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ABSTRACT This chapter presents a statistical decision procedure for lexi-
cal ambiguity resolution in text-to-speech synthesis. Based on decision lists,
the algorithm incorporates both local syntactic patterns and more distant
collocational evidence, combining the strengths of decision trees, N-gram
taggers and Bayesian classifiers. The algorithm is applied to 7 major types
of ambiguity where context can be used to choose a word’s pronunciation.

1 Problem Description

In speech synthesis, one frequently encounters words and numbers whose

pronunciation cannot be determined without context. Seven major types
of these homographs will be addressed here:

1.

Different Part of Speech: The largest class of pronunciation ambiguity
consists of homographs with different parts of speech: Three lives were
lost vs. One lives to eat. These cases can typically be resolved through
local syntactic patterns.

. Same Part of Speech: A word such as bass or bow exhibits different

pronunciations with the same part of speech, and thus requires addi-
tional “semantic” evidence for disambiguation.

Proper Names such as Nice and Begin are ambiguous in capital-
ized contexts, including sentence initial position, titles and single-case
text.

. Roman Numerals are pronounced differently in contexts such as Chap-

ter IIT and Henry I11.

Fractions/Dates such as 5/16 may be pronounced as five-sizteenths
or May 16th.

Years/Quantifiers: Numbers such as 1750 tend to be pronounced as
seventeen-fifty when used as dates, and one-thousand seven-hundred
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and fifty when used before measure words, as in 1750 miles. Related
cases include the distinction between the 727 pilot and 727 people.

7. Abbreviations may exhibit multiple pronunciations, such as St. (Saint
or Street) and Dr. (Doctor or Drive).

Some homographs exhibit multiple categories of ambiguity. For exam-
ple, lead has different pronunciations when used as a verb and noun, and
between two noun senses (He followed her lead verses He covered the hull
with lead). In general, we will resolve the part-of-speech ambiguity first,
and then resolve the additional semantic ambiguity if present.

2 Previous Approaches

N-gram taggers[Jel85][Chu88][Mer90] may be used to tag each word in a
sentence with its part of speech, thereby resolving those pronunciation am-
biguities that correlate with part-of-speech ambiguities. The AT&T TTS
synthesizer [SHY92] uses Church’s PARTS tagger for this purpose. A weak-
ness of these taggers is that they are typically not sensitive to specific word
associations. The standard algorithm relies on models of part-of-speech se-
quence, captured by probabilities of part-of-speech bigrams or trigrams, to
the exclusion of lexical collocations. This causes difficulty with cases such
as a ribbon wound around the pole and a bullet wound in the leg, which
have identical surrounding part-of-speech sequences and require lexical in-
formation for resolution. A more fundamental limitation, however, is the
inherent myopia of these models. They cannot generally capture longer dis-
tance word associations, such as between wound and hospital, and hence
are not appropriate for resolving many semantic ambiguities.

Bayesian classifiers]MW64] have been used for a number of sense dis-
ambiguation tasks[GCY94], typically involving semantic ambiguity. In an
effort to generalize from longer distance word associations regardless of po-
sition, an implementation proposed in [GCY92] characterizes each token of
a homograph by the 100 words nearest to it, treated as an unordered bag.!
Although such models can successfully capture topic-level differences, they
lose the ability to make distinctions based on local sequence or sentence
structure. In addition, these models have been greatly simplified by assum-
ing that occurrence probabilities of content words are independent of each
other, a false and potentially problematic assumption that tends to yield
inflated probability values. One can attempt to model these dependencies
(as in [BW94]), but data sparsity problems and computational constraints
can make this difficult and costly to do.

!Leacock et al. have pursued a similar bag-of-words strategy, using an IR-style
vector space model and neural network [LTV93].
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Decision Trees [BFOS84][BDDM91] can be effective at handling com-
plex conditional dependencies and non-independence, but often encounter
severe difficulties with very large parameter spaces, such as the highly lex-
icalized feature sets frequently used in homograph resolution.

