is
not needed if the function pointer is obtained from
a type-homogeneous pool because all writes to such
pools have been detected (including any possible writes
through dangling pointers).

4. Illegal Free Check: An illegal free check verifies that
the argument to a kernel deallocator was allocated by
the corresponding kernel allocator. This check is inte-
grated with the pchk.drop.obj operation.

One complication is that some partitions may be exposed
to external code that is not compiled by the safety checking
compiler; the pointer analysis marks these partitions “In-
complete” [29]. Incomplete partitions may include objects
not allocated within the available kernel code and, there-
fore, not registered with the corresponding metapool. This
forces the SVM to be conservative in performing run-time
checks. First, load-store, indirect call, and illegal free checks
using a pointer to an incomplete partition are useless and
must be turned off: even if they detect an address that is not
part of the metapool, they cannot tell if it is an illegal ad-
dress or simply an unregistered, but legal, object or function
target. Second, checks on array indexing operations look up
the operand and result of the getelementptr instruction.
If either pointer points to an object in the splay tree, then
the check can be performed, failing if both pointers are not
within the same object. If the target object is not in the



Name Description

pchk.reg.obj (MetaPool * MP, void * address, un-
signed length, void * pool, int alloctrID)

Register an object starting at address of length bytes with the
MetaPool MP. The pool and alloctrID arguments track which allo-
cator and kernel pool (if applicable) were used to allocate the object.

pchk.drop.obj (MetaPool * MP, void * address,
void * pool, int alloctrID)

Remove the object starting at address from the MetaPool MP. If MP
is complete, perform an invalid free check.

Table 3: Instructions for Registering Memory Allocations

splay, nothing can be said. Overall, this means that “in-
complete” partitions only have bounds checks on registered
objects. We refer to this situation as “reduced checks.” Re-
duced checks are the sole source of false negatives in SVM,
i.e., cases where a memory safety violation is not detected.

4.6 Multiple Entry Points
A kernel contains many entry points, including system

calls, interrupts, and traps. System calls, in particular, bring
pointers to objects allocated outside the kernel in via their
parameters. SVA must ensure safety of kernel objects, while
still allowing access to these objects even though they are
not registered. We observe that pointer arguments in system
calls may have three valid destinations. They may point to
userspace objects, they may point to kernel objects when
the kernel issues a system call internally, or they may point
to objects returned by the kernel to userspace.

Objects in userspace are handled by registering all of user-
space as a single object with every metapool reachable from
system call arguments. Thus accesses to them are checked,
and the checks pass since they find valid objects. This mech-
anism also ensures that userspace pointers stay in userspace;
if an attacker tries to pass a buffer that starts in userspace
but ends in kernel space in an attempt to read kernel mem-
ory, this will be detected as a bounds violation.

Internal system calls, those issued from within kernel sp-
ace, are analyzed like any other function call; thus, the meta-
pools reachable from the arguments already contain the ob-
jects being passed in.

Finally, we simply assume that the the last case – where
user programs pass in pointers to kernel objects through
system call arguments – does not occur. If a kernel wanted
to allow this, SVA could support this via minor changes
to the pointer analysis to allow checking on these objects.
However, this is a very poor design for safety and stability
reasons, so it is not supported.

4.7 Manufactured Addresses
Unlike most applications, a kernel typically uses a num-

ber of “manufactured addresses.” These are most often used
for accessing BIOS objects that exist on boot at certain ad-
dresses. These are, in effect, memory objects which are allo-
cated prior to the start of the kernel. The kernel developer
simply must register these objects prior to first use (using the
SVA function pseudo_alloc), which the compiler then re-
places with pchk.reg.obj, thus treating them like any other
allocation. For example, in Linux’s ACPI module, we insert
pseudo_alloc(0xE0000, 0xFFFFF) before a statement that
scans this range of memory (for a particular byte signature).

There are also C programming idioms that can appear to
manufacture an address out of integer values even if they
do not; most can be handled simply by tracking (pointer-
sized) integer values as potential pointers during the pointer
analysis, which is generally a necessary requirement for C

compilers [18]. Some additional cases, however, may be too
expensive to analyze completely, e.g., when bit or byte op-
erations on small integers are used. For example, the Linux
kernel performs bit operations on the stack pointer to obtain
a pointer to the current task structure. Such operations have
the problem that the resulting pointer can point to any par-
tition in the points-to graph, complete or incomplete, since
the address could be any absolute address.

One solution is simply to reject the code in the safety-
checking compiler, requiring that such operations be rewrit-
ten in a more analyzable form. We take this approach in
the current system, modifying the Linux source to eliminate
such operations as explained in Section 6.3. Alternatively,
we could ignore such operations to reduce initial porting
effort, essentially trusting that they do not cause any viola-
tions of our safety guarantees.

