
Simplifying Failure-Inducing Input

Ralf Hildebrandt
Universität Passau

Lehrstuhl Software-Systeme
Innstraße 33

94032 Passau, Germany

ralf.hildebrandt@gmx.de

Andreas Zeller
Universität Passau

Lehrstuhl Software-Systeme
Innstraße 33

94032 Passau, Germany

zeller@acm.org

ABSTRACT
Given some test case, a program fails. Which part of the test case
is responsible for the particular failure? We show how ourdelta
debuggingalgorithm generalizes and simplifies some failing input
to aminimal test casethat produces the failure.

In a case study, the Mozilla web browser crashed after 95 user ac-
tions. Our prototype implementation automatically simplified the
input to 3 relevant user actions. Likewise, it simplified 896 lines
of HTML to the single line that caused the failure. The case study
required 139 automated test runs, or 35 minutes on a 500 MHz PC.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids, diagnostics, testing tools, tracing

General Terms
Automated debugging, combinatorial testing

1. INTRODUCTION
Often people who encounter a bug spend a lot of time

investigating which changes to the input file will make the bug go
away and which changes will not affect it.

—Richard Stallman,Using and PortingGNU CC

The Mozilla engineers faced imminent doom. In July 1999, more
than 370 open bug reports were stored in the bug data base, ready
to be simplified. “Simplifying” meant: turning these bug reports
into minimal test cases, where every part of the input would be sig-
nificant in reproducing the failure. Overwhelmed with work, the
engineers sent out theMozilla BugAThon call for volunteersthat
would help them process bug reports: For 5 bug reports simpli-
fied, a volunteer would be rewarded with an invitation to the launch
party; 20 bugs would earn him a T-shirt signed by the grateful en-
gineers [9].

Decomposing specific bug reports into simple test cases does not
only trouble the engineers of Mozilla, Netscape’s open source web
browser project [8]. The problem arises from generally conflicting
issues: Abug reportmust be as specific as possible, such that the
engineer can recreate the context in which the program failed. On
the other hand, atest casemust be as simple as possible, because
a minimal test case implies a most general context. Thus, a min-
imal test case not only allows for short problem descriptions and
valuable problem insights, but it also subsumes several current and
future bug reports.

The striking thing about test case simplification is that no one so
far has thought toautomatethis task. Several textbooks and guides
about debugging are available that tell how to use binary search in
order to isolate the problem—based on the assumption that the test
is carried out manually, too. With anautomatedtest, however, we
can alsoautomate test case simplification.

This is what we describe in this paper. Ourdelta debuggingalgo-
rithm ddminis fed with a test case, which it simplifies by successive
testing.ddminstops when aminimal test caseis reached, where re-
moving any single input entity would cause the failure to disappear.
In general,ddminrequires a time ofO(n2) given an input ofn en-
tities. A well-structured input leads to better performance: in the
best case, where a single input entity causes the failure,ddminre-
quires logarithmic time to find the entity.ddmin can be tailored
with language-specific knowledge.

We begin with a discussion of the problem and the basicddmin
algorithm. Using a number of real-life failures, we show how the
ddmin algorithm detects failure-inducing input and how this test
case is isolated and simplified. We close with discussions of related
and future work.

2. CONFIGURATIONS AND TESTS
Ian Hickson stayed up until 5:40 a.m.

and simplified 18 bugs the first night of the BugAThon.

— Mozilla BugAThon call

Let us begin with some basic definitions. First of all, what does a
“minimal” test case mean?

For every program, there is somesmallest possible inputthat in-
duces a well-defined behavior which does not qualify as a failure.
Typically, this is theempty input,or something very close. Here are
some examples:

• A C compiler accepts an empty translation unit (= an empty
C file) as smallest possible input.

• When given an empty input, aWWW browser is supposed to
produce a defined error message.

• When given an empty input file, the LATEX typesetting system
is supposed to produce an error message.

It should be noted that the smallestpossibleinput is not necessarily
the smallestvalid input; even an invalid input is possible as long as
the program does not fail.

Let us now view afailure-inducing input Cas the result of apply-
ing a number ofchanges11,12, . . . ,1n to the minimal possible
input. This way, we have a gradualtransition from the minimal
possible input (= no changes applied) toC (= all changes applied).

We deliberately do not give a formal definition of a change here.
In general, a1i can stand forany change in the circumstances that
influences the execution of the program.In our previous work, for
instance, we had modeled1i as changes to the program code [15].
In this paper, we search for failure-inducing circumstances in the
program input; hence, a change is any operation that is applied on
the input. The only important thing is that applying all changes
results in the failure-inducing setC.

In the case studies presented in this paper, we have always chosen
changes as alexical decompositionof the failure-inducing input.
That is, each1i stands for a lexical entity that can be present (the
change is applied) or not (the change is not applied). As an ex-
ample, consider a minimal possible input which is empty, and a
failure-inducing input consisting ofn lines of text. Each change1i
would add thei -th line to the empty input, such that applying all
changes results in the full set of lines. Modeling changes as lexi-
cal decomposition is the easiest approach, but the model can easily
extend to other notions of changes.

Still treating changes as given entities, let us now formally define
tests and test cases. We can describe any test case between the
minimal possible input andC as aconfiguration of changes:

Definition 1 (Test case)Let C = {11,12, . . . ,1n} be a set of
changes1i . A change set c⊆ C is called atest case.1

A test case is constructed by applying changes to the minimal pos-
sible input:

Definition 2 (Minimal possible input) An empty test case c= ∅
is called theminimal possible input.

We do not impose any constraints on how changes may be com-
bined; in particular, we do not assume that changes are ordered. In
the worst case, there are 2n possible test cases forn changes.

