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Abstract
This paper shows how to use model checking to find

serious errors in file systems. Model checking is a for-
mal verification technique tuned for finding corner-case
errors by comprehensively exploring the state spaces de-
fined by a system. File systems have two dynamics that
make them attractive for such an approach. First, their
errors are some of the most serious, since they can de-
stroy persistent data and lead to unrecoverable corrup-
tion. Second, traditional testing needs an impractical,
exponential number of test cases to check that the sys-
tem will recover if it crashes at any point during execu-
tion. Model checking employs a variety of state-reducing
techniques that allow it to explore such vast state spaces
efficiently.

We built a system, FiSC, for model checking file sys-
tems. We applied it to three widely-used, heavily-tested
file systems: ext3 [13], JFS [21], and ReiserFS [27]. We
found serious bugs in all of them, 32 in total. Most have
led to patches within a day of diagnosis. For each file
system, FiSC found demonstrable events leading to the
unrecoverable destruction of metadata and entire direc-
tories, including the file system root directory “/ ”.

1 Introduction

File system errors are some of the most destructive errors
possible. Since almost all deployed file systems reside
in the operating system kernel, even a simple error can
crash the entire system, most likely in the midst of a mu-
tation to stable state. Bugs in file system code can range
from those that cause “mere” reboots to those that lead
to unrecoverable errors in stable on disk state. In such
cases, mindlessly rebooting the machine will not correct
or mask the errors and, in fact, can make the situation
worse.

∗This research was supported by NSF grant CCR-0326227 and
DARPA grant F29601-03-2-0117. Dawson Engler is partially sup-
ported by Coverity and an NSF Career award.

Not only are errors in file systems dangerous, file
system code is simultaneously both difficult to reason
about and difficult to test. The file system must cor-
rectly recover to an internally consistent state if the sys-
tem crashes atanypoint, regardless of what data is being
mutated, flushed or not flushed to disk, and what invari-
ants have been violated. Anticipating all possible failures
and correctly recovering from them is known to be hard;
our results do not contradict this perception.

The importance of file system errors has led to the de-
velopment of many file system stress test frameworks;
two good ones are [24, 30]. However, these focus mostly
on non-crash based errors such as checking that the file
system operations create, delete and link objects cor-
rectly. Testing that a file system correctly recovers from
a crash requires doing reconstruction and then compar-
ing the reconstructed state to a known legal state. The
cost of a single crash-reboot-reconstruct cycle (typically
a minute or more) makes it impossible to test more than
a tiny fraction of the exponential number of crash pos-
sibilities. Consequently, just when implementors need
validation the most, testing is least effective. Thus, even
heavily-tested systems have errors that only arise after
they are deployed, making their errors all but impossible
to eliminate or even replicate.

In this paper, we use model checking to systematically
test and find errors in file systems. Model checking [5,
19, 22] is a formal verification technique that systemat-
ically enumerates the possible states of a system by ex-
ploring the nondeterministic events in the system. Model
checkers employ variousstate reductiontechniques to
efficiently explore the resulting exponential state space.
For instance, generated states can be stored in a hash ta-
ble to avoid redundantly exploring the same state. Also,
by inspecting the system state, model checkers can iden-
tify similar set of states and prioritize the search towards
previously unexplored behaviors in the system. When
applicable, such a systematic exploration can achieve the
effect of impractically massive testing by avoiding the



redundancy that would occur in conventional testing.
The dominant cost of traditional model checking is the

effort needed to write an abstract specification of the sys-
tem (commonly referred to as the “model”). This up-
front cost has traditionally made model checking com-
pletely impractical for large systems. A sufficiently de-
tailed model can be as large as the checked system. Em-
pirically, implementors often refuse to write them; those
that are written have errors and, even if they do not, they
“drift” as the implementation is modified but the model
is not [6].

Recent work has developedimplementation-level
model checkers that check implementation code directly
without requiring an abstract specification [18, 25, 26].
We leverage this approach to create a model checking in-
frastructure, the File System Checker (FiSC), which lets
implementors model-check real, unmodified file systems
with relatively little model checking knowledge. FiSC
is built on CMC, an explicit state space, implementation
model checker we developed in previous work [25, 26],
which lets us run an entire operating system inside of the
model checker. This allows us to check a file systemin
situ rather than attempting the difficult task of extracting
it from the operating system kernel.

We applied FiSC to three widely-used, heavily-tested
file systems, JFS [21], ReiserFS [27], and ext3 [13]. We
found serious bugs in all of them, 32 in total. Most have
led to patches within a day of diagnosis. For each file
system, FiSC found demonstrable events leading to the
unrecoverable destruction of metadata and entire direc-
tories, including the file system root directory “/ ”.

The rest of the paper is as follows. We give an
overview of both FiSC (§2) and how to check a file sys-
tem with it (§3). We then describe: the checks FiSC
performs (§4), the optimizations it does (§5), and how
it checks file system recovery code (§6). We then discuss
results (§7) and our experiences using FiSC (§8), includ-
ing sources of false positives and false negatives. We
then conclude.

2 Checking Overview
Our system is comprised of four parts: (1) CMC, an ex-
plicit state model checker running the Linux kernel, (2)
a file system test driver, (3) a permutation checker which
verifies that a file system can recover no matter what or-
der buffer cache contents are written to disk, and (4) a
fsck recovery checker. The model checker starts in an
initial pristine state (an empty, formatted disk) and re-
cursively generates and checks successive states by sys-
tematically executing state transitions. Transitions are
either test driver operations or FS-specific kernel threads
which flush blocks to disk. The test driver is conceptu-
ally similar to a program run during testing. It creates,
removes, and renames files, directories, and hard links;
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Figure 1: State exploration and checking overview.
FiSC’s main loop picks a stateS from the state queue and
then iteratively generates its successor states by applying
each possible operation to a restored copy ofS. The gen-
erated stateS′ is checked for validity and, if valid and not
explored before, inserted onto the state queue.

writes to and truncates files; and mounts and unmounts
the file system. Figure 1 shows this process.

As each new state is generated, we intercept all disk
writes done by the checked file system and forward them
to the permutation checker, which checks that the disk
is in a state thatfsck can repair to produce a valid
file system after each subset of all possible disk writes.
This avoids storing a separate state for each permutation
and allows FiSC to choose which permutations to check.
This checker is explained in Section 4.2. We runfsck
on thehostsystem outside of the model checker and use
a small shared library to capture all the disk accesses
fsck makes while repairing the file system generated
by writing a permutation. We feed thesefsck gener-
ated writes into the crash recovery checker. This checker
allows FiSC to recursively check for failures infsck
and is covered in Section 6.

Figure 2 outlines the operation of the permutation and
fsck recovery checkers. Both checkers copy the disk
from the starting state of a transition and write onto the
copy to avoid perturbing the system. After the copied
disk is modified the model checker traverses its file sys-
tem, recording the properties it checks for consistency in
a model of the file system. Currently these are the name,
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Figure 2: Disk permutation andfsck recovery checkers.

size, and link count of every file and directory in the
system along with the contents of each directory. Note
that this is a model of file systemdata, not file system
code. The code to traverse, create, and manipulate the
file system model mirrors the system call interface and
can be reused to check many file systems. We check that
this model matches one of the possible valid file systems,
which are computed as in Section 3.2. An error is flagged
in case of a mismatch.