4.8 Analysis Improvements
We have added several features to the pointer analysis to

improve precision when analyzing kernel code. The Linux
kernel often uses small constant values (e.g., 1 and −1) as
return values from functions returning a pointer to indicate
errors (bugs caused by this have been noted before [14]).
These values appear as integer-to-pointer casts and would
cause partitions to be marked unknown. We extended the
analysis to treat such values (in a pointer context) simply
as null. We also added limited tracking of integer dataflow
to find all sources of these small constants for a cast site.

Since the kernel may issue system calls internally using
the same dispatch mechanism as userspace, namely a trap
with the system call (and hence kernel function) specified
by numeric identifier, we had to be able to map from syscall
number to kernel function in the analysis. This information
can be obtained by inspecting all calls to the SVA-OS opera-
tion, sva_register_syscall, which is used by the kernel to
register all system call handlers. With this information, we
were able to analyze internal system calls simply as direct
calls to the appropriate function.

We use a new heuristic to minimize the extent to which
userspace pointers alias kernel memory. The original pointer
analysis recognized and handled memcpy and memmove oper-
ations (and their in-kernel equivalents) as copy operations,
but simply handled them by merging the source and target
object nodes (i.e., handling the copy like p = q instead of *p
= *q). However, for copy operations to or from userspace
pointers (which are easily identifiable), we want to mini-
mize the merging of kernel and userspace objects. Our new
heuristic merges only the target nodes of outgoing edges of
the objects being copied, but it requires precise type infor-
mation for the source and target objects. If that type in-
formation is not available, the analysis collapses each node
individually (sacrificing type safety) while preventing merg-
ing of the nodes themselves.



We also made two improvements that are not specific to
kernel code. First, we can reduce spurious merging of ob-
jects by judiciously cloning functions. For example, differ-
ent objects passed into the same function parameter from
different call sites appear aliased and are therefore merged
into a single partition by the pointer analysis. Cloning the
function so that different copies are called for the different
call sites eliminates this merging. Of course, cloning must
be done carefully to avoid a large code blowup. We used
several heuristics to choose when to create a clone of an ex-
isting function. The heuristics have been chosen intuitively
and more experience and experiments are needed to tune
them. Nevertheless, we saw significant improvements in the
points-to graph and some improvements in the type infor-
mation due to reduced merging, and the total size of the
SVA bytecode file increased by less than 10%.

Second, the largest source of imprecision in the analysis
results comes from certain hard-to-analyze indirect calls, es-
pecially through function pointers loaded from global tables
attached to objects. Because the tables may mix functions
with many different signatures, type safety is completely
lost at an indirect call site with such a function pointer,
even though the code itself never invokes incompatible func-
tions at the call site. We introduce an annotation mecha-
nism that kernel programmers can use at a call site to assert
that the function signatures of all possible callees match the
call. In some cases, this can reduce the number of valid
targets at an annotated call site by two orders of magni-
tude. For example, for 7 call sites in Linux, the number of
callees went down from 1189 each (they all get their call tar-
gets from the same points-to graph node) to a range of 3-61
callees per call site. This improves analysis precision, since
fewer behaviors of callees are considered; safety, since fewer
control flow paths exist and the programmer is making an
assertion about which are valid; and speed of indirect call
target checks, since the check is against a much smaller set
of possible functions. In fact, with a small enough target
set, it is profitable to “devirtualize” the call, i.e., to replace
the indirect function call with an explicit switch or branch,
which also allows the called functions be inlined if the inliner
chooses. The current system only performs devirtualization
at the indirect call sites where the function signature asser-
tion was added.

4.9 Summary of Safety Guarantees
The SVA guarantees provided to a kernel vary for differ-

ent (compiler-computed) partitions of data, or equivalently,
different metapools. The strongest guarantees are for parti-
tions that are proven type-homogeneous and complete. For
partitions that lack one or both of these properties, the guar-
antees are correspondingly weakened.

Type-homogeneous, complete partitions:

For such partitions, the guarantees SVA provides are ex-
actly [T1-T6] listed in Section 4.1. Note that the type safety
guarantee (T2) applies to all objects in these partitions.

Non-type-homogeneous, complete partitions:

For such partitions, all the above guarantees hold except :

(N1) No type safety : Memory references may access or index
objects in ways inconsistent with their type.

Note that array indexing and loads and stores are still
checked and enforced; pointer arithmetic or bad casts can-

not be used to compute and then use a pointer outside
the bounds of an object. This is valuable because it pre-
vents buffer overruns due to common programming errors
like incorrect loop bounds, incorrect pointer arithmetic, il-
legal format strings, and too-small allocations due to inte-
ger overflow/underflow. Even if an illegal pointer-type cast
or a dangling pointer use converts an arbitrary value to a
pointer type, it can only be used to access a legal object
within the correct partition for that pointer variable (this is
stronger than CCured and SafeDrive, which only guarantee
that a pointer dereference on a wild pointer will access some
pointer value, but it can be to an arbitrary object).

Incomplete partitions:

Incomplete partitions must be treated as non-type homo-
geneous because the analysis for them was fundamentally
incomplete: operations on such a partition in unanalyzed
code may use a different, incompatible type. In addition,
some run-time checks had to be relaxed. The guarantees,
therefore, are the same as non-TH partitions above, except:

(I1) No array bounds safety for external objects: Array
bounds are not enforced on “external” objects, even
though the objects logically belong to a partition.