Current Algorithm: The algorithm described in this paper is a hybrid
approach, combining the strengths of each of these 3 general paradigms.
It was proposed in [SHY92] and refined in [Yar94]. It is based on the for-
mal model of decision lists in [Riv87], although feature conjuncts have
been restricted to a much narrower complexity, namely word and class tri-
grams. The algorithm models both local sequence and wide context well,
and successfully exploits even highly non-independent feature sets.

3 Algorithm

Homograph disambiguation is ultimately a classification problem, where
the output is a pronunciation label for an ambiguous target word and the
feature space consists of the other words in the target word’s vicinity. The
goal of the algorithm is to identify patterns in this feature space that can
be used to correctly classify instances of the ambiguous word in new texts.

For example, given instances of the homograph lead below, the algorithm
should assign the appropriate label /lid/ or /led/.

Pronunciation Context

(1) led .. it monitors the [lead levels in drinking
(1) led ... median blood lead concentration was
(1) led .. found layers of lead telluride inside ..
(1) led ... conference on lead poisoning in ...
(1) led .. strontium and lead isotope zonation ..
(2) lid maintained their lead Thursday over ...
(2) lid .. to Boston and lead singer for Purple
(2) lid Bush a 17-point lead in Texas , only 3
(2) lid his double-digit lead nationwide . The
(2) lid the fairly short lead time allowed on ..

The following sections will outline the steps in this process, using the
individual homographs lead (lid/led) and bass (bels/baes) as examples. The
application of this algorithm to large classes of homographs such as frac-
tions vs. dates i1s described in Section 4.

Step 1: Collect and Label Training Contexts

For each homograph, begin by collecting all instances observed in a large
text corpus. Then label each example of the target homograph with its
correct pronunciation in that context. Here this process was partially auto-
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mated, using tools that included a sense disambiguation system based on
semantic classes [Yar92].

For this study, the training and test data were extracted from a 400-
million-word corpus collection containing news articles (AP newswire and
Wall Street Journal), scientific abstracts (NSF and DOE), 85 novels, two
encyclopedias and 3 years of Canadian parliamentary debates, augmented
with e-mail correspondence and miscellaneous Internet dialogues.

Step 2: Measure Collocational Distributions

The driving force behind this disambiguation algorithm is the uneven dis-
tribution of collocations (word associations) with respect to the ambiguous
token being classified. For example, the following table indicates that cer-
tain word associations in various positions relative to the ambiguous token
bass (including co-occurrence within a &k word window?) exhibit consid-

erable discriminating power3.

Position Collocation bels | baes
Word to the right (+1 w) | bass player 105 0
bass fishing 0 94
bass are 0 15
Word to the left (-1 w) striped bass 0 193
on bass 53 0
sea bass 0 47
white bass 0 26
plays bass 16 0
Within +20 words (£k W) | fish (in £20 words) 0 142
guitar (in £20 words) 136 0
violin (in £20 words) 49 0
river (in £20 words) 0 48
percussion (in +£20 words) | 41 0
salmon (in £20 words) 0 38

The goal of the initial stage of the algorithm is to measure a large and
varied set of collocational distributions and select those which are most
useful in 1dentifying the pronunciation of the ambiguous word.

In addition to raw word associations, the present study also collected
collocations of lemmas (morphological roots), which usually provide more

2Several different context widths are used. The £20 words employed here is a
practical width for many applications. The issues involved in choosing appropriate
context widths are discussed in [GCY92].