After each new state is generated our system runs a
series of invariant checkers looking for file system errors.
If an error is found FiSC (1) emits an error message, (2)
stores a trace for later error diagnosis that records all the
nondeterministic choices it made to get to the error, and
(3) discards the state. If there is no error, FiSC looks
at the new state and puts it on the state queue if it has
not already visited a similar state (§5.1). Otherwise, it
discards the state.

New states arecheckpointedand added to the state
queue for later exploration. Checkpointing the kernel
state captures the current execution environment so that it
can be put on the state queue andrestoredlater when the
model checker decides to take it off the state queue and
explore its operations. This state consists of the kernel
heap and data, the disk, an abstract model of the current
file system, and additional data necessary for invariant
checks. As discussed in Section 5.1, FiSC searches the
state space using breadth- or depth-first search along with
some simple heuristics.

2.1 The Checking Environment

Similar to unit testing, model-checking a file system re-
quires selecting two layers at which to cut the checked
system. One layer defines the external interface that the
test driver runs on. In our case we have the driver run

atop the system call interface. The other layer provides
a “fake environment” that the checked system runs on.
We need thisenvironment modelbecause the checked file
system does not run on bare hardware. Instead, FiSC
provides a virtual block device that models a disk as a
collection of sectors that can be written atomically. The
block device driver layer is a natural place to cut as it is
the only relatively well-documented boundary between
in-core and persistent data.

Modern Unix derivatives provide a Virtual File Sys-
tem (VFS) interface [28]. While the VFS seems like a
good place to cut, it varies significantly across operating
systems and even across different versions of the same
kernel. Further it has many functions with subtle depen-
dencies. By instead cutting along the system call layer
we avoid the headache of modeling these sparsely docu-
mented interactions. We also make our system easier to
port and are able to check the VFS implementation, a de-
sign decision validated by the two bugs we found in the
VFS code (§7).

3 Checking a New File System
This section gives an overview of what a file system im-
plementor must do to check a new file system.

3.1 Basic Setup
Because CMC encases Linux, a file system that already
runs within Linux and conforms to FiSC’s assumptions
of file system behavior will require relatively few modi-
fications before it can be checked.

FiSC needs to know the minimum disk and memory
sizes the file system requires. Ext3 had the smallest re-
quirements: a 2MB disk and 16 pages of memory. Reis-
erFS had the highest: a 30MB disk and 128 pages. In
addition, it needs the commands to make and recover the
file system (usually withmkfs andfsck respectively).
Ideally, the developer provides three differentfsck op-
tions for: (1) default recovery, (2) “slow” full recovery,
and (3) “fast” recovery that only replays the journal so
that the three recovery modes may be checked against
each other (§4).

In addition to providing these facts, an implementor
may have to modify their file system to expose dirty
blocks. Some consistency checks require knowing which
buffers are dirty (§4.2). A file system, like ReiserFS, that
uses its own machinery for tracking dirty buffers must be
changed to explicitly indicate such dirty buffers.

When a file system fits within FiSC’s model of how a
file system works (as do ext3 and JFS) it takes a few days
to start checking. On the other hand, ReiserFS took be-
tween one and two weeks of effort to run in FiSC as it vi-
olated one of the larger assumptions we made. As stated
earlier, during crash checking FiSC mounts a copy of the
disk used by the checked file system as a second block



device that it uses to check the original. Thus, the file
system must independently manage two disks in a reen-
trant manner. Unfortunately, ReiserFS does not do so: it
uses a single kernel thread to perform journal writes for
all mounted devices, which causes a deadlock when the
journal thread writes to the log, FiSC suspends it, creates
a copy of the disk, and then remounts the file system. Re-
mounting normally replays the journal, but this requires
writing to the journal – which deadlocks waiting for the
suspended journal thread to run. We fixed the problem by
modifying ReiserFS to not wake the journal thread when
a clean file system is mounted read-only.

3.2 Modeling the File System
After every file system operation, FiSC compares the
checked file system against what it believes is the correct
volatile file system(VolatileFS). The VolatileFS reflects
the effects of all file system operations done sequentially
up through the last one. Because it is defined by various
standards rather than being FS-specific, FiSC can con-
struct it as follows. After FiSC performs an operation
(e.g.,mkdir , link ) to the checked concrete system, it
also emulates the operation’s effect on a “fake” abstract
file system. It then verifies that the checked and abstract
file systems are equivalent using a lossy comparision that
discards details such as time.

After every disk write, FiSC compares the checked file
system against a model of what it believes to be the cur-
rentstable file system(StableFS). The StableFS reflects
the state the file system should recover to after a crash.
At any point, running a file system’sfsck repair utility
on the current disk should always produce a file system
equivalent to this StableFS.

Unlike the VolatileFS, the StableFS is FS-specific.
Different file systems make wildly different guarantees
as to what will be recovered after a crash. The ext2 [13]
file system provides almost none, a journaling file sys-
tem typically intends to recover up to the last completed
log record or commit point, and a soft-updates [17] file
system recovers to a difficult-to-specify mix of old and
new data.

Determining how the StableFS evolves requires deter-
mining two FS-specific facts: (1) when it can legally
change and (2) what it changes to. FiSC requires that
the implementor modify the checked file system to call
into the model checker to indicate when the StableFS
changes. For journaling file systems this change typi-
cally occurs when a journal commit record is written to
disk. We were able to identify and annotate the commit
records relatively easily for ext3 and ReiserFS. JFS was
more difficult. In the end, after a variety of false starts,
we gave up trying to determine which journal write rep-
resented a commit-point and instead let the StableFS
change afterany journal write. We assume a file system

implementor could do a better job.
Once we know that the StableFS changes, we need to

know what it changes to. Doing so is difficult since it
essentially requires writing a crash recovery specifica-
tion for each file system. While we assume a file system
implementor could do so, we check systems we did not
build. Thus, we take a shortcut and usefsck to generate
the StableFS for us. We copy the experimental disk, run
fsck to reconstruct a file system image after the com-
mitted operations, and traverse the file system, record-
ing properties of interest. This approach can miss errors
since we have no guarantee thatfsck will produce the
correct state. However, it is relatively unlikely thatfsck
will fail when repairing a perfectly behaving disk. It is
even more unlikely that if it does fail that it will do so in
the same way for the many subsequent crashed disks to
which the persistent file system model will be compared.

3.3 Checking More Thoroughly
Once a basic file system is up and being checked, there
are three main strategies an implementor can follow
to check their file system more thoroughly: downscal-
ing [10], canonicalization, and exposing choice points.
We talk about each below.

Downscale. Operationally this means making every-
thing as small as plausible. Caches become one or two
entries large, file systems just a few “nodes” (where a
node is a file or directory). Model checking works best
at ferreting out complex interactions of a small number
of nouns (files, directories, blocks, threads, etc) since this
small number allows caching techniques to give the most
leverage. There were three main places we downscaled.
First, making disk small (megabytes rather than giga-
bytes). Second, checking small file system topologies,
typically 2-4 nodes. Finally, reducing the size of “virtual
memory” of the checked Linux system to a small number
of pages.

Canonicalization. This technique modifies states so
that state hashing will not see “irrelevant” differences.
In practice, the most common canonicalization is to set
as many things as possible to constant values: clearing
inode generation numbers, mount counts, time fields; ze-
roing freed memory and unused disk blocks (especially
journal blocks).