(I2) Loads and stores to incomplete partitions may access
arbitrary memory . As explained in Section 4.5, no
load-store checks are possible on such partitions.

(I3) Deallocators may be called with illegal addresses. No
double/illegal free checks are done on the partition.

A note on component isolation:

We say a particular kernel component or extension is iso-
lated from the rest of the kernel if it cannot perform any
illegal writes to (or reads from) objects allocated in the rest
of the kernel, i.e., except using legal accesses via function
arguments or global variables.

With SVA, many partitions do get shared between dif-
ferent kernel components because (for example) objects al-
located in one component are explicitly passed to others.
SVA guarantees component isolation if (a) the component
only accesses complete TH partitions (completeness can be
achieved by compiling the complete kernel); and (b) dan-
gling pointers are ignored (since SVA only guarantees“meta-
pool-level” isolation and not fine-grained object-level isola-
tion on such errors).

Even if these conditions are not met, SVA improves but
does not guarantee isolation of a component from the rest of
the kernel: many important memory errors that are common
causes of memory corruption (e.g., buffer overruns, uninitial-
ized pointers) cannot occur for kernel objects themselves.

5. MINIMIZING THE TRUSTED
COMPUTING BASE

The approach described thus far uses pointer analysis re-
sults to compute the static partitioning of the memory ob-
jects in the kernel. This pointer analysis is interprocedural
and relatively complex. (In our SAFECode compiler for
standalone programs, Automatic Pool Allocation is also a
complex interprocedural transformation.) Any bugs in the
implementation of such complex passes may result in unde-
tected security vulnerabilities. For this reason, it is impor-
tant that such a complex piece of software be kept out of the



Trusted Computing Base (TCB) of SVA. Furthermore, we
would also like to have a formal assurance that the strategy
described thus far is sound, i.e., it provides the claimed guar-
antees such as memory safety, type safety for some subset
of objects, control flow integrity, and analysis integrity.

The SAFECode safety approach has been formalized as
a type system, and the type system together with an oper-
ational semantics encoding the run-time checks have been
proved sound for a relevant subset of C [11]. We adapted
that type system in the context of SVA, using metapools
instead of the pool descriptors in SAFECode. The type sys-
tem allows us to use a simple intraprocedural type checker to
check that the complex pointer analysis is correct. Further-
more, it also provides a soundness guarantee on the prin-
ciples used in our work. An ancillary benefit is that the
type system effectively encodes a sophisticated pointer analy-
sis result directly within the bytecode, potentially simplifying
translation to native code since it does not have to repeat
such an analysis.

More specifically, the SVA type system [11] essentially en-
codes each pointer with its associated metapool. For exam-
ple, for a pointer int *Q pointing to a metapool M1, the
type system defines the pointer’s type to be int *M1 Q. If
another pointer P has type int *M2 *M3 P, then it indi-
cates that P points to objects in metapool M3 which in turn
contains pointers that point to objects in metapool M2. Ef-
fectively, this metapool information has been added as an
extension of the underlying SVA type system. This encoded
information in the form of types is analogous to the encoding
of a“proof” in Proof Carrying Code [31]. The proof producer
uses the results of pointer analysis and the metapool infer-
ence algorithm (described in Section 4.3) to infer the type
qualifiers M1, M2, and M3. It then encodes this information
as annotations on each pointer type.

The typing rules in this type system check that annotated
types are never violated. For example, if pointer int *M1 Q

is assigned a value *P where P is of type int *M2 *M3, then
the typing rules flag this as an error. This will check that
type annotations inferred by the proof producer are actually
correct. This is essentially the same as checking that objects
in M3 point to objects in M2 and not objects in M1.

The type checker implements the typing rules to check
that the“encoded”proof is correct. The type checker is anal-
ogous to the proof checker in [31]. Because the typing rules
only require local information (in fact, just the operands of
each instruction), they are very simple and very fast, both
attractive features for use within the virtual machine. Thus
only the type checker (and not the complex compiler) is a
part of the TCB.

Once the type checker checks that the metapool annota-
tions are correct, it inserts all the run-time checks described
in Section 4.5.

The type checker implementation should be carefully tested
because it is part of the TCB. Evaluating its correctness ex-
perimentally can also increase our confidence that there are
no errors in the manual proof of soundness [11]. For this
evaluation, we injected 20 different bugs (5 instances each
of 4 different kinds) in the pointer analysis results. The
four kinds of bugs were incorrect variable aliasing, incorrect
inter-node edges, incorrect claims of type homogeneity, and
insufficient merging of points-to graph nodes. The verifier
was able to detect all 20 bugs.

6. PORTING LINUX TO SVA
Porting an operating system to SVA requires three steps,

as noted in Section 2: porting to SVA-OS, changes to mem-
ory allocators, and optional code changes to improve analy-
sis quality. The specific changes we made to port the Linux
2.4.22 kernel 4 to SVA are described below.