#Such skewed distributions are in fact quite typical. A study in [Yar93] showed
that P(pronunciation|collocation) is a very low entropy distribution. Certain
types of content-word collocations seen only once in training data predicted the
correct pronunciation in held-out test data with 92% accuracy.
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succinct and generalizable evidence than their inflected forms, and part-
of-speech sequences, which capture syntactic rather than semantic distinc-
tions in usage.* A richer set of positional relationships beyond adjacency
and co-occurrence in a window is also considered, including trigrams and
(optionally) verb-object pairs. The following table indicates the pronunci-
ation distributions observed for the noun lead for these various types of
evidence:

Position® | Collocation led | lid
+1lr lead level/N 2191 0
-lw narrow lead 0 70
+1w lead in 207 | 898
-lw,+1w | oflead in 162 0
-1w,+1w | the lead n 0 301
+1p,+2pP | lead , <NOUN> 234 | 7
+k w zine (in £k words) 2351 0
+k w copper (in +k words) | 130 | 0
Vi follow/V + lead 0 | 527
Vi take/V + lead 1 | 665

Step 3: Compute Likelihood Ratios

The discriminating strength of each piece of evidence is measured by mag-
nitude of the the log-likelihood ratio:

P(Pronunciationy|Collocation;)

Abs(Log(

P(Pronunciations|Collocation;)

The collocation patterns most strongly indicative of a particular pronun-
ciation will have the most extreme log-likelihood. Sorting evidence by this
value will list the strongest and most reliable evidence first.

Note that the estimation of P(Pronunciation;|Collocation;) merits con-
siderable care. Problems arise when an observed count in the collocation
distribution is 0, a common occurrence. Clearly the probability of seeing
zine in the context of the /lid/ pronunciation of lead is not 0, even though
no such collocation was observed in the training data. Finding a more ac-
curate probability estimate depends on several factors, including the size

*The richness of this feature set is one of the key reasons for the success of
this algorithm. Others who have very productively exploited a diverse feature set
include [Hea91], [Bri93] and [DI94].

®Position markers include 41 (token to the right), —1 (token to the left),
£k (co-occurrence in +k-token window) and -V (head verb). Possible types of
objects at these positions include W (raw words), P (parts of speech) and L (lem-
mas — a class of words consisting of different inflections of the same root, such as
take/V = takes, took, taken, take, taking).
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of the training sample, nature of the collocation (adjacent bigrams, verb-
object pairs or wider context), our prior expectation about the similarity
of contexts, and the amount of noise in the training data.

Several smoothing methods have been explored in this work, including
those discussed in [GCY92]. The preferred technique is to take all instances
of the same raw frequency distribution (such as 2/0 or 10/1), and collec-
tively compute a smoothed ratio that better reflects the true probability
distribution. This is done by holding out a portion of the training data and
computing the mean observed distribution there (e.g. 1.8/0.2) for all of
the collocations that have the same raw frequency distribution in the first
portion (e.g. 2/0). This mean distribution in the held-out data is a more
realistic estimate of the distribution expected in independent test data, and
hence gives better predictive power and better probability estimates than
using the unsmoothed values.

Smoothed ratios are very sensitive to type of collocation being observed.
A 1/0 observed ratio for adjacent content words has a smoothed ratio
of .92/.08, while a 1/0 observed ratio for function-word collocations 5 to
50 words away has a smoothed ratio close to .5/.5, indicating that a 1/0
training distribution is essentially noise here, with little predictive value.

The process of computing distributions of the form #/0 (and also /1,
ete.) for all values of z can be simplified by the observation that the map-
ping from observed ratios to smoothed ratios tends to exhibit a log-linear
relationship when other factors such as distance are held constant. This is
shown in the figure below for observed #/0 distributions for adjacent con-
tent word collocations. The points and jagged line (A) are the empirically
observed values in held-out data. (B) constitutes the least-squares fit of this
data, which is a reasonable fit, especially given that the empirical values
are poor estimates for large « due to limited sample points in this range.

Smoothing Likelihood Ratios

10
|

Log ( Smoothed Ratio)

1 5 10 50 100
Observed Ratio (x/0)



Homograph Disambiguation in Text-to-speech Synthesis 165

Satisfactory results may be obtained, however, by a much simpler smooth-
ing procedure. Adding a small constant « to the numerator and denom-
inator (z/z — (# + «)/(z + «)) roughly captures the desired smoothing
behavior, as shown in lines C (o = .085), D (o« = .1), and E (o« = .2)
above. The constant « is determined empirically for the different types of
collocation and distance from the target word. However, the value does
not vary greatly for different homographs, so adequate performance can
be achieved by reusing previous values rather than estimating them afresh
from held-out training data.