Many canonicalizations require FS-specific knowl-
edge and thus must be done by the implementor. How-
ever, FiSC does do two generic canonicalization. First,
it constrains the search space by only writing two dif-
ferent values to data blocks, significantly reducing the
number of states while still providing enough resolution
to catch data errors. Second, before hashing a model of
a file system, FiSC transforms the file system to remove
superficial differences, by renaming files and directories
so that there is always a sequential numbering among file



system objects. For example a file system with one direc-
tory and three files “a,” “b,” and “c” will have the same
model as another file system with one directory and three
files “1,” “2,” and “3” if the files have the same length and
content. Canonicalization lets us move our search space
away from searching for rare filename-specific bugs and
toward the relatively more common bugs that arise while
creating many file system topologies.

Expose choice points. Making sources of nondeter-
minism (“choice points”) visible to FiSC lets it search the
set of possible file system behaviors more thoroughly. A
low-level example is adding code to fail FS-specific al-
locators. More generally, whenever a file system makes
a decision based on an arbitrary time constraint or envi-
ronmental feature, we change it to call into FiSC so that
FiSC can choose to explore each possible decision in ev-
ery state that reaches that point.

Mechanically, exposing a choice point reduces to
modifying the file system code to call “choose( n) ”
wheren is the number of possible decision alternatives.
choose will appear to return to this callsiten times,
with the return values0, . . . , (n − 1). The caller uses
this return value to pick which of then possible actions
to perform. An example: both ReiserFS and ext3 flush
their in-memory journals to disk after a given amount
of time has lapsed. We replaced this time check with
a call to choose( 2) and modified the caller so that
when choose returns0 the code flushes the commit
record; when it returns1 it does not. As another ex-
ample, file systems check the buffer cache before issu-
ing disk reads. Without care, this means that the “cache
miss” path will rarely be checked (especially since we
check tiny file system topologies). We solve this prob-
lem by usingchoose on the success path of the buffer
cache read routine to ensure FiSC also explores the miss
path. In addition, FiSC generically fails memory alloca-
tion routines and permission checks.

When inserting choice points, the implementor can ex-
ploit well-defined internal interfaces to increase the set
of explored actions. Interface specifications typically al-
low a range of actions, of which an implementation will
pick some subset. For example, many routines specify
that any invocation may return an “out of memory” error.
However their actual implementation may only allocate
memory on certain paths, or perhaps never do any alloca-
tions at all. It is a mistake to only fail the specific alloca-
tion calls an implementation performs since this almost
certainly means that many callers and system configura-
tions will never see such failures. The simple fix is to
insert a choice point as the routine’s first action allowing
the model checker to test that failure is handled on each
call.

Unfortunately, it is not always easy to expose choice
points and may require restructuring parts of the system

to remove artificial constraints. The most invasive exam-
ple of these modifications are the changes to the buffer
cache we made so that the permutation checker (§4.2)
would be able to see all possible buffer write orderings.

4 Checkers
This section describes the checks FiSC performs.

4.1 Generic Checks
FiSC inspects the actual state of the system and can thus
catch errors that are difficult or impossible to diagnose
with static analysis. It is capable of doing a set of general
checks that could apply to any code run in the kernel:

Deadlock. We instrument the lock acquisition and re-
lease routines to check for circular waits.

NULL . FiSC reports an error whenever the kernel
dereferences a NULL pointer.

Paired functions. There are some kernel functions,
like iget , iput for inode allocation anddget , dput
for directory cache entries, which should always be
called in pairs. We instrument these functions in the ker-
nel and then check that they are always called in pairs
while running the model checker.

Memory leak. We instrument the memory allocation
and deallocation functions so FiSC can track currently
used memory. We also altered the system-wide freelist to
prevent memory consumers from allocating objects with-
out the model checker’s knowledge. After every state
transition we stop the system and perform a conservative
traversal [2] of the stack and the heap looking for allo-
cated memory with no references.

No silent failures. The kernel does not request a re-
source for which it does not have a specific use planned.
Thus, it is likely a bug when a system call returns suc-
cess after it calls a resource allocation routine that fails.
The exception to this pattern is when code loops until it
acquires a resource. In which case, we generate a false
positive when a function fails during the first iteration
of the loop but later succeeds. We suppress these false
positives by manually marking functions with resource
acquisition loops.

4.2 Consistency Checks
FiSC checks the following consistency properties.

System calls map to actions. A mutation of the file
system that indicates success (usually a system call with
a return value of zero) should produce a user-visible
change, while an indication of failure should produce no
such change. We use a reference model (the VolatileFS)
to ensure that when an operation produces a user-visible
change it is the correct change.

Recoverable disk write ordering. A described in§2,
we write arbitrary combinations of dirty buffer cache en-
tries to disk, checking that the system recovers to a valid
state. File system recovery code typically requires that



disk writes happen in certain stylized orders. Illegal or-
ders may not interfere with normal system operation, but
will lead to unrecoverable data loss if a crash occurs at
an inopportune moment. Comprehensively checking for
these errors requires we (1) have the largest legal set of
possible dirty buffers in memory and (2) flush combina-
tions of these blocks to disk at every legal opportunity.
Unfortunately, many file systems (all those we check)
thwart these desires by using a background thread to peri-
odically write dirty blocks to disk. These cleaned blocks
will not be available for subsequent reorder checking,
falsely constraining the schedules we can generate. Fur-
ther, the vagaries of thread scheduling can hide vulnera-
bilities — if the thread does not run when the system is
in a vulnerable state then the dangerous disk writes will
not happen. Thus we modified this thread to do noth-
ing and instead have the model checker track all blocks
that could be legally written. Whenever a block is added
to this set we write out different permutations of the set,
and verify that runningfsck produces a valid file sys-
tem image. The set of possible blocks that can be written
are (1) all dirty buffers in the buffer cache (dirty buffers
may be written in any order) and (2) all requests in the
disk queue (disks routinely reorder the disk queue).

This set is initially empty. Blocks are added whenever
a buffer cache entry is marked dirty. Blocks are removed
from this set in four ways: (1) they are deleted from the
buffer cache, (2) marked clean, (3) the file system ex-
plicitly waits for the block to be written or (4) the file
system forces a synchronous write of a specific buffer or
the entire disk request queue.

Changed buffers are marked dirty. When a file sys-
tem changes a block in the buffer cache it needs to mark
it as dirty so the operating system knows it should even-
tually write the block back to disk. Blocks that are not
marked as dirty may be flushed from the cache at any
time. Initially we thought we could use the generic dirty
bit associated with each buffer to track the “dirtiness” of
a buffer, but each file system has a slightly different con-
cept of what it means for a buffer to be dirty. For exam-
ple, ext3 considers a buffer dirty if one of the following
conditions is true: (1) the generic dirty bit is set, (2) the
buffer is journaled and the journal dirty bit is set, or (3)
the buffer is journaled and it has been revoked and the
revocation is valid. Discovering dirty buffer invariants
requires intimate knowledge of the file system design;
thus we have only run this checker on ext3.

Buffer consistency. Each journaling file system asso-
ciates state with each buffer it uses from the buffer cache
and has rules about how that state may change. For ex-
ample a buffer managed by ext3 may not be marked both
dirty and “journal dirty.” That is, it should be written
first to the journal (journal dirty), and then written to the
appropriate location on disk (dirty).