One of our goals was to minimize the changes needed to
the architecture-independent portions of a kernel. Table 4
summarizes the number of changes that were needed. Col-
umn “Total LOC” shows the total number of lines of source
code in the original kernel, for each major component. The
next three columns show the changes (total number of non-
comment lines modified, deleted or added) for the three
kinds of porting changes listed in Section 2. The last column
shows the total number of lines of code changed. As the ta-
ble shows, the number of changes required are quite small for
the improved safety benefits they provide. Section 7 suggests
some additional kernel changes that can improve the analy-
sis effectiveness, but we expect those additional changes to
be on the same order of magnitude as the ones shown here.

6.1 Porting to SVA-OS
Linux, like most OSes, use abstractions for interacting

with hardware. Porting the Linux kernel to use SVA was a
relatively simple matter of rewriting the architecture-depen-
dent functions and macros to use SVA-OS instructions in-
stead of assembly code, resulting in a kernel with no inline
assembly code. The total number of architecture-dependent
changes from arch/i386 is shown as the last line in table 4.
In some cases, the interface between the architecture in-
dependent and dependent code changed. For example, sys-
tem call handlers rely upon the architecture-dependent code
to directly modify saved program state to restart an inter-
rupted system call. On SVA, either the system call handler
code or the C library need to restart system calls; the SVA
instruction set does not provide a mechanism for the ar-
chitecture dependent code to use to modify saved program
state directly.

The Linux kernel needed only a small number of changes
to the architecture-independent code and to device drivers
for porting to SVA-OS. The drivers needed changes in order
to use the instructions for I/O. The core kernel needed some
changes in the signal-handler dispatch code to save state on
the kernel stack instead of the user stack, because the SVA-
OS instructions provide no mechanism to inspect the state
and ensure that the state has not been tampered with. In
fact, many of the changes in Table 4 were due to changing the
name of a structure. A cleaner port may yield a kernel with
even fewer changes to its architecture independent code.

6.2 Memory Allocator Changes
As detailed in Section 4.4, a kernel’s memory allocators

require several modifications in order to take advantage of
the memory safety properties of our virtual machine.

First, we identified Linux’s kmem_cache_alloc allocator
as the only pool allocator; the rest were treated as ordi-
nary allocators. We identified the kmem_cache_alloc and
kmem_cache_free functions as allocation and deallocation
routines so that the safety checking compiler inserts object
registrations after those operations. We similarly identified
the allocation/deallocation routines for the other allocators.

4Linux 2.4.22 was a standard kernel in use when we began this
project. We plan to move to Linux 2.6 in future work.



Section Total

LOC

SVA-

OS

Alloc-

ators

Anal-

ysis

Total

Mod-

ified

Arch-indep core 9,822 41 76 3 120
Net Drivers 399,872 12 0 6 18
Net Protocols 169,832 23 0 29 52
Core Filesys. 18,499 78 0 19 97
Ext3 Filesys. 5,207 0 0 1 1

Total indep 603,232 154 76 58 288

Arch-dep. core 29,237 4,777 0 1 4,778

Table 4: Number of lines modified in the Linux kernel

Second, we added a routine to support dynamic allocation
throughout the kernel’s lifetime (for stack objects promoted
to the heap). This uses _alloc_bootmem early in the boot
stages and then uses kmalloc.

Third, all kernel allocators must refrain from returning
their physical page frames back to the system until the
SVM indicates that it is safe to do so (the SVM will do this
when the metapool is destroyed). For Linux, we modified
kmem_cache_create to mark all pools with the SLAB_NO_REAP
flag to prevent the buddy allocator from reclaiming unused
memory from the pools when it is low on memory. We are
still working on providing similar functionality for memory
allocated by vmalloc.

Fourth, all kernel allocators must properly space objects
to prevent type conversions when accessing dangling point-
ers. The Linux memory allocators already do this, so no
changes were necessary.

Fifth, kernel allocators must zero memory before return-
ing it. We modified kmem_cache_alloc to zero memory and
call the pool’s constructor function, if present. We are inves-
tigating what needs to be done for other kernel allocators.

Finally, as explained in Section 4.3, we exposed the re-
lationship between kmalloc and kmem_cache_alloc. The
former is simply implemented as a collection of caches for
different sizes. By exposing this, the compiler only needs to
merge metapools that correspond to each cache instead of
all those corresponding to any kmalloc.

The number of changes required for the Linux allocators
are shown in the fourth column of Table 4. The required
changes are localized to a single file in the core kernel and
are trivial to add.

6.3 Changes to Improve Analysis
We made several changes to the kernel source code to help

improve the precision of the analysis, including the changes
to eliminate unanalyzable int-to-pointer casts as explained
in Section 4.7. First, we rewrote function signatures to re-
flect more accurately the type of the arguments. Second, we
rewrote some structures declared as unions to use explicit
structures. Last, we rewrote hard-to-analyze stack usage for
accessing task structures.