To determine whether a test case induces a failure, we assume a
testing function.According to thePOSIX 1003.3 standard for test-
ing frameworks [5], we distinguish three outcomes:

1The definitions in this section are adapted from our previous
work [15]. See Section 8 for a discussion.

• The testsucceeds(PASS, written here as✔)

• The test hasproduced the failureit was intended to capture
(FAIL, written here as✘)

• The test producedindeterminate results
(UNRESOLVED, written here as).2

Definition 3 (Test) The function test: 2C → {✘, ✔, } deter-
mines for a test case c∈ C whether some given failure occurs (✘)
or not (✔) or whether the test is unresolved ().

In practice,testwould construct the test case by applying the given
changes to the minimal possible input, feed the test case to a pro-
gram and return the outcome.

Let us now model our initial scenario. We have someminimal pos-
sible inputthat works fine and some test case that fails:

Axiom 4 (Failing test case)The following holds:

• test(∅) = ✔ (“minimal input”) and

• test(C) = ✘ (“failing test case”).

Our goal is now to simplify the failing test caseC—that is, to min-
imize it. A test casec being “minimal” means that no subset ofc
causes the test to fail. Formally:

Definition 5 (Minimal test case) A test case c⊆ C is minimal if

∀c′ ⊂ c
(
test(c′) 6= ✘

)

holds.

This is what we want: minimizing a test caseC such that all parts
are significant in producing the failure—nothing can be removed
without making the failure disappear.

3. MINIMALITY OF TEST CASES
A simplified test case means the simplest possible web page that

still reproduces the bug. If you remove any more characters from
the file of the simplified test case, you no longer see the bug.

— Mozilla BugAThon call

How can one actually determine a minimal test case? Here comes
bad news. Let there be some test casec consisting of|c| changes
(characters, lines, functions inserted) to the minimal input. Relying
on testalone to determine minimality requires testing all 2|c| − 1
true subsets ofc, which obviously has exponential complexity.3

What we can determine, however, is anapproximation—for in-
stance, a test case where every part on its own is still significant
in producing the failure, but we do not check whether removing
several parts at once might make the test case even smaller. For-
mally, we define this property as1-minimality, wheren-minimality
is defined as:

2POSIX 1003.3 also listsUNTESTED and UNSUPPORTEDoutcomes,
which are of no relevance here.
3To be precise, Axiom 4 tells us the result oftest(∅), such that only
2|c| − 2 subsets need to be tested, but this does not help much.

Minimizing Delta Debugging Algorithm

Theminimizing delta debugging algorithm ddmin(c) is

ddmin(c) = ddmin2(c, 2) where

ddmin2(c, n) =

ddmin2(ci , 2) if test(ci) = ✘ for somei (“reduce to subset”)

ddmin2
(
c̄i , max(n − 1, 2)

)
else iftest(c̄i) = ✘ for somei (“reduce to complement”)

ddmin2
(
c, min(|c|, 2n)

)
else ifn < |c| (“increase granularity”)

c otherwise (“done”).

wherec1, . . . , cn ⊆ c such that
⋃

ci = c, all ci are pairwise disjoint,∀ci (|ci | ≈ |c|/n), as well asc̄i = c − ci .

The recursion invariant (and thus precondition) forddmin2 is test(c) = ✘ ∧ n ≤ |c|.

Figure 1: Minimizing delta debugging algorithm

Definition 6 (n-minimal test case) A test case c⊆ C is n-minimal
if

∀c′ ⊂ c
(
|c| − |c′| ≤ n ⇒ (

test(c′) 6= ✘
))

holds.

A failing test casec composed of|c| lines would thus be1-minimal
if removing any single line would cause the failure to disappear;
likewise, it would be3-minimal if removing any combination of
three or less lines would make it work again. Ifc is |c|-minimal,
thenc is minimal in the sense of Definition 5.

Definition 6 gives a first idea of what we should be aiming at. How-
ever, given, say, a 100,000 line test case, we cannot simply remove
each individual line in order to minimize it. Thus, we need an ef-
fective algorithm to reduce our test case efficiently.

4. A MINIMIZING ALGORITHM
Proceed by binary search. Throw away half the input and see if

the output is still wrong; if not, go back to the previous state and
discard the other half of the input.

— Brian Kernighan and Rob Pike,The Practice of Programming

What do humans do in order to minimize test cases? They use
binary search.If c contains only one change, thenc is minimal by
definition. Otherwise, wepartition c into two subsetsc1 and c2
with similar size and test each of them. This gives us three possible
outcomes:

Reduce toc1. The test ofc1 fails—c1 is a smaller test case.

Reduce toc2. The test ofc2 fails—c2 is a smaller test case.

Ignorance. Both tests pass, or are unresolved—neitherc1 nor c2
qualify as possible simplifications.

In the first two cases, we can simply continue the search in the fail-
ing subset, as illustrated in Table 1. Each line of the diagram shows
a configuration. A numberi stands for an included change1i ; a
dot stands for an excluded change. Change 7 is the minimal failing
test case—and it is isolated in just a few steps.

Given sufficient knowledge about the nature of our input, we can
certainly partition any test case intotwo subsets such that at least
one of them fails the test. But what if this knowledge is insufficient,
or not present at all?

Let us begin with the worst case: after splitting upc into subsets, all
tests pass or are unresolved—ignorance is complete. All we know
is thatc as a whole is failing. How do we increase our chances of
getting a failing subset?

• By testinglarger subsets ofC, we increase the chances that
the test fails—the difference fromC is smaller. On the other
hand, a smaller difference means a slower progression—the
test case is not halved, but reduced by a smaller amount.

• By testingsmallersubsets ofC, we get a faster progression
in case the test fails. On the other hand, the chances that the
test fails are smaller.