Double fsck. By defaultfsck on a journaled file sys-
tem simply replays the journal. We compare the file sys-
tem resulting from recovering in this manner with one
generated after runningfsck in a comprehensive mode
that scans the entire disk checking for consistency. If
they differ, at least one is wrong.

5 Scaling the System
As we brought our system online we ran into a number
of performance and memory bottlenecks. This section
describes our most important optimizations.

5.1 State Hashing and Search
Exploring an exponential state space is a game where you
ignore (hopefully) irrelevant details in a quest to only
explore states that differ in non-superficial ways. FiSC
plays this game in two places: (1) state hashing, where
it selectively discards details to make bit-level different
states equivalent and (2) searching, when it picks the next
state to explore. We describe both below.

We initially hashed most things in the checked file
system’s state, such as the heap, data segment, and
the raw disk. In practice this meant it was hard to
comprehensively explore “interesting” states since the
model checker spent its time re-exploring states that
that were not that much different from each other. Af-
ter iterative experimentation we settled on only hashing
the VolatileFS, the StableFS, and the list of currently
runnable threads. We ignore the heap, thread stacks, and
data segment. Users can optionally hash the actual disk
image instead of the more abstract StableFS to check at
a higher-level of detail.

Despite discarding so much detail we rarely can ex-
plore all states. Given the size of each checkpoint
(roughly 1-3MB), the state queue holding all “to-be-
explored” states consumes all memory long before FiSC
can exhaust the search space. We stave this exhaustion
off by randomly discarding states from the state queue
whenever its size exceeds a user-selected threshold.

We provide two heuristic search strategies as alterna-
tives to vanilla DFS or BFS. The first heuristic attempts
to stress a file system’s recovery code by preferentially
running states whose disks will likely take the most work
to repair after a crash. It crudely does so by tracking
how many sectors were written when the state’s parent’s
disk was recovered and sorts states accordingly. This ap-
proach found a data loss error in JFS that we have not
been able to trigger with any other strategy.

The second heuristic tries to quantify how different a
given state is from previously explored states using a util-
ity score. A state’s utility score is based on how many
times states with the same features have already been ex-
plored. Features include: the number of dirty blocks a
state has, its abstract file system topology, and whether



ext3 ReiserFS JFS
States
Total 10800 630 4500
Expanded States 2419 142 905
State Transitions 35978 11009 14387
Time
with Memoization 650 893 3774
without Memoization 7307 29419 4343

Table 1: The number of states, transitions, and the cost of
checking each file system until the point at which FiSC
runs out of memory. Times are all in seconds. Reis-
erFS’s relatively large virtual memory requirements lim-
ited FiSC checks to roughly an order of magnitude fewer
states than the other systems.fsck memoization (de-
scribed in§5.4) speeds checking of ext3 by a factor of
10, and ReiserFS by a factor of 33.

its parent executed new file system statements. A state’s
score is an exponentially-weighted weighted sum of the
number of times each feature has been seen.

5.2 Systematically Failing Functions
When a transition (e.g.,mkdir , creat ) is executed,
it may perform many different calls to functions that
can fail such as memory allocation or permission checks
(§3.3). Blindly causing all combinations of these func-
tions to fail risks having FiSC explore an exponential
number of uninteresting, redundant transitions for each
state. Additionally, in many cases FS-implementors are
relatively uninterested in “unlikely” failures, for exam-
ple, those only triggered when both memory allocation
failures and a disk read error occurs.

Instead, we use an iterative approach — FiSC will first
run a transition with no failures, it will then run it failing
only a single callsite until all callsites have been failed,
it will then similarly fail two callsites, etc. Users can
specify the maximum number of failures that FiSC will
explore up to. The default is one failure. This approach
will find the smallest possible number of failures needed
to trigger an error.

5.3 Efficiently Modeling Large Disks
As Figure 3 shows, naively modeling reasonable-sized
disks with one contiguous memory allocation severely
limits the number of states our model checker can ex-
plore as we quickly exhaust available memory. Chang-
ing file system code so that it works with a smaller disk is
non-trivial and error prone as the code contains mutually-
dependent macros, structures, and functions that all rely
on offsets in intricate ways. Instead we efficiently model
large disks using hash compaction [31]. We keep a
database of diskchunks, collections of disk sectors, and
their hashes. The disk is thus an array of references to
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Figure 3: Memory usage when model checking ext3 on
a 40MB disk with and without disk compaction. With-
out compaction the model checker quickly exhausts all
the physical memory and dies before it reaches 20 states.
The chunk database consumes about 0.2% of the total
memory with a maximum of less than 2MB. Note, the
spike around the 150 state mark happens because FiSC
starts randomly discarding states from its state queue.

hashed chunks. When a write alters a chunk we hash the
new value, inserting it into the database if necessary, and
have the chunk reference the hash.

5.4 fsck Memoization
Repairing a file system is expensive. It takes about five
times as long to runfsck as it does to restore a state and
generate a new state by executing an operation. If we are
not careful, the time to runfsck dominates checking.
Fortunately, for all practical purposes, recovery code is
deterministic: given the same input disk image it should
always produce the same output image. This determin-
ism allows us to memoize the result of recovering a spe-
cific disk. Before runningfsck we check if the cur-
rent disk is in a hash table and, if so, return the already
computed result. Otherwise we runfsck and add the
entry to the table. (As a space optimization we actually
just track the sectors read and written byfsck .) While
memoization is trivial, it gives a huge performance win
as seen in Table 1, especially since ourfsck recovery
checker (§6) can runfsck 10-20 times after each crash.

5.5 Cluster-based Model Checking
A model checking run makes a set of configuration
choices: the number of files and directories to allow,
what operations can fail, whether crashes happen during
recovery, etc. Exploring different values is expensive,
but not doing so can miss bugs. Fortunately, exploration
is easily parallelizable. We wrote a script that given a set
of configuration settings and remote machines, generates
all configurations and remotely executes them.



5.6 Summary
Table 1 shows that FiSC was able to check more than
10k states and more than 35k transitions for ext3 within
650 seconds. The expanded states are those for which all
their possible transitions are explored. The data in this
section was computed using a Pentium 4 3.2GHz ma-
chine with 2GB memory.

6 Crashes During Recovery
A classic recovery mistake is to incorrectly handle a
crash that happens during recovery. The number of
potential failure scenarios caused by one failure is un-
wieldy, the number of scenarios caused by a second
failure is combinatorially exciting. Unfortunately, since
many failures are correlated, such crashes are not uncom-
mon. For example, after a power outage, one might run
fsck only to have the power go out again while it runs.
Similarly, a bad memory board will cause a system crash
and then promptly cause another one during recovery.

This section describes how we check that a file sys-
tem’s recovery logic can handle a single crash during re-
covery. We check that iffsck crashes during its first
recovery attempt, the final file system (the StableFS) ob-
tained after runningfsck a second time (on a disk pos-
sibly already modified by the previous run) should be
the same as if the first attempt succeeded. We do not
consider the case wherefsck crashes repeatedly during
recovery. While repeated failure is intellectually inter-
esting, the difficulty in reasoning about errors caused by
a single crash is such that implementors have shown a
marked disinterest in more elaborate combinations.