Several functions, most notably the sys ioctl related ones,
have parameters that are interpreted as both ints and point-
ers, depending on the values of other arguments. In the case
of sys ioctl, in fact, the argument is almost always used as
a pointer into userspace.We changed the parameter (and a
few other similar locations) to all related functions in the
kernel to be a pointer; those few locations that treat it as
an integer cast from pointer to integer. This is sufficient be-

cause casts from pointer to integer do not affect the pointer
analysis whereas casts from integers to pointers look like
unanalyzable manufactured pointers.

Some important structures in the kernel were declared in
a way that obscured the type of the structure. The most
notable example is the initial task structure. This structure
is declared as a union of a task structure and an array which
acts as the initial kernel stack. Changing this to a struct
with the task structure and a smaller array, which reserves
the same amount of memory, makes the analysis better able
understand the type, increasing precision in the analysis.

The last major change was in changing how the current
task structure is accessed. The kernel performed masking
operations of the stack pointer to find the structure. This
is very hard to analyze and was changed into an easier to
analyze global variable.

7. EXPERIMENTAL RESULTS
Our experiments aim to evaluate three aspects of SVA:

the performance overhead of SVA due to the SVA-OS in-
structions and the run-time safety checks; the effectiveness
of our approach in catching exploits in different kernel sub-
systems; and an understanding of what fraction of the kernel
obtains the strongest (type-safe, complete) and weakest (in-
complete) safety guarantees.

7.1 Performance Overheads
We evaluated the performance overheads of SVA using the

HBench-OS microbenchmark suite [7] and a set of standard
user-level applications. We report performance metrics for
four versions of the Linux 2.4.22 kernel:

1. Linux-native: the original kernel compiled directly to
native code with GCC 3.3 5.

2. Linux-SVA-GCC : the SVA-ported kernel (see Section
6) compiled with GCC 3.3.

3. Linux-SVA-LLVM : the SVA-ported kernel compiled
with the LLVM C compiler.

4. Linux-SVA-Safe: the SVA-ported kernel compiled with
the LLVM C compiler plus the safety-checking passes.

Because SVA-OS is implemented simply as a C library
that can be linked with the SVA-ported Linux kernel, that
kernel can be compiled with any C compiler. Thus, Linux-
SVA-GCC and Linux-SVA-LLVM are simply that kernel com-
piled with the GCC and LLVM C compilers, respectively.
The Linux-SVA-Safe version is nearly the same as the Linux-
SVA-LLVM one with the additional run-time checks inserted.
The only other difference is that Linux-SVA-Safe also has
the two compiler transformations described in Section 4.8 to
make alias analysis results more accurate: function cloning
and function devirtualization. We expect the performance
impact of these to be relatively small (although the pre-
cision improvement in pointer analysis can be significant,
these pointer analysis results are only used for safety check-
ing and are not used for any optimizations). To generate
native code for the Linux-SVA-LLVM and Linux-SVA-Safe
kernels, we translate LLVM bytecode to C code and compile
the output with GCC4 -O2 (this factors out the difference
between the GCC and LLVM native back-ends).

5We found that GCC4 miscompiled the native kernel



All four kernels are configured identically, in SMP mode
with TCP/IPv4, Ext2, Ext3 and ISO 9660 filesystems, and
a few drivers. For Linux-SVA-Safe, some portions of the
kernel were not processed by the safety checking passes be-
cause of errors encountered in booting the kernel. These
were the memory subsystem (mm/mm.o and arch/llvm/m-

m/mm.o), two sets of utility libraries (lib/lib.a and arch/l-

lvm/lib/lib.a), and the character drivers.
We ran all of our experiments on an 800 MHz Pentium

III machine with a 256KB L2 cache and 256MB of RAM.
While this is an old machine, we expect little change in
relative performance overhead on newer x86 processors.

7.1.1 Application Performance Impact
The results for application tests are shown in Table 5.

We used four “local” applications (top half of Table 5 show-
ing the mean of 10 runs): two SPEC benchmarks, the MP3
encoder lame, and ldd (a kernel-intensive utility that prints
the libraries needed by an executable). Column 2 shows that
these programs spend widely varying percentages of time
executing in the kernel, with ldd being an extreme case for
local programs. We also used two servers: OpenSSH’s sshd
and thttpd (bottom half of Table 5 showing the median of
3 runs). For the local applications, we measured the elapsed
time using a remote machine’s clock so as to not rely on
the experimental kernel’s time keeping facilities. For sshd,
we used the scp command from a remote machine to mea-
sure the time needed to transfer a 42 megabyte file. For
thttpd, we used ApacheBench to measure the total time to
transfer various files over 25 simultaneous connections. All
server tests were executed over an isolated 100 Mb Ethernet
network.