Step 4: Sort by Likelihood Ratio into Decision Lists

Preliminary decision lists are created by sorting all collocation patterns
by the absolute value of the smoothed log likelihood ratio, computed as
described above. The following are highly abbreviated examples:

Decision List for lead (noun) Decision List for bass
(highly abbreviated) (highly abbreviated)

Logl.  Evidence Pron. Logl.  Evidence Pron.
11.40  follow/V + lead = lid 10.98  fishin £k wrds = bees
11.20  zincin £k wrds = led 10.92  striped bass = bees
11.10  lead level/N = led 9.70  gwitarin +k = bels
10.66  of lead in = led 9.20  bass player = bels
10.59  the lead in = lid 9.10  peeno in xk = bels
10.51 lead role = lid 9.01 tenor in Lk = bels
10.35  copper in tk = led 8.87 sea bass = bees
10.16  lead poisoning = led 849  play/V + bass = bels
8.55 big lead = lid 8.31 river in +k = baes
8.49 narrow lead = lid 8.28 veolin in +k = bels
776 take/V + lead = lid 8.21  salmon in +k = baes
5.99 lead , NOUN = led 7.71 on bass = bels
1.15 lead in = lid 5.32 bass are = bees

The resulting decision lists are used to classify new examples by 1dentify-
ing the highest line in the list that matches the given context and returning
the indicated classification. This process is described in Step 6.

Step 5: Optional Pruning and Interpolation

The decision lists created above may be used as ¢s if we assume that the
likelihood ratio for the jth entry in the list is roughly the same when com-
puted on the entire training set and when computed on the residual portion
of the training set where the first j —1 entries have failed to match. In other
words, does the probability that piano indicates the /beis/ pronunciation of
bass change significantly conditional on not having seen fish, striped, guitar,
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and player in the target context?

In most cases the global probabilities (computed from the full training
set) are acceptable approximations of these residual probabilities. How-
ever, in many cases we can achieve improved results by interpolating be-
tween the two values. The residual probabilities are more relevant, but
since the size of the residual training data shrinks at each level in the list,
they are often much more poorly estimated (and in many cases there may
be no relevant data left in the residual on which to compute the distri-
bution of pronunciations for a given collocation). In contrast, the global
probabilities are better estimated but less relevant. A reasonable compro-
mise 18 to interpolate between the two where the interpolated estimate is
Bi x global + (1 — 3;) x residual. When the residual probabilities are based
on a large training set and are well estimated, §; is small (the residual will
dominate). In cases where the relevant residual is small or non-existent, j;
will be large and the smoothed probabilities will rely primarily on the bet-
ter estimated global values. If all 5; = 0 (exclusive use of the residual), the
result is a degenerate (strictly right-branching) decision tree with severe
sparse data problems. Alternately, if one assumes that likelihood ratios for
a given collocation are functionally equivalent at each line of a decision list,
then one could exclusively use the global (all 3; = 1). This is clearly the
easiest and fastest approach, as probability distributions do not need to be
recomputed as the list 1s constructed.

Which approach is best? Using only the global proabilities does surpris-
ingly well, and the results cited here are based on this readily replicable
procedure. The reason is grounded in the strong tendency of a word to
exhibit only one sense or pronunciation per collocation (discussed in Step
3 and [Yar93]). Most classifications are based on an x vs. 0 distribution,
and while the magnitude of the log-likelihood ratios may decrease in the
residual, they rarely change sign. There are cases where this does hap-
pen and it appears that some interpolation helps, but for this problem the
relatively small difference in performance does not necessarily justify the
greatly increased computational cost.