Conceptually, the basic algorithm is simple:
1. Given the disk imaged0 after a crash, runfsck

to completion. We record an ordered “write-list”
WS = (w1, . . . , wn) of the sectors and values writ-
ten by fsck during recovery. Herewi is a tuple
〈si, vi〉, wheresi is the sector written to andvi is
the data written to the sector. In more formal terms,
we modelfsck as a function (denotedfsck ) that
maps from an input diskd to an output diskd′, where
the differences betweend and d′ are the values in
the write-setWS. For our purposes these writes are
the only effects that runningfsck has. Moreover,
we denote the partial evaluation offsck(d) after per-
forming writesw1, . . . , wi as fsck [i](d). By defini-
tion, fsck (d) ≡ fsck [n](d).

2. Let di be the disk image obtained by applying the
writesw1, . . . , wi to disk imaged0. This is the disk
image returned byfsck [i](d0). Next, rerunfsck on
di to verify that it produces the same file system as
running it ond0 (i.e., fsck (di) = fsck(d0)). Com-
putingfsck(di) ≡ fsck(fsck [i](d0)) simulates the ef-
fect of a crash during the recovery wherefsck per-
formedi writes and then was restarted.

To illustrate, if invokingfsck (d0) writes two sectors1
and then4 with valuesv1, andv2 respectively, the algo-
rithm will first apply the write〈1, v1〉 to d0 to obtaind1,
crash, check, and then apply write〈4, v2〉 to d1 to obtain
d2, crash and check.

This approach requires three refinements before it is
reasonable. The first is for speed, the second to catch
more errors, and the third to reason about them. We de-
scribe all three below.

6.1 Speed From Determinism
The naive algorithm checks many more cases than it
needs to. We can dramatically reduce this number by
exploiting two facts. First, for all practical purposes we
can regardfsck as a deterministic procedure (§5.4). De-
terminism implies a useful property: if two invocations
of a deterministic function read the same input values,
then they must compute the same result. Thus, if a given
write by fsck doesnot changeany value it previously
read then there is no need to crash and rerun it — it will
always get back to the current state. Second,fsck rarely
writes data it reads. As a result, most writes do not re-
quire that we crash and recover: they will not intersect
the set of sectorsfsck reads and thus, by determinism,
cannot influence the disk it would produce.

We state this independence more precisely as follows.
Let RSi = {r1, . . . , rk} denote the (unordered) set of
all sectors read byfsck [i](d). As above, letdi denote
the disk produced by applying the writes(w1, . . . , wi) in
order to the initial diskd0. We claim that if the sector
sk written bywk is not in the read setRSi, then running
fsck to completion on diskdi produces the same result as
running it ondi−1. I.e., si /∈ RSi implies fsck (di) =
fsck (di−1) (recall thatRSi−1 ⊆ RSi). Tautologically, a
deterministic function can only change what it computes
if the values it reads are different. Thus,si /∈ RSi im-
plies thatfsck(di) and fsck(di−1) read identical values
for the first i − 1 steps, forcing them to both compute
the same results so far. Then, at stepi, both will perform
write wi, making their disks identical.

There are two special cases that our checker exploits
to skip runningfsck :
1. Supposewi does write a sector inRSi, but the value

it writes is the same as what is currently on disk (i.e.,
di = di−1). Clearly if di−1 = di then fsck (di) =
fsck(di−1). Surprisingly, recovery programs empiri-
cally do many such redundant writes.

2. If (1) the sectorsi written bywi is dominated by an
earlier writewj and (2) there is no read that precedes
wj , thenwi cannot have any affect sincesi will al-
ways be overwritten withvj whenfsck is restarted.

6.2 Checking All Write Orderings
As described the algorithm can miss many errors. Sector
writes can complete in any order unless (1) they are ex-



plicitly done synchronously (e.g., using theO DIRECT
option on Unix) or (2) they are blocked by a “sync bar-
rier,” such as thesync system call on Unix which (is
believed to) only return when all dirty blocks have been
written to disk. Thus, generating all disk images possible
after crashingfsck at any point requires partitioning the
writes into “sync groups” and checking thatfsck would
work correctly if it was rerun after performing any sub-
set of the writes in a sync group (i.e., the power set of the
writes contained in the sync group). For example, if we
write sectors1 and2, call sync , then write sector4, we
will have two sync groupsS0 = {1, 2} andS1 = {4}.
The first,S0, generates three different write schedules:
{(1), (2), (1, 2)}. A write schedule is the sectors that
were written beforefsck crashed (note that the sched-
ule (2, 1) is equivalent to(1, 2) since we rerunfsck af-
ter both writes complete). Given a sync groupSi our
checker does one of two things.
1. If the size ofSi is less than or equal to a user-defined

threshold,t, the checker will exhaustively verify all
different interleavings.

2. If the size is larger thant the checker will do a series
of trials, where it picks a random subset of random
size withinSi. These trials can be deterministically
replayed later because we seed the pseudo-random
number generator with a hash of the sectors involved.

We typically sett = 5 and the number of random trials
to 7. Without this reordering we found no bugs infsck
recovery; with it we have found them in all three checked
file systems.

6.3 Finding the Right Perspective
Unfortunately, while recovery errors are important, rea-
soning about them is extremely difficult. For most recov-
ery errors the information the model checker provides
is of the form “you wrote block 17 and block 38 and
now your disk image has no files below ‘/’.” Figuring
out (1) semantically what was being done when this er-
ror occurred, (2) what the blocks are for, and (3) why
writing these values caused the problem can easily take
an entire day. Further, this process has to be replicated
by the implementor who must fix it. Thus, we want to
find the simplest possible error case. The checker has
five modes, described below and roughly ordered in in-
creasing degrees of freedom and hence difficulty in diag-
nosing errors. (Limiting degrees of freedom also means
they are ordered by increasing cost.) At first blush, five
modes might seem excessive. In reality they are a some-
what desperate attempt to find a perspective that makes
reasoning about an error tractable. If we could think of
additional useful views we would add them.

Synchronous, atomic, logical writes.The first, sim-
plest view is to group all sector writes into “logical
writes” and do these synchronously (i.e., in the order

that they occur in program execution). Here, logical
writes means we group all blocks written by the same
system call invocation as one group. I.e., if there are two
calls to thewrite system call, the first writing sectors
l0 = (1, 2, 3) and the second writing sectorsl1 = (7, 8)
we have two logical operations,l0 andl1. We apply all
the writes inl0, crash, check, apply the writes inl1 crash,
and check.

This is the strongest logical view one can have of disk:
all operations complete in the order they were issued and
all the writes in a single logical operation occur atom-
ically. It is relatively easy to reason about these errors
since it just means thatfsck was not reentrant.

Synchronous, non-atomic, left-to-right logical
writes. Here we still treat logical writes as synchronous,
but write their contained sectors non-atomically, left-to-
right. I.e., write the first sector in a logical group, crash,
check, then write the next, etc. These errors are also rel-
atively easy to reason about and tend to be localized to a
single invocation of a system call where a data structure
that was assumed to be internally consistent straddled a
sector boundary.

Reordered, atomic logical writes. This mode re-
orders all logical writes within the same sync group,
checking each permutation. These errors can often be
fixed by inserting a singlesync call.