These specific methods can be combined by partitioningc into a
larger number of subsetsand testing each (small)ci as well as its
(large) complement̄ci —until each subset contains only one change,
which gives us the best chance to get a failing test case. The disad-
vantage, of course, is that more subsets means more testing.

This is what can happen. Letn be the number of subsetsc1, . . . , cn.
Testing eachci and its complement̄ci = c − ci , we have three
possible outcomes (Figure 1):

Reduce to subset.If testing anyci fails, thenci is a smaller test
case. Continue reducingci with n = 2 subsets.

Step ci Configuration test
1 c1 1 2 3 4
2 c2 5 6 7 8 ✘
3 c1 5 6 . . ✔
4 c2 7 8 ✘
5 c1 7 . ✘ Done

Result 7 .

Table 1: Quick minimization of test cases

Step ci Configuration test
1 c1 = c̄2 1 2 3 4 Testingc1, c2
2 c2 = c̄1 5 6 7 8 ⇒ Increase granularity
3 c1 1 2 Testingc1, . . . , c4
4 c2 . . 3 4 ✔
5 c3 5 6 . . ✔
6 c4 7 8
7 c̄1 . . 3 4 5 6 7 8 Testing complements
8 c̄2 1 2 . . 5 6 7 8 ✘ ⇒ Reduce toc = c̄2; continue withn = 3
9 c1 1 2 ∗ Testingc1, c2, c3

10 c2 5 6 . . ✔∗ ∗ sametestcarried out in an earlier step
11 c3 7 8 ∗
12 c̄1 5 6 7 8 Testing complements
13 c̄2 1 2 7 8 ✘ ⇒ Reduce toc = c̄2; continue withn = 2
14 c1 = c̄2 1 2 ∗ Testingc1, c2
15 c2 = c̄1 7 8 ∗ ⇒ Increase granularity
16 c1 1 Testingc1, . . . , c4
17 c2 . 2 ✔
18 c3 7 .
19 c4 8
20 c̄1 . 2 7 8 Testing complements
21 c̄2 1 7 8 ✘ ⇒ Reduce toc = c̄2; continue withn = 3
22 c1 1 ∗ Testingc1, . . . , c3
23 c2 7 . ∗
24 c3 8 ∗
25 c̄1 7 8 Testing complements
26 c̄2 1 8
27 c̄3 1 7 . Done

Result 1 7 8

Table 2: Minimizing a test case with increasing granularity

This reduction rule results in a classical “divide and conquer”
approach. If one can identify a smaller part of the test case
that is failure-inducing on its own, then this rule helps in nar-
rowing down the test case efficiently.

Reduce to complement.If testing anyc̄i fails, thenc̄i is a smaller
test case. Continue reducingc̄i with n − 1 subsets.

Why do we continue withn − 1 and not two subsets here?
Because splittinḡci into n−1 subsets means that the subsets
of c̄i are identical to the subsetsci of c—in other words,
every subset ofc eventually gets tested. If we continued with
two subsets from, say,n = 32, we would have to work our
way down withn = 2, 4, 8, . . . , but only withn = 32 would
the next subset ofc be tested.

Increase granularity. Otherwise (that is, no test failed), try again
with 2n subsets. (Should 2n > |c| hold, try again with|c|
subsets instead, each containing one change.) This results in
at most twice as many tests, but increases chances for failure.

The process is repeated until granularity can no longer be increased
(that is, the nextn would be larger than|c|). In this case, we have al-
ready tried removing every single change individually without fur-
ther failures: the resulting change set is minimal.

As an example, consider Table 2, where the minimal test case con-
sists of the changes 1, 7, and 8. Any test case that includes only a
subset of these changes results in an unresolved test outcome; a test
case that includes none of these changes passes the test.

We begin with partitioning the total set of changes in two halves—
but none of them passes the test. We continue with granularity
increased to 4 subsets (Step 3–6). When testing the complements,
the setc̄2 fails, thus removing changes 3 and 4. We continue with
splitting c̄2 in three subsets. The next three tests (Steps 9–11) have
already been carried out and need not be repeated (marked with∗).
When testinḡc2 (Step 13), changes 5 and 6 can be eliminated. We
increase granularity to 4 subsets and test each (Steps 16–19), be-
fore the last complement̄c2 (Step 21) eliminates change 2. Only
changes 1, 7, and 8 remain; Steps 25–27 show that none of these
changes can be eliminated. To minimize this test case, a total of
19 different tests was required.

We close with some formal properties ofddmin. First,ddmineven-
tually returns a 1-minimal test case:

Proposition 7 (ddmin minimizes) For any c⊆ C, ddmin(c) is 1-
minimal in the sense of definition 6.

PROOF. According to the ddmin definition (Figure 1), ddmin(c)
returns c only if n≥ |c| and test(c̄i) 6= ✘ for all c1, . . . , cn. If
n ≥ |c|, then|ci | = 1 and|c̄i | = |c|−1. Since all subsets of c′ ⊂ c
with |c| − |c′| = 1 are in {c̄1, . . . , c̄n} and test(c̄i) 6= ✘ for all c̄i ,
the condition of definition 6 applies and c is 1-minimal.

In the worst case,ddmintakes 3|c| + |c|2 tests:

Proposition 8 (ddmin complexity, worst case)The number of tests
carried out by ddmin(c) is 3|c| + |c|2 in the worst case.

PROOF. The worst case can be divided in two phases: First,
every test is inconsistent until n= |c| holds; then, testing only the
last complement results in a failure until n= 2 holds.

• In the first phase, every test is inconsistent. This results in a
re-invocation of ddmin2 with a doubled number of subsets,
until |ci | = 1. The number of tests to be carried out is2 +
4 + 8 + · · · + 2|c| = 2|c| + |c| + |c|

2 + |c|
4 + · · · = 4|c|.