Table 5 shows the execution time with the Linux-native
kernel and the overheads when using each of the other three
kernels as a percentage of the Linux-native kernel’s execu-
tion time (i.e., 100× (Tother −Tnative)/Tnative%). Using the
numbers for each of the latter three kernels and subtracting
the preceding column (using 0% for Linux-native) isolates
the impact of the SVA-OS instructions alone, of using the
LLVM C compiler instead of GCC, and of introducing the
safety checks.

Three of the local applications show little overhead, in-
cluding bzip2, which spends 16% of its time in the kernel.
Only ldd shows significant overhead, most likely due to its
heavy use of open/close (see below). The network bench-
marks, generally, show greater overhead. The worst case,
with a 62% slowdown, is thttpd serving a small file to many
simultaneous connections. When serving larger files, the
overhead drops considerably, to 4.6%. Note that the slow-
down due to the SVA-OS instructions alone (Linux-SVA-
GCC vs. Linux-native) is very small for thttpd; most of the
penalty comes from the safety checking overheads. The sshd
server shows no overhead at all (the apparent speedup from
safety checks is within the range of measurement error).

Table 6 shows that the total impact on bandwidth for
thttpd is reasonable, with reductions below 34%. Most of
the overhead stems from our safety checks.

7.1.2 Kernel Microbenchmarks
To investigate the impact of SVA on kernel performance in

more detail, we used several latency and bandwidth bench-
marks from the HBench-OS suite [7]. We configured HBench-
OS to run each test 50 times and measured time using the

Test %
Sys-
tem
Time

Native
(s)

SVA
gcc
(%)

SVA
llvm
(%)

SVA
Safe
(%)

bzip2 (8.6MB) 16.4 11.1 1.8 0.9 1.8
lame (42MB) 0.91 12.7 0.8 0.0 1.6
gcc (-O3 58klog) 4.07 24.3 0.4 1.2 2.1
ldd (all system libs) 55.9 1.8 44.4 11.1 66.7
scp (42MB) - 9.2 0.00 0.00 -1.09
thttpd (311B) - 1.69 10.1 13.6 61.5
thttpd (85K) - 36.1 0.00 -0.03 4.57
thttpd (cgi) - 19.4 8.16 9.40 37.2

Table 5: Application latency increase as a percentage of
Linux native performance.

thttpd

request
# Re-
quests

Native
(KB/s)

SVA
gcc (%)

SVA
llvm (%)

SVA
Safe (%)

311 B 5k 1482 3.10 4.59 33.3
85 KB 5k 11414 0.21 -0.26 2.33
cgi 1k 28.3 -0.32 -0.46 21.8

Table 6: thttpd Bandwidth reduction as a percentage of
Linux native performance (25 concurrent connections)

processor’s cycle counters. Tables 7 and 8 show the mean of
the 50 runs.

Overall file bandwidth has small overhead (8%) while pipe
bandwidth overhead is higher (67%). The latency results in
Table 7 show many moderate overheads of 20-56%, but there
are a few severe cases of overheads reaching 2x-4x.

The difference between the LLVM and GCC code genera-
tors creates at most a 13% overhead. Most of the overhead
comes from the use of the SVA-OS instructions and the run-
time safety checks. For system calls that do little processing,
the SVA-OS instructions cause the most overhead. Perhaps
not surprisingly, run-time checks tend to add the most over-
head to system calls that perform substantially more com-
putation, e.g., open/close, pipe, fork and fork/exec.

7.1.3 Future Performance Improvements
The performance experiments above only provide a snap-

shot showing the current performance of the SVA prototype.
The overall system design effort has been quite large, and
therefore, we have only had time to do preliminary perfor-
mance tuning of the safety checking compiler and run-time
system in SVA. There are still at least three major improve-
ments that we expect to make to reduce the overheads of
the run-time checks:

1. using “fat pointers” instead of splay tree lookups for
pointer variables in complete partitions, which are com-
pletely internal to the kernel being compiled (avoiding
the compatibility problems fat pointers can cause when
being passed to or from external code);

2. better compile-time optimizations on bounds-checks,
especially hoisting checks out of loops with monotonic
index ranges (a common case); and

3. performing static array bounds checking to reduce run-
time checks on getelementptr operations.



Test Native
(µs)

SVA
gcc (%)

SVA
llvm (%)

SVA
Safe (%)

getpid 0.38 21.1 21.1 28.9
getrusage 0.63 39.7 27.0 42.9
gettimeofday 0.61 47.5 52.5 55.7
open/close 2.97 14.8 27.3 386
sbrk 0.53 20.8 26.4 26.4
sigaction 0.86 14.0 14.0 123
write 0.71 39.4 38.0 54.9
pipe 7.25 62.8 62.2 280
fork 106 24.9 23.3 74.5
fork/exec 676 17.7 20.6 54.2

Table 7: Latency increase for raw kernel operations as a
percentage of Linux native performance

Test Native
(MB/s)

SVA
gcc (%)

SVA
llvm (%)

SVA
Safe (%)

file read (32k) 407 0.80 1.07 1.01
file read (64k) 410 0.69 0.99 0.80
file read (128k) 350 5.15 6.10 8.36
pipe (32k) 567 29.4 31.2 66.4
pipe (64k) 574 29.1 31.0 66.5
pipe (128k) 315 12.5 17.4 51.4

Table 8: Bandwidth reduction for raw kernel operations as
a percentage of Linux native performance

7.2 Exploit Detection
To see how well our system detects exploits that use mem-

ory error vulnerabilities, we tried five different exploits on
our system that were previously reported for this version of
the Linux kernel, and which occur in different subsystems
of the kernel. We were limited to five because we had to
choose ones that were memory error exploits and for which
working proof of concept code existed. Only one exploit was
in a device driver; the rest were in the IPv4 network module
(two exploits), the Bluetooth protocol module, and the ELF
loader in the core filesystem module.