Synchronous, non-atomic logical writes.This mode
writes the sectors within a logical operation in any order,
crashing after each possible schedule. These errors are
modular, but can have interesting effects.

Reordered sector writes.This view is the hardest to
reason about, but the sternest test of file system recovery:
reorder all sectors within a sync group arbitrarily. We do
not like these errors, and if we hit them will make every
attempt to find them with one of the prior modes.

7 Results
Table 2 summarizes the errors we found, broken down by
file systems and categories. All errors were reported to
the respective developers. We found 32 serious bugs in
total; 21 have been fixed and 9 of the remaining 11 con-
firmed. The latter were complex enough that no patch
has been submitted. There were 10 errors where suppos-
edly stable, committed data and metadata (typically en-
tire directories) could be lost. JFS has higher error counts
in part due to the immediate responses from the JFS de-
velopers, which enabled us to patch the errors and con-
tinue checking JFS. We are currently checking the XFS
file system and the preliminary results are promising.1

We discuss the bug categories in more detail below,
highlighting the more interesting errors found.

1The errors reported in this paper can be found at pagehttp:
//keeda.stanford.edu/˜junfeng/osdi-fisc-bugs.
html , titled “OSDI FiSC Bugs.”



Error type VFS ext2 ext3 JFS ReiserFS total
Lost stable data n/a n/a 1 8 1 10
False clean n/a n/a 1 1 2
Security holes 2 2 (minor) 1 5
Kernel crashes 1 10 1 12
Other (serious) 1 1 1 3
Total 2 2 5 21 2 32

Table 2: We found 32 errors, 10 of which could cause permanentdata loss. There are 3 intended errors, where
programmers decided to sacrifice consistency for availability. They are not shown in this table.

7.1 Unrecoverable Data Loss
The most serious errors we found caused the irrevoca-
ble loss of committed, stable data. There were 10 such
errors where an execution sequence would lead to the
complete loss of metadata (and its associated data) that
was committed to the on-disk journal. In several cases,
all or large parts of long-lived directories, including the
root directory “/ ”, were obliterated. Data loss had two
main causes: (1) invalid write ordering of the journal and
data during recovery and (2) buggy implementations of
transaction abort andfsck .

Invalid recovery write ordering . There were three
bugs of this type. During normal operation of a journal-
ing file system the journal must be flushed to disk before
the data it describes. The file systems we check seem
to get this right. However, they all get the inverse of
this ordering constraint wrong: during recovery, when
the journal is being replayed, all data modified by this
roll forward must be flushed to disk before the journal is
persistently cleared. Otherwise, if a crash occurs, the file
system will be corrupt or missing data, but the journal
will be empty and hence unable to repair the file system.

Figure 4 gives a representative error from the ext3
fsck program. The chain of mishaps is as follows:
1. recover ext3 journal rolls the journal for-

ward by callingjournal recover .
2. journal recover replays the journal, writing to

the file system using cached writes. It then calls
fsync no super to flush all the modified data
back to disk. However, this macro has been defined
to do nothing due to an error made moving the recov-
ery code out of the kernel and into a separatefsck
process.

3. Control returns to recover ext3 journal
which then calls e2fsck journal release
which writes the now cleared journal to disk. Unfor-
tunately, the lack of sync barriers allows this write
to reach disk before the modified data. As a result, a
crash that occurs after this point can obliterate parts
of the file system, but the journal will be empty,
causing data loss.

When this bug was reported, the developers immedi-

// e2fsprogs-1.34/e2fsck/jfsuser.h

// Error: empty macro, does not sync data!
#define fsync no super(dev) do {} while(0)

// e2fsprogs-1.34/e2fsck/journal.c
static errcodet recover ext3 journal(e2fsck t ctx) {

journal t *journal;
int retval;

journal init revoke caches();
retval = e2fsck get journal(ctx, &journal);
/* . . . */
retval = −journal recover(journal);
/* . . . */

// Flushes empty journal.
e2fsck journal release(ctx, journal, 1, 0);
return retval;

}

// e2fsprogs-1.34/e2fsck/recovery.c
int journal recover(journal t *journal) {

// process journal records using cached writes.
err = do one pass(journal, &info, PASS SCAN);
if (!err)

err = do one pass(journal, &info, PASS REVOKE);
if (!err)

// writes persistent data recorded in
// journal using cached write calls.
err = do one pass(journal,&info,PASS REPLAY);

/* . . . */

// Write all modified data back before clearing journal.
fsync no super(journal−>j fs dev);
return err;

}

Figure 4: Journal write ordering bug in ext3fsck .

ately released a patch. ReiserFS and JFS both had simi-
lar bugs (both now fixed), but in these systems the code
lacked any attempt to order the journal clear with the
writes of journal data.

Buggy transaction abort andfsck . There were five
bugs of this type, all in JFS. Their causes were threefold.

First, JFS immediately applies all journaled operations
to its in-memory metadata pages. Unfortunately, doing
so makes it hard to roll back aborted transactions since



their modifications may be interleaved with the writes
of many other ongoing or committed transactions. As a
result, when JFS aborts a transaction, it relies on custom
code to carefully extricate the side-effects of the aborted
transactions from non-aborted ones. If the writer of this
code forgets to reverse a modification, it can be flushed
to disk, interlacing many directories with invalid entries
from aborted transactions.

Second, JFS’sfsck makes no attempts to recover any
valid entries in such directories. Instead its recovery pol-
icy is that if a directory contains a single invalid entry it
will remove all the entries of the directory and attempt to
reconnect subdirectories and files into “lost+found .”
This opens a huge vulnerability: any file system mistake
that results in persistently writing an invalid entry to disk
will causefsck to deliberately destroy the violated di-
rectory.

Third, JFSfsck has an incorrect optimization that al-
lows the loss of committed subdirectories and files. JFS
dynamically allocates and places inodes for better perfor-
mance, tracking their location using an “inode map.” For
speed, incremental modifications to this map are writ-
ten to the on-disk journal rather than flushing the map to
disk on every inode allocation or deletion. During recon-
struction, thefsck code can cause the loss of inodes be-
cause while it correctly applies these incremental modi-
fications to its copy of the inode map, it deliberately does
not overwrite the out-of-date, on-disk inode map with its
(correct) reconstructed copy.

Figure 5 shows this bug, which has been in the JFS
code since the initial version of JFSfsck over three
years ago. The implementors incorrectly believed that if
the file system was marked dirty, flushing the inode map
was unnecessary because it would be rebuilt later. While
the fix is trivial (always flushing the map), this bug was
hard to find without a model checker; the JFS developers
believe they have been chasing manifestations of it for a
while [23]. After we submitted the bug report with all
the file system events (operations and sector writes) and
choices made by the model checker, a JFS developer was
able to create a patch in a couple of days. This was a
good example of the fact that model checking improves
on testing by being more systematic, repeatable, and bet-
ter controlled.

Other data loss bugs. A JFS journal that spans three
or more sectors has the following vulnerability. JFS
stores a sequence number in both the first and last sec-
tor of its journal but not in the middle sectors. After
a crash, JFSfsck checks that these sequence numbers
match and, if so, replays the journal. Without additional
checking, inopportune sector reorderings can obviously
lead to a corrupt journal, which will badly mutilate the
file system when replayed.