• In the second phase, the worst case is testing thelastcomple-
mentc̄n fails, and ddmin2 is re-invoked with ddmin2(c̄n, |c|−
1). This results in|c| − 1 calls of ddmin, with two tests per
call, or 2(|c|− 1)+ 2(|c|− 2)+ · · ·+ 2 = 2+ 4+ 6+· · · +
2(|c| − 1) = |c|(|c| − 1) = |c|2 − |c| tests.

The overall number of tests is thus4|c|+|c|2−|c| = 3|c|+|c|2.

In practice, however, it is unlikely that ann-character input requires
3n + n2 tests. The “divide and conquer” rule ofddmintakes care
of quickly narrowing down failure-inducing parts of the input:

Proposition 9 (ddmin complexity, best case)If there is only one
failure-inducing change1i ∈ c, and all test cases that include1i
cause a failure as well, then the number of tests t is limited by
t ≤ 2 log2(|c|).

PROOF. Under the given conditions,1i must always be in ei-
ther c1 or c2, whose test will fail. Thus, the overall complexity is
that of a binary search.

Whether this “best case” efficiency applies depends on our ability
to break down the input into smaller chunks that result in deter-
mined (or better: failing) test outcomes. Consequently, the more
knowledge about the structure of the input we have, the better we
can identify possibly failure-inducing subsets, and the better is the
overall performance ofddmin.

The surprising thing, however, is that even withno knowledge about
the input structure at all,the ddminalgorithm has sufficient per-
formance—at least in the case studies we have examined. This is
illustrated in the following three sections.

5. CASE STUDY:
GCC GETS A FATAL SIGNAL

None of us has time to study a large program
to figure out how it would work if compiled correctly,

much less which line of it was compiled wrong.

—Richard Stallman,Using and PortingGNU CC

Let us now turn to some real-life input. The C program in Fig-
ure 2 not only demonstrates some particular nasty aspects of the
language, it also causes theGNU C compiler (GCC) to crash—at
least, when using version 2.95.2 on Intel-Linux with optimization
enabled. Before crashing,GCC grabs all available memory for its
stack, such that other processes may run out of resources and die.4

The latter can be prevented by limiting the stack memory available
to GCC, but the effect remains:
4The authors deny any liability for damage caused by repeating this
experiment.

#define SIZE 20

doublemult (doublez[], int n)
{

int i , j ;

i = 0;
for (j = 0; j < n; j ++) {

i = i + j + 1;
z[i] = z[i] ∗ (z[0] + 1.0);

}
returnz[n];

}
void copy(doubleto[], doublefrom[], int count)
{

int n = (count + 7) / 8;
switch(count% 8) do {

case 0: *to++ = * from++;
case 7: *to++ = * from++;
case 6: *to++ = * from++;
case 5: *to++ = * from++;
case 4: *to++ = * from++;
case 3: *to++ = * from++;
case 2: *to++ = * from++;
case 1: *to++ = * from++;

} while (-- --n > 0);

return mult(to, 2);
}
int main(int argc, char *argv[])
{

doublex[SIZE], y[SIZE];
double *px = x;

while (px < x + SIZE)

*px++ = (px − x) ∗ (SIZE + 1.0);

return copy(y, x, SIZE);
}

Figure 2: The bug.c program that crashesGNU CC

$ (ulimit -H -s 256; gcc -O bug.c)
gcc: Internal compiler error:

program cc1 got fatal signal 11
$ _

The GCC error message (and the resulting core dump) helpGCC
maintainers only; as ordinary users, we must now narrow down the
failure-inducing input inbug.c —andminimizebug.c in order to
file in a bug report.

In the case ofGCC, the minimal test input is the empty input. For
the sake of simplicity, we modeled achangeas theinsertion of a
single character.This means that

• each changeci becomes thei -th character ofbug.c

• C becomes the entire failure-inducing inputbug.c

• partitioningC means partitioning the input into parts.

No special effort was made to exploit syntactic or semantic knowl-
edge about C programs; consequently, we expected a large number

100

1000

0 100 200 300 400 500 600 700 800

in
pu

t s
iz

e

tests executed

tcmin log

bug.c

Figure 3: Minimizing GCC input bug.c

of test cases to be invalid C programs.

To minimizebug.c , we implemented theddminalgorithm of Fig-
ure 1 into ourWYNOT prototype5. Thetestprocedure would create
the appropriate subset ofbug.c , feed it toGCC, return✘ iff GCC
had crashed, and✔ otherwise. The results of thisWYNOT run are
shown in Figure 3.

After the first two tests,WYNOT has already reduced the input size
from 755 characters to 377 and 188 characters, respectively—the
test case now only contains themult function. Reducingmult, how-
ever, takes time: only after 731 more tests (and 34 seconds)6 do we
get a test case that can not be minimized any further. Only 77 char-
acters are left:

t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[0] +
0);}returnz[n];}

This test case is 1-minimal—no single character can be removed
without removing the failure. Even every single superfluous white-
space has been removed, and the function name has shrunk from
mult to a singlet . (At least, we now know that neither whitespace
nor function name were failure-inducing!)