The SVA checks caught four out of the five exploits. Two
of these were integer overflow errors in which too small a
heap object was allocated, causing an array overrun [21,
40]. A third was a simple out of bounds error when indexing
into a global array [46]. Finally, SVA caught a buffer overrun
caused by decrementing a length byte to a negative value and
then using that value as an unsigned array length (making
it a large positive number) [39].

SVA did not catch the exploit in the ELF loader [38].
This one caused the kernel’s user-to-kernel copying routine
to overflow a kernel object by using an unchecked negative
value (interpreted as a large positive value) as the object
length. SVA failed to catch this because the implemen-
tation of the user-to-kernel copying function was in a ker-
nel library that was not included when running the safety-
checking compiler on the kernel. We anticipate that includ-
ing that library will allow SVA to catch this exploit.

7.3 Analysis Results
To get a sense of how many accesses receive the different

levels of security, we examined the static number of instruc-
tions that access type safe metapools (the highest level) and
the number that access incomplete metapools (the lowest
level). These represent the two extremes of our safety guar-

Allocation
Sites Seen

Access Type Incom-
plete

Type
Safe

Kernel
As
Tested

99.3%

Loads 80% 29%
Stores 75% 32%
Structure Indexing 91% 16%
Array Indexing 71% 41%

Entire
Kernel

100%

Loads 0% 26%
Stores 0% 34%
Structure Indexing 0% 12%
Array Indexing 0% 39%

Table 9: Static metrics of the effectiveness of the safety-
checking compiler

antees. However, not all accesses are equally easy to exploit.
Therefore we considered four cases: loads, stores, structure
indexing (struct.field), and array indexing (array[index]).
Buffer overflows fall into this last category. The first ker-
nel presented in Table 9 is the kernel used in the perfor-
mance and safety experiments; the second one includes the
complete kernel. No sources of incompleteness remain in
the second kernel because all entry points are known to the
analysis, userspace is considered a valid object for syscall
parameters, and all SVA operations are understood. Also,
in both cases, no unanalyzable casts to pointers remained.

Column 4 in Table 9 shows that in the first kernel, 71%–
91% of different kinds of accesses are to incomplete nodes,
i.e., may be accessing unregistered objects. The figure is
71% for array indexing operations, the most common cause
of memory errors. The second column in the table also
shows, however, that over 99% of dynamic allocation sites
in the kernel were instrumented; most of the rest are objects
used internally by the allocators (which are within the mem-
ory subsystem). This means that almost all objects will be
checked. (The fraction of accesses to incomplete nodes may
nevertheless be high because many points-to graph nodes
are likely to be exposed to the memory system and low-level
libraries.) In the complete kernel, there are no unregistered
objects, so all objects will be checked.

Table 9 also shows that much of the kernel is not type
safe. This reduces the ability to eliminate load-store checks
and increases the cost of the splay tree lookups because the
pointer analysis may not be able to generate fine-grained
metapools. The level of type safety did not vary much be-
tween the complete and incomplete kernels. We believe two
types of changes can greatly improve these numbers: addi-
tional porting effort (to reduce non-type-safe C idioms) and
several key refinements to the type merging properties in
our pointer analysis. Again, these are both tuning exercises
that have not yet been done for SVA or the ported kernel.

8. RELATED WORK
Since the early work on system virtualization on the IBM

S/370, there have been numerous systems (called hypervi-
sors or Virtual Machine Monitors) that allow multiple, com-
plete OS instances on a single hardware system. These in-
clude recent systems like VMware, Connectix, Denali, Xen,
VirtualPC, Qemu, and others. The SVA approach is orthog-
onal to the hypervisor based virtualization approach. The
two approaches could be combined to achieve new proper-
ties such as memory safety for the hypervisor itself. Also,



some of the privileged operations in SVA-OS could instead
use standardized mechanisms that are being defined for hy-
pervisor support, such as VMI for Linux [2].

As discussed in Section 1, there have been several exper-
imental operating systems written using safe languages [5,
19, 36, 23, 9, 4, 24, 22]. It is difficult to rewrite today’s
commodity systems in such languages. Furthermore, all
these systems rely on garbage collection to manage memory.
Retrofitting garbage collection into commodity systems is
quite difficult since many reachable heap-allocated objects
would get leaked. In contrast, SVA provides a version of a
safe execution environment to commodity kernels directly,
requiring no language changes and preserving the low-level,
explicit memory management techniques of the kernel.