Both JFS and ext3 had a bug where a crashed file

// jfsutils-1.1.5/libfs/logredo.c
/* [Original, incorrect comment]
* don’t update the maps if the aggregate/lv is
* FM DIRTY since fsck will rebuild maps anyway */

if (!vopen[k].is fsdirty) {// check dirtiness
// update on-disk map
if ((rc = updateMaps(k)) != 0) {

fsck send msg(lrdo ERRORCANTUPDMAPS);
goto error out;

}
}

Figure 5: Incorrect JFSfsck optimization which causes
unrecoverable loss of inodes and their associated data.

system’s superblock could be falsely marked as “clean.”
Thus, theirfsck program would not repair the system,
potentially leading to data loss or a system crash.

The last data loss bug happened when JFS incorrectly
stored a negative error code as an inode number in a di-
rectory entry; this invalid entry would cause any later
fsck invocation to remove the directory.

7.2 Security Holes
While we did not target security, FiSC found five security
holes, three of which appear readily exploitable.

The easiest exploit we found was a storage leak in the
JFS routinejfs link used to create hard links. It calls
the routineget UCSname, which allocates up to 255
bytes of memory.jfs link must (but does not) free
this storage before returning. This leak occurs each time
jfs link is called, allowing a user to trivially do a de-
nial of service attack by repeatedly creating hard links.
Even ignoring malice, leaking storage on each hard link
creation is generally bad.

The two other seemingly exploitable errors both oc-
curred inext2 and were both caused by lookup rou-
tines that did not distinguish between lookups that failed
because (1) no entry existed or (2) memory allocation
failed. The first bug allows an attacker to create files
or directories with the same name as a preexisting file
or directory, hijacking all reads and writes intended for
the original file. The second allows a user to delete non-
empty directories to which they do not have write access.

In the first case, before creating a new directory en-
try, ext2 will call the routineext2 find entry to see
if the entry already exists. Ifext2 find entry re-
turns NULL, the directory entry is created, otherwise
it returns an error code. Unfortunately, in low memory
conditionsext2 find entry can return NULL even
if the directory entry exists. As shown in Figure 6, the
routine iterates over all pages in a directory. If page al-
location fails (ext2 get page returns NULL) it will
skip this directory worth of entries and go to the next.
Under low memory,ext2 get page will always fail,
no entry will be checked, andext2 find entry will
always return NULL. This allows a user with write ac-



// linux-2.4.19/ext2/dir.c
struct ext2 dir entry 2 * ext2 find entry (struct inode * dir,

struct dentry *dentry, struct page ** res page)
{

unsigned long start, n;
unsigned long npages= dir pages(dir);
struct page *page = NULL ;
/* . . . */
// Iterate through all pages of the directory
do {

page = ext2 get page(dir, n);
if (!IS ERR(page)) {

// Code to check entry existence
// Return the corresponding entry once found.
/* . . . */

}
// BUG: Error return from ext2get page ignored

} while (. . .);
return NULL ;
/* . . . */

}

Figure 6: Ext2 security hole inext2 find entry .

cess to the directory to effectively create files and subdi-
rectories with the same name as an existing file, hijacking
all reads and writes intended for the original file.

The second error was similar,ext2 rmdir calls the
routineext2 empty dir to ensure that the target di-
rectory is empty. Unfortunately the return value of
ext2 empty dir is the same if either the directory has
no entries or if memory allocation fails, allowing an at-
tacker to delete non-empty directories when they should
not have permission to do so.

The remaining two errors occurred in ext3 and were
identical to the ext2 bugs except that they were caused
by disk read errors rather than low-memory conditions.

7.3 Other Bugs
Kernel crashes. There were 12 bugs which caused the
kernel to crash because of a null pointer dereference.
Most of these errors were due to improperly handled al-
location failures. There was one error in the VFS layer,
one error in ReiserFS, and 10 in JFS. The most inter-
esting error was in JFS wherefsck failed to correctly
repair a file system, but marked it as clean. A subsequent
traversal of the file system would panic the kernel.

Incorrect code. There were two cases where code just
did the wrong thing. For example,sys create creates
a file on disk, but returns an error if a subsequent alloca-
tion fails. The application will think the file has not been
created when it has. This error was interesting since it
was in very heavily tested code in the VFS layer shared
by all file systems.

Leaks. In addition to the leak mentioned above, the
JFS routinejfs unmount leaks memory on every un-
mount of a file system.

8 Experience
This section describes some of our experiences with
FiSC: its use during development, sources of false posi-
tives and false negatives, and design lessons learned.

8.1 FiSC-Assisted Development
We checked preexisting file systems, and so could not
comprehensively study how well model checking helps
the development process. However, the responsiveness
of the JFS developers allowed us to do a micro-case study
of FiSC-assisted software development by following the
evolution of a series of mistaken fixes:
1. We found and reported two kernel panics in the

JFS transaction abort functiontxAbortCommit
when called by the transaction commit function
txCommit if memory allocation failed.

2. A few days later, the JFS developers sent a patch
that removedtxAbortCommit entirely and made
txCommit call txAbort instead.

3. We applied the patch and replayed the original model
checking sequence and verified it fixed the two pan-
ics. However, when we ran full model checking,
within seconds we got segmentation faults in the VFS
code. Examination revealed that the newly created
inode was inserted into the VFS directory entry cache
before the transaction was committed. A failed com-
mit freed the inode and left a dangling pointer in the
VFS directory entry cache. We sent this report back
to the JFS developers.

4. As before: a few days later, they replied with a sec-
ond patch, we applied it, it again fixed the specific
error that occurred. We ran FiSC on the patched code
and found a new error, wherefsck would complain
that a parent directory contained an invalid entry and
would remove the parent directory entirely. This was
quite a bit worse than the original error.

5. This bug is still outstanding.
While there are many caveats that one must keep in

mind, model checking has some nice properties. First, it
makes it trivial to verify that the original error is fixed.
Second, it allows more comprehensive testing of patches
than appears to be done in commercial software houses.
Third, it finds the corner-case implications of seemingly
local changes in seconds and demonstrates that they vio-
late important consistency invariants.

8.2 False Positives
The false positives we found fell into two groups. Most
were bugs in the model checking harness or in our un-
derstanding of the underlying file system and not in the
checked code itself. The latter would hopefully be a
minor problem for file system implementors using our
system (though it would be replaced by problems aris-
ing from their imperfect understanding of the underly-
ing model checker). We have had to iteratively correct a



series of slight misunderstandings about the internals of
each of the file systems we have checked.

The other group of false positives stemmed from im-
plementors intentionally ignoring or violating the prop-
erties we check. For example, ReiserFS causes a kernel
panic when disk read fails in certain circumstances. For-
tunately, such false positives are easily handled by dis-
abling the check.

8.3 False Negatives
In the absence of proving total correctness, one can al-
ways check more things. We are far from verifica-
tion. We briefly describe what we believe are the largest
sources of missed errors.

Exploring thresholds. We do a poor job of triggering
system behavior that only occurs after crossing a thresh-
old value. The most glaring example: because we only
test a small number of files and directories (≤ 15) we
miss bugs that happen when directories undergo reorga-
nization or change representations only after they contain
a “sufficient” number of entries. Real examples include
the re-balancing of directory tree structures in JFS or us-
ing a hashed directory structure in ext3. With that said,
FiSC does check a mixture of large and small files (to get
different inode representations) and file names or direc-
tories that span sector boundaries (for crash recovery).