Figure 4 shows an excerpt from thebug.c test log. (The character
2 indicates an omitted character with regard to the minimized in-
put.) We see how theddminalgorithm tries to remove every single
change (= character) in order to minimize the input even further—
but every test results in a syntactically invalid program.

t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[2] + 0);}returnz[n];}
t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[02+ 0);}returnz[n];}
t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[0] 2 0);}returnz[n];}
t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[0] +2);}returnz[n];}
t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[0] + 02;}returnz[n];}
t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[0] + 0)2}returnz[n];}
t(doublez[],int n){int i , j ;for(;;){i = i + j + 1;z[i] = z[i] ∗ (z[0] + 0);}returnz[n];}

Figure 4: Excerpt from the bug.c test log

As GCCusers, we can now file this in as a minimal bug report. But
where inGCC does the failure actually occur? We already know
5WYNOT = “Worked Yesterday, NOt Today”
6All times were measured on a Linux PC with a 500 MHz Pen-
tium III processor. The time given is theCPU user time of our
WYNOT prototype as measured by theUNIX kernel; it includes all
spawned child processes (such as theGCCrun in this example).

1

10

100

0 1 2 3 4 5 6 7 8

op
tio

ns

tests executed

tcmin log

GCC Options

Figure 5: Minimizing GCC options

that the failure is associated with optimization. Could it be possible
to influence optimization in a way that the failure disappears?

TheGCC documentation lists 31 options that can be used to influ-
ence optimization on Linux, shown in Table 3. It turns out that
applyingall of these optionscauses the failure to disappear:

$ gcc -O -ffloat-store -fno-default-inline \
-fno-defer-pop ...-fstrict-aliasing bug.c

$ _

This means that some option(s) in the listpreventthe failure. We
can use test case minimization in order to find the preventing op-
tion(s). This time, eachci stands for aGCC option from Table 3.
Since we want to find an option thatpreventsthe failure, thetest
outcome is inverted:test returns✔ if GCC crashes and✘ if GCC
works fine.

ThisWYNOT run is a straight-forward “divide and conquer” search,
shown in Figure 5. After 7 tests (and less than a second), the single
option–ffast-mathis found which prevents the failure:

$ gcc -O -ffast-math bug.c
$ _

Unfortunately, the–ffast-mathoption is a bad candidate for work-
ing around the failure, because it may alter the semantics of the
program. We remove–ffast-mathfrom the list of options and make
anotherWYNOT run. Again after 7 tests, it turns out the option
–fforce-addralso prevents the failure:

–ffloat-store –fno-default-inline –fno-defer-pop
–fforce-mem –fforce-addr –fomit-frame-pointer
–fno-inline –finline-functions –fkeep-inline-functions
–fkeep-static-consts –fno-function-cse –ffast-math
–fstrength-reduce –fthread-jumps –fcse-follow-jumps
–fcse-skip-blocks –frerun-cse-after-loop –frerun-loop-opt
–fgcse –fexpensive-optimizations –fschedule-insns
–fschedule-insns2 –ffunction-sections –fdata-sections
–fcaller-saves –funroll-loops –funroll-all-loops
–fmove-all-movables –freduce-all-givs –fno-peephole
–fstrict-aliasing

Table 3: GCCoptimization options

1000

10000

100000

1e+06

0 50 100 150 200 250 300 350 400 450 500

in
pu

t s
iz

e

tests executed

tcmin log

flex / t16

Figure 6: Minimizing FLEX fuzz input

$ gcc -O -fforce-addr bug.c
$ _

Are there any other options that prevent the failure? RunningGCC
with the remaining 29 options shows that the failure is still there;
so it seems we have identified all failure-preventing options. And
this is what we can send to theGCCmaintainers:

1. The minimal test case

2. “The failure occurs only with optimization.”

3. “–ffast-mathand–fforce-addrprevent the failure.”

Still, we cannot identify a place in theGCC code that causes the
problem. On the other hand, we have identified as manyfailure cir-
cumstancesas we can. In practice, program maintainers can easily
enhance their automated regression test suites such that the failure
circumstances are automatically simplified for any failing test case.

6. CASE STUDY: MINIMIZING FUZZ
If you understand the context in which a problem occurs,

you’re more likely to solve the problem completely
rather than only one aspect of it.

— Steve McConnell,Code Complete

In a classical experiment [6, 7], Bart Miller and his team examined
the robustness ofUNIX utilities and services by sending themfuzz
input—a large number of random characters. The studies showed
that, in the worst case, 40% of the basic programs crashed or went
into infinite loops when being fed with fuzz input.

We wanted to know how well theddminalgorithm performs in min-
imizing the fuzz input sequences. We examined a subset of the
UNIX utilities listed in Miller’s paper:NROFF(format documents
for display),TROFF(format documents for typesetter),FLEX (fast
lexical analyzer generator),CRTPLOT (graphics filter for various
plotters),UL (underlining filter), andUNITS (convert quantities).

We set up 16 different fuzz inputs, differing in size (103 to 106

characters) and content (whether all characters or only printable
characters were included, and whether NUL characters were in-
cluded or not). As shown in Table 4, Miller’s results still apply—at
least on Sun’s Solaris 2.6 operating system: out of 6×16 = 96 test
runs, the utilities crashed 42 times (43%).

1

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25

in
pu

t s
iz

e

tests executed

tcmin log

crtplot / test t16

Figure 7: Minimizing CRTPLOT fuzz input

We applied ourWYNOT tool in all 42 cases to minimize the failure-
inducing fuzz input. Table 5 shows the resulting input sizes; Table 6
lists the number of tests required.7 Depending on the crash cause,
the programs could be partitioned into two groups:

• The first group of programs shows obviousbuffer overrun
problems.

– FLEX, the most robust utility, crashes on sequences of
2,121 or more non-newline and non-NUL characters
(t14–t15).

– UL crashes on sequences of 516 or more printable non-
newline characters (t5–t8, t13–t16).

– UNITS crashes on sequences of 77 or more 8-bit char-
acters (t2–t4 andt11–t12).

Figure 6 shows the first 500 tests of theWYNOT run forFLEX
andt16. After 494 tests, the remaining size of 2,122 charac-
ters is already close to the final size; however, it takes more
than 10,000 further tests to eliminate one more character.