Numerous projects have focused on isolated execution of
application-specific extensions or specific kernel components
(especially device drivers) within a commodity kernel [30, 6,
47, 33, 43, 45, 50]. As explained in Section 4.9, SVA achieves
isolation between a kernel component (or extension) and the
rest of the kernel under certain conditions, and improves
but does not guarantee isolation otherwise. Besides isola-
tion, SVA also aims to enforce memory safety for the entire
operating system and security-sensitive software running on
it. Such a comprehensive approach is valuable because, as
shown in our experimental results, there can be exploitable
vulnerabilities in core kernel code as well as in device drivers.

While some of the above systems for isolation use inter-
preters [30] or coarse-grained compartmentalization of mem-
ory [47, 43, 45], a few others enforce fine-grained safety via
language or compiler techniques applicable to commodity
kernels [33, 6, 50].

Proof-carrying code [33] provides an efficient and safe way
to write kernel extensions and can be used with a variety of
proof formalisms for encoding safety or security properties
of programs [31]. The approach, however, relies on type-
safety (e.g., the PCC compiler for C was limited to a type-
safe subset of C with garbage collection [34]) and appears
difficult to extend to the full generality of (non-type-safe) C
used in commodity kernels.

The Open Kernel Environment (OKE) allows custom ex-
tensions written in the Cyclone language[25] to be run in
the kernel [6]. This approach is difficult to extend to a com-
plete commodity kernel because Cyclone has many syntac-
tic differences from C that are required for enforcing safety,
and (as the OKE authors demonstrate), Cyclone introduces
some significant implementation challenges within a kernel,
including the need for custom garbage collection [6].

The SafeDrive project provides fine-grained memory and
type safety within system extensions (like Cyclone), although
their only reported experience is with device drivers [50].
Deputy requires annotations (at external entry points, and
potentially other interfaces) to identify the bounds of in-
coming pointer variables. In contrast to both Cyclone and
Deputy, SVA provides fine-grained safety guarantees both
for the core kernel as well as device drivers and avoids the
need for annotations.

Some static analysis techniques, such as Engler et. al.’s
work [14], have targeted bugs in OS kernels. These tech-
niques are able to find a variety of programing mistakes,
from missing null pointer checks to lock misuse. However,
these techniques are not able to provide guarantees of mem-
ory safety, as SVA aims to do. These techniques are com-
plementary to runtime memory safety enforcement because

they can be used to eliminate some of the errors that SVA
would only discover at run-time, and they can address broader
classes of errors beyond memory and type safety.

TALx86 is a typed assembly language (TAL) for the x86
instruction set that can express type information from rich
high-level languages and can encode safety properties on na-
tive x86 code. On the other hand, TALx86 assumes garbage
collection for encoding any type system with safety guaran-
tees. Furthermore, any type information in TALx86 has to
correctly handle many low-level features such as callee-saved
registers, many details of the call stack, computed branch
addresses (which require typing preconditions on branch tar-
get labels), and general-purpose registers (GPRs) that can
hold multiple types of values. None of these features arise
with SVA which greatly simplifies the tasks of defining and
implementing the encoding of security properties. Overall,
we believe SVA provides a more attractive foundation for en-
coding multiple security properties in (virtual) object code
and verifying them at the end-user’s system. It could be
combined with a lower-level layer like TALx86 to verify these
properties on the generated native code as well, taking the
translator out of the trusted computing base.

9. SUMMARY AND FUTURE WORK
Secure Virtual Architecture (SVA) defines a virtual in-

struction set, implemented using a compiler-based virtual
machine, suitable for a commodity kernel and ordinary ap-
plications. SVA uses a novel strategy to enforce a safe ex-
ecution environment for both kernel and application code.
The approach provides many of the benefits of a safe lan-
guage like Modula-3, Java, or C#, without sacrificing the
low-level control over memory layout and memory alloca-
tion/deallocation enabled by C code in commodity kernels.
Our experiments with 5 previously reported memory safety
exploits for the Linux 2.4.22 kernel (for which exploit code
is available) show that SVA is able to prevent 4 out of the 5
exploits and would prevent the fifth one simply by compiling
an additional kernel library.

In our ongoing work, we are implementing the three major
optimizations described in Section 7.1.3 (and several minor
ones) which should greatly improve the performance over-
heads for kernel operations. We are also investigating tech-
niques for recovering from kernel memory access errors, not
just in kernel extensions but also in the core kernel.

In future work, we plan to investigate higher-level secu-
rity problems that could be addressed in novel ways by us-
ing the compiler-based virtual machine in cooperation with
the OS. Some examples include enforcing information flow
between programs; enforcing privilege separation and min-
imization at load time for programs that are today run via
“setuid”; analyzing memory consumption to protect against
denial-of-service attacks via memory-exhaustion; and encod-
ing various security policies as type systems within the typed
bytecode language in SVA.
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