Multi-threading support . The model checker is
single-threaded both above and below the system call
interface. Above, because only a single user process
does file system operations. Below, because each state
transition runs atomically to completion. This means
many interfering state modifications never occur in the
checked system. In particular, in terms of high-level er-
rors, file system operations never interleave and, conse-
quently, neither do partially completed transactions (ei-
ther in memory or on disk). We expect both to be a fruit-
ful source of bugs.

White-box model checking. FiSC can only flag er-
rors that it sees. Because it does not instrument code it
can miss low-level errors, such as memory corruption,
use of freed memory, or a race condition unless they
cause a crash or invariant violation. Fortunately, because
we model-check implementation code we can simultane-
ously run dynamic tools on it.

Unchecked guarantees. File systems provide guar-
antees that are not handled by our current framework.
These include versioning, undelete operations, disk quo-
tas, access control list support, and journaling of data or,
in fact, any reasonable guarantees of data block contents
across crashes. The latter is the one we would like to fix
the most. Unfortunately, because of the lack of agreed-
upon guarantees for non-sync ’d data across crashes we
currently only check metadata consistency across crashes
— data blocks that do not precede a “sync” point can be

corrupted and lost without complaint.
File systems are directed acyclic graphs, and often

trees. Presumably events (file system operations, fail-
ures, bad blocks) should have topological independence
— events on one subgraph should not affect any other
disjoint subgraph. Events should also have temporal
independence in that creating new files and directories
should not harm old files and directories.

One way to broaden the invariants we check would
be to infer FS-specific knowledge using the techniques
in [29].

Missed states. While our state hashing (§5.1) can po-
tentially discard too much detail, we do not currently dis-
card enough of the right details, possibly missing real er-
rors. Using FS-specific knowledge opens up a host of
additional state optimizations. One profitable example
would be if we knew which interleavings of buffer cache
blocks andfsck written blocks are independent (e.g.,
those for different files), which would dramatically re-
duce the number of permutations needed for checking
the effects of a crash.

We have not aggressively verified statement coverage,
so all file systems almost certainly contain many unexer-
cised statements.

8.4 Design Lessons
One hard lesson we learned was a sort of “Heisenberg”
principle of checking: make sure the inspection done
by your checking code does not perturb the state of the
checked system. Violating this principle leads to mys-
terious bugs. A brief history of the code for traversing
a mounted file system and building a model drives this
point home.

Initially, we extracted the VolatileFS by using a single
block device that the test driver first mutated and then tra-
versed to create a model of the volatile file system after
the mutation. This design deadlocked when a file sys-
tem operation did a multi-sector write and the traversal
code tried to read the file system after only one of the
sectors was written. The file system code responsible for
the write holds a lock on the file being written, a lock
that the traversal code wants to acquire but cannot. We
removed this specific deadlock by copying the disk af-
ter a test driver operation and then traversing this copy,
essentially creating two file systems. This hack worked
until we started exploring larger file system topologies,
at which point we would deadlock again because the cre-
ation of the second file system copy would use all avail-
able kernel memory, preventing the traversal thread from
being able to successfully complete. Our final hack to
solve this problem was to create a reserve memory pool
for the traversal thread.

In retrospect, the right solution is to run two ker-
nels side by side: one dedicated to mutating the disk,



the other to inspecting the mutated disk. Such isolation
would straightforwardly remove all perturbations to the
checked system.

A similar lesson is that the system being checked
should be instrumented instead of modified unless abso-
lutely necessary. Code always contains hidden assump-
tions, easily violated by changing code. For example,
the kernel we used had had its kernel memory allocators
re-implemented in previous work [25] as part of doing
leak checking. While this replacement worked fine in the
original context of checking TCP, it caused the checked
file systems to crash. It turned out they were deliberately
mangling the address of the returned memory in ways
that intimately depended on how the original allocator
(page alloc ) worked. We promptly restored the orig-
inal kernel allocators.

9 Related Work
In this section, we compare our approach to file system
testing techniques, software model checking efforts and
other generic bug finding approaches.

File system testing tools. There are many file sys-
tem testing frameworks that use application interfaces to
stress a “live” file system with an adversarial environ-
ment. While these frameworks are less comprehensive
than model checking they require much less work than
that required to jam an entire OS into a model checker.
We view testing as complementary to model checking —
there is no reason not to test a file system and then apply
model checking (or vice versa). It is almost always the
case that two different but effective tools will find differ-
ent errors, irrespective of their theoretical strengths and
weaknesses.

Software Model Checking. Model checkers have
been previously used to find errors in both the design and
the implementation of software systems [1, 3, 6, 18–20].

We compare our work with two model checkers that
are the most similar to our approach, both of which ex-
ecute the system implementation directly without resort-
ing to an intermediate description.

Verisoft [18] is a software model checker that system-
atically explores the interleavings of a concurrent C pro-
gram. Unlike the CMC model checker we use, Verisoft
does not store states at checkpoints and thereby can po-
tentially explore a state more than once. Verisoft relies
heavily on partial order reduction techniques that identify
(control and data) independent transitions to reduce the
interleavings explored. Determining such independent
transitions is extremely difficult in systems with tightly
coupled threads sharing large amount of global data. As
a result, Verisoft would not perform well for these sys-
tems, including the Linux file systems checked in this
paper.

Java PathFinder [3] is very similar to CMC and sys-

tematically checks concurrent Java programs by check-
pointing states. It relies on a specialized virtual machine
that is tailored to automatically extract the current state
of a Java program. The techniques described in this pa-
per are applicable to Java Pathfinder as well.

Generic bug finding. There has been much recent
work on bug finding, including both better type sys-
tems [9, 14, 16] and static analysis tools [1, 4, 7, 8, 11,
15]. Roughly speaking [12], because static analysis can
examine all paths and only needs to compile code in or-
der to check it, it is relatively better at finding errors in
surface properties visible in the source (“lock is paired
with unlock ”). In contrast, model checking requires
running code, which makes it much more strenuous to
apply (days or weeks instead of hours) and only lets it
check executed paths. However, because it executes code
it can more effectively check the properties implied by
code. (E.g., that the log contains valid records, thatfsck
will not delete directories it should not.) Based on our
experiences using static analysis, the most serious errors
in this paper would be difficult to get with that approach.
But, as with testing, we view static analysis as comple-
mentary to model checking — it is lightweight enough
that there is no reason not to apply it and then use model
checking.

10 Conclusion
This paper has shown how model checking can find inter-
esting errors in real file systems. We found 32 serious er-
rors, 10 of which resulted in the loss of crucial metadata,
including the file system root directory “/ ”. The major-
ity of these bugs have resulted in immediate patches.

Given how heavily-tested the file systems we model-
checked were and the severity of the errors found, it ap-
pears that model checking works well in the context of
file systems. This was a relief — we have applied full
system model-checking in other contexts less success-
fully[12]. The underlying reason for its effectiveness in
this context seems to be because file systems must do
so many complex things right. The single worst source
of complexity is that they must be in a recoverable state
in the face of crashes (e.g., power loss) at every single
program point. We hope that model checking will show
similar effectiveness in other domains that must reason
about a vast array of failure cases, such as database re-
covery protocols and optimized consensus algorithms.
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