• The second group of programs appears vulnerable torandom
commands.

– NROFFandTROFFcrash

∗ on malformed commandslike "\\DˆJ%0F" 8

(NROFF, t6), and
∗ on8-bit inputsuch as"\302\n" (TROFF, t1)

– CRTPLOTcrashes on the one-letter inputs"t" (t1) and
"f" (t5, t9, t13–t16).

TheWYNOT run for CRTPLOTandt16 is shown in Figure 7.
It takes 24 tests to minimize the fuzz input of 106 characters
to the single failure-inducing character.

Again, all test runs can be (and have been) entirely automated. This
allows for massive automated stochastic testing, where programs
are fed with fuzz input in order to reveal defects. As soon as a
failure is detected, input minimization can generalize the large fuzz
input to a minimal bug report.

7Table 6 also includesrepeated testswhich have been carried out in
earlier steps. On the average, the number of actual (non-repeated)
tests is 30% smaller.
8All input is shown in C string notation.

Name t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
Input size 103 104 105 106 103 104 105 106 103 104 105 106 103 104 105 106

Character range all printable all printable
NUL characters yes yes no no
NROFF ✘S ✘S ✘S ✘S – ✘A ✘A ✘A ✘S ✘S ✘S ✘S – – – –
TROFF – ✘S ✘S ✘S – ✘A ✘A ✘S – – ✘S ✘S – – – –
FLEX – – – – – – – – – – – – – ✘S ✘S ✘S

CRTPLOT ✘S – – – ✘S – – – ✘S – – – ✘S ✘S ✘S ✘S

UL – – – – ✘S ✘S ✘S ✘S – – – – ✘S ✘S ✘S ✘S

UNITS – ✘S ✘S ✘S – – – – – – ✘S ✘S – – – –
“–” = test passed (✔), ✘S= Segmentation Fault,✘A= Arithmetic Exception

Table 4: Test outcomes ofUNIX utilities subjected to fuzz input

Name t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
Input size 103 104 105 106 103 104 105 106 103 104 105 106 103 104 105 106

Character range all printable all printable
NUL characters yes yes no no
NROFF 2 2 2 2 – 7 7 7 2 2 2 2 – – – –
TROFF – 3 3 3 – 7 7 7 – – 3 3 – – – –
FLEX – – – – – – – – – – – – – 2121 2121 2121
CRTPLOT 1 – – – 1 – – – 1 – – – 1 1 1 1
UL – – – – 516 516 516 516 – – – – 516 516 516 516
UNITS – 77 77 77 – – – – – – 77 77 – – – –

Table 5: Size of minimized failure-inducing fuzz input

7. CASE STUDY:
MOZILLA CANNOT PRINT

When you’ve cut away as muchHTML, CSS, and JavaScript as you
can, and cutting away any more causes the bug to disappear,

you’re done.

— Mozilla BugAThon call

As a last case study, we wanted simplify a real-world Mozilla test
case and thus contribute to the Mozilla BugAThon. A search in
Bugzilla, the Mozilla bug database, shows us bug #24735, reported
by anantk@yahoo.com:

Ok the following operations cause mozilla to crash consis-
tently on my machine

→ Start mozilla

→ Go to bugzilla.mozilla.org

→ Select search for bug

→ Print to file setting the bottom and right margins to .50
(I use the file /var/tmp/netscape.ps)

→ Once it’s done printing do the exact same thing again
on the same file (/var/tmp/netscape.ps)

→ This causes the browser to crash with a segfault

In this case, the Mozilla input consists of two items: Thesequence
of input events—that is, the succession of mouse motions, pressed
keys, and clicked buttons—and theHTML codeof the erroneous
WWW page. We used theXLAB capture/replaytool [13] to run
Mozilla while capturing all user actions and logging them to a file.
We could easily reproduce the error, creating anXLAB log with
711 recorded X events. OurWYNOT tool would now useXLAB to
replaythe log and feed Mozilla with the recorded user actions, thus
automating Mozilla execution.

In a first run, we wanted to know whether all actions in the bug
report were actually necessary. We thus subjected the log to test
case minimization, in order to find afailure-inducing minimum of
user actions.Out of the 711 X events, only 95 were related to user
actions—that is, moving the mouse pointer, pressing or releasing
the mouse button, and pressing or releasing a key on the keyboard.
These 95 user actions were subjected to minimization.

The results of this run are shown in Figure 9. After 82 test runs (or
21 minutes), only 3 out of 95 user actions are left:

1. Press theP key while theAlt modifier key is held. (Invoke
thePrint dialog.)

2. Pressmouse button 1on thePrint button without a modifier.
(Arm thePrint button.)

3. Releasemouse button 1. (Start printing.)

User actions removed include moving the mouse pointer, selecting
the Print to file option, altering the default file name, setting the
print margins to.50, and releasing theP key before clicking on
Print—all this is irrelevant in producing the failure.9

Since the user actions can hardly be further generalized, we turn our
attention to another input source–the failure-inducingHTML code.
The originalSearch for bugpage has a length of 39094 characters
or 896 lines. In order to minimize theHTML code, we chose a
hierarchical approach: In a first run, we wanted to minimize the
number of lines(that is, eachci was identified with a line); in a later
run, we wanted to minimize the failure-inducing line(s) according
to single characters.

9It is relevant, though, that the mouse button be pressed before it is
released.

Name t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
Input size 103 104 105 106 103 104 105 106 103 104 105 106 103 104 105 106

Character range all printable all printable
NUL characters yes yes no no
NROFF 55 41 60 39 – 156 153 243 17 22 27 54 – – – –
TROFF – 84 73 100 – 156 153 22493 – – 50 42 – – – –
FLEX – – – – – – – – – – – – – 11589 17960 10619
CRTPLOT 15 – – – 15 – – – 16 – – – 14 17 23 24
UL – – – – 7138 7012 6058 7090 – – – – 2434 3455 3055 2307
UNITS – 662 623 626 – – – – – – 630 221095 – – – –

Table 6: Number of required test runs

1

10

100

1000

0 10 20 30 40 50 60

nu
m

be
r

of
 li

ne
s

tests executed

tcmin log

query.html

Figure 8: Minimizing Mozilla HTML input

The results of thelines run are shown in Figure 8. After 57 test
runs, theddminalgorithm minimizes the original 896 lines to a 1-
line input:

<SELECT NAME="priority" MULTIPLE SIZE=7>

This is theHTML input which causes Mozilla to crash when being
printed. As in theGCC example of Section 5, the actual failure-
inducing input is very small. Further minimization10 reveals that
the attributes of theSELECTtag are not relevant for reproducing
the failure, either, such that the single input

<SELECT>

already suffices for reproducing the failure. Overall, we obtain the
following self-contained minimized bug report:

→ Create aHTML page containing “<SELECT>”

→ Load the page and print it usingAlt+P andPrint.

→ The browser crashes with a segmentation fault.

As long as the bug reports can be reproduced, this minimization
procedure can easily be repeated automatically with the 5595 other
bugs listed in the Bugzilla database11. All one needs is aHTML
input, a sequence of user actions, an observable failure—and a little
time to let the computer simplify the failure-inducing input.

10This minimization was done by hand. We apologize.
11as of 14 Feb 2000, 14:00 GMT

1

10

100

0 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 X

-e
ve

nt
s

tests executed

tcmin log

MN events removed

Figure 9: Minimizing Mozilla user actions

8. RELATED WORK
When you have two competing theories which make exactly the

same predictions, the one that is simpler is the better.

— Occam’s Razor

As stated in the introduction, we are unaware of any other technique
that would automatically simplify test cases to determine failure-
inducing input. One important exception is the simplification of
test cases which have beenartificially produced.In [11], Don Slutz
describes how to stress-test databases with generatedSQL state-
ments. After a failure has been produced, the test cases had to be
simplified—after all, a failing 1,000-lineSQL statement would not
be taken seriously by the database vendor, but a 3-line statement
would. This simplification was realized simply by undoing the ear-
lier production steps and testing whether the failure still occurred,

In general, delta debugging determines circumstances that are rel-
evant for producing a failure (in our case, parts of the program in-
put.) In the field of automated debugging, such failure-inducing
circumstances have almost exclusively been understood as failure-
inducingstatementsduring a program execution. The most signif-
icant method to determine statements relevant for a failure ispro-
gram slicing—either the static form obtained by program analy-
sis [14, 12] or the dynamic form applied to a specific run of the
program [1, 3].

The strength of analysis is that several potential failure causes can
be eliminated due to lack of data or control dependency. This
does not suffice, though, to check whether the remaining potential
causes are relevant or not for producing a given failure. Only by
experiment (that is, testing) can we prove that some circumstance
is relevant—by showing that there is some alteration of the circum-

stance that makes the failure disappear. When it comes to concrete
failures, program analysis and testing are complementary: analysis
disproves causality, and testing proves it.

It would be nice to see how far systematic testing and program
analysis could work together and whether delta debugging could
be used to determine failure-inducing statements as well. Just as
determining which parts of the input were relevant in producing the
failure, delta debugging could determine the failure-relevant state-
ments in the program.Critical slicing [2] is a related approach
which is test-based like delta debugging; additional data flow anal-
ysis is used to eliminate circumstantial positives.

The ddmin algorithm presented in this paper is an alternative to
the original delta debugging algorithmdd+ presented in [15]. Like
ddmin, dd+ takes a set of changes and minimizes it according to
a given test; in [15], these changes affected the program code and
were obtained by comparing two program versions.

The main differences betweenddminanddd+ are:

• dd+ determines the minimal difference between a failing and
a non-failing configuration, whileddminminimizes the dif-
ference between a failing and an empty configuration.

• dd+ is not well-suited for failures induced by a large com-
bination of changes. In particular,dd+ does not guarantee a
1-minimal subset, which is why it is not suited for minimiz-
ing test cases.

• dd+ assumesmonotony:that is, whenevertest(c) = ✔ holds,
then test(c′) = ✔ holds for every subset ofc as well. This
assumption, which was found to be useful for changes to pro-
gram code, gavedd+ a better performance when most tests
produced determinate results.

We recommendddminas a general replacement fordd+. To exploit
monotony inddmin, one can maketest(c) return ✔ whenever a
superset ofc has already passed the test.

9. FUTURE WORK
If you get all the way up to the group-signed T-Shirt, youcan

qualify for a stuffed animal as well by doing 12 more.

— Mozilla BugAThon call

Our future work will concentrate on the following topics:

Domain-specific simplification methods.Knowledge about the
input structure can very much enhance the performance of
theddminalgorithm. For instance, valid program inputs are
frequently described bygrammars; it would be nice to rely
on such grammars in order to exclude syntactically invalid
input right from the start. Also, with a formal input descrip-
tion, one could replace input by smalleralternate inputrather
than simply cutting it away. In theGCC example, one could
try to replace arithmetic expressions by constants, or pro-
gram blocks by no-ops;HTML input could be reduced ac-
cording toHTML structure rules.

Optimization. In general, the abstract description of theddminal-
gorithm leaves a lot of flexibility in the actual implementa-
tion and thus provides “hooks” for several domain-specific
optimizations:

• The implementation can choose how topartition c into
subsetsci . This is the place where knowledge about the
structure of the input comes in handy.

• The implementation can choosewhich subset to test
first. Some subsets may be more likely to cause a fail-
ure than others.

• The implementation can choose whether and how to
handlemultiple independent failure-inducing inputs—
that is, the case where there are several subsetsci with
test(ci) = ✘. Options include

– to continue with the first failing subset,
– to continue with the smallest failing one, or
– to simplify each individual failing subset.

Our implementation currently goes for the first failing
subset only and thus reports only one subset. The rea-
son is economy: it is wiser to fix the first failure before
checking for further similar failures.

Program analysis. So far, we have treated all tested programs as
black boxes, not referring to source code at all. However,
there are severalprogram analysismethods available that can
help in relating input to a specific failure, or that can simply
tell us which parts of the input are related (and can thus be
changed in one run) and which others not. A simpledynamic
sliceof the failing test case can tell us which input actually
influenced the program and which input never did. The com-
bination of input-centered and execution-centered debugging
methods remains to be explored.

Maximizing passing test cases.Right now,ddminmakes no dis-
tinction between passing and unresolved tests. There are sev-
eral settings, however, where such a distinction may be use-
ful, and where we could minimize thedifferencebetween a
passing and a failing test—not only by minimizing the failure-
inducing input, but also bymaximizing the passing input.We
expect that such a two-folded approach pinpoints the failure
faster and more precisely.

Other failure-inducing circumstances. Changing the input of the
program is only one means to influence its execution. As
stated in Section 2, a1i can stand for any change in the
circumstances that influences the execution of the program.
We will thus research whether delta debugging is applicable
to further failure-inducing circumstances such as executed
statements, control predicates or thread schedules.

10. CONCLUSION
Debugging is still, as it was 30 years ago,

a matter of trial and error.

— Henry Lieberman,The Debugging Scandal

We have shown how theddminalgorithm simplifies failure-inducing
input, based on an automated testing procedure. The method can
be (and has been) applied in a number of settings, finding failure-
inducing parts in the program invocation (GCCoptions), in the pro-
gram input (GCC, Fuzz, and Mozilla input), or in the sequence of
user interactions (Mozilla user actions).

We recommend that automated test case simplification be an inte-
grated part of automated testing. Each time a test fails, delta de-
bugging could be used to simplify the circumstances of the fail-
ure. Given sufficient testing resources and a reasonable choice of

changes1i that influence the program execution, theddmin al-
gorithm presented in this paper provides a simplification that is
straight-forward and easy to implement.

In practice, testing and debugging typically come in pairs. How-
ever, in debugging research, testing has played a very minor role.
This is surprising, because re-testing a program under changed cir-
cumstances is a common debugging approach. Delta debugging
does nothing but to automate this process. Eventually, we expect
that several debugging tasks can in fact be stated as search and
minimization problems, based on automated testing—and thus be
solved automatically.

More details on the case studies listed in this paper can be found
in [4]. Further information on delta debugging, including the full
WYNOT implementation, is available at

http://www.fmi.uni-passau.de/st/dd/ .

Acknowledgements. Mirko Streckenbach provided helpful in-
sights onUNIX internals. Tom Truscott pointed us to theGCCerror.
Holger Cleve, Jens Krinke and Gregor Snelting provided valuable
comments on earlier revisions of this paper. Special thanks go to
the anonymous reviewers for their constructive comments.

11. REFERENCES

[1] H. Agrawal and J. Horgan. Dynamic program slicing.
SIGPLAN Notices, 6:246–256, 1990.

[2] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing
for software fault localization. In S. J. Zeil, editor,Proc. of
the 1996 International Symposium on Software Testing and
Analysis (ISSTA), volume 21(3) ofACM Software
Engineering Notes, pages 121–134, San Diego, California,
USA, Jan. 1996.

[3] T. Gyimóthy, Á. Beszédes, and I. Forg´acs. An efficient
relevant slicing method for debugging. In Nierstrasz and
Lemoine [10], pages 303–321.

[4] R. Hildebrandt. Minimierung fehlerverursachender
Eingaben. Diploma thesis, Technical University of
Braunschweig, Germany, Apr. 2000. In German.

[5] IEEE, New York.Test Methods for Measuring Conformance
to POSIX, 1991. ANSI/IEEE Standard 1003.3-1991.
ISO/IEC Standard 13210-1994.

[6] B. P. Miller, L. Fredrikson, and B. So. An empirical study of
the reliability of UNIX utilities.Communications of the
ACM, 33(12):32–44, Dec. 1990.

[7] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz revisted: A re-examination
of the reliability of UNIX utilities and services. Technical
report, University of Wisconsin, Computer Science
Department, Nov. 1995.

[8] Mozilla web site. http://www.mozilla.org/.

[9] Mozilla web site: The Gecko BugAThon.
http://www.mozilla.org/newlayout/bugathon.html.

[10] O. Nierstrasz and M. Lemoine, editors.Proc. ESEC/FSE’99
– 7th European Software Engineering Conference / 7th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, volume 1687 ofLecture Notes in Computer
Science, Toulouse, France, Sept. 1999. Springer-Verlag.

[11] D. R. Slutz. Massive stochastic testing of SQL. In A. Gupta,
O. Shmueli, and J. Widom, editors,Proc. of 24rd
International Conference on Very Large Data Bases
(VLDB’98), New York City, New York, USA, pages 618–622.
Morgan Kaufmann, Aug. 1998.

[12] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[13] M. Vertes. Xlab—a tool to automate graphical user
interfaces.Linux Weekly News, May 1998. Archived as
http://lwn.net/980528/a/xlab.html.

[14] M. Weiser. Programmers use slices when debugging.
Commun. ACM, 25(7):446–452, 1982.

[15] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In Nierstrasz and Lemoine [10], pages 253–267.