Two kinds of optional pruning can increase the efficiency of the decision
lists. The first handles the problem of “redundancy by subsumption,” which
occurs when more general patterns higher in the list subsume more spe-
cific patterns lower down. The more specific patterns will never be used
in Step 6 and may be omitted. Examples of this include lemmas (e.g.
follow/V) subsuming inflected forms (follow, followed, follows, etc.), and
bigrams subsuming trigrams. If a bigram unambiguously signals the pro-
nunciation, probability distributions for dependent trigrams need not even
be generated, since they will provide no additional useful information.

The second, pruning in a cross-validation phase, compensates for over-
modeling of the training data (which appears to be minimal). Once a de-
cision list is built it is applied to its own training set plus some held-out
cross-validation data (not the test data). Lines in the list which contribute
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to more incorrect classifications than correct ones are removed. This also
indirectly handles problems that may result from the omission of the inter-
polation step. If space is at a premium, lines which are never used in the
cross-validation step may also be pruned. However, useful information is
lost here, particularly for a small cross-validation corpus; these lines may
have proved useful during later classification of the test data. Overall, a
3% drop in performance is observed, but an over 90% reduction in space is
realized. The optimum pruning strategy is subject to cost-benefit analysis.
In the results reported below, all pruning except this final space-saving step
was utilized.

Step 6: Using the Decision Lists

Once the decision lists have been created, they may be used in real time
to determine the pronunciations of ambiguous words in new contexts.

From a statistical perspective, the evidence at the top of this list will
most reliably disambiguate the target word. Given a word in a new context
to be assigned a pronunciation, if we may only base the classification on
a single line in the decision list, it should be the highest ranking pattern
that is present in the target context. This is uncontroversial, and 1is solidly
based in Bayesian decision theory.

The question, however, is what to do with the less-reliable evidence that
may also be present in the target context. The common tradition is to
combine the available evidence in a weighted sum or product. This is done
by Bayesian classifiers, neural nets, [R-based classifiers and N-gram part-
of-speech taggers. The system reported here is unusual in that it does no
such combination. Only the single most reliable piece of evidence matched
in the target context is used.

There are several motivations for this approach. The first is that com-
bining all available evidence rarely produces a different classification than
just using the single most reliable piece of evidence, and when these differ
it is as likely to hurt as to help. A study in [Yar94] based on 20 homographs
showed that the two methods agreed in 98% of the test cases. Indeed, in
the 2% cases of disagreement, using only the single best piece of evidence
worked slightly better than combining evidence. Of course this behavior
does not hold for all classification tasks, but does seem to be characteristic
of lexically-based semantic classifications. This may be explained by the
previously noted observation that in most cases, and with high probability,
words exhibit only one sense in a given collocation[Yar93].

Thus for this type of ambiguity resolution, there is no apparent detri-
ment, and some apparent performance gain, from using only the single
most reliable evidence in a classification. There are other advantages as
well, including run-time efficiency and ease of parallelization. However, the
greatest gain comes from the ability to incorporate non-independent infor-
mation types in the decision procedure. A given word in context may match
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several times in the decision list, once each for its part of speech, lemma,
inflected form, bigram, trigram, and possible word-classes as well. By only
using one of these matches, the gross exaggeration of probability from com-
bining all of these non-independent log-likelihoods is avoided. While these
dependencies may be modeled and corrected for in Bayesian formalisms,
it is difficult and costly to do so. Using only one log-likelihood ratio with-
out combination frees the algorithm to include a wide spectrum of highly
non-independent information without additional algorithmic complexity or
performance loss.

4 Decision Lists for Ambiguity Classes

This algorithm may also be directly applied to large classes of ambigu-
ity, such as distinguishing between fractions and dates. Rather than train
individual pronunciation discriminators for 5/16 and 5/17, etc., training
contexts are pooled for all individual instances of the class. Since the disam-
biguating characteristics are quite similar for each class member, enhanced
performance due to larger training sets tends to compensate for the loss of
specialization.

4.1 Class Models — Creation

Decision lists for ambiguity classes may be created by replacing all members
of the class found in the training data (e.g. 5/16 and 5/17) with a common
class label (e.g. X/Y). The algorithm described in Section 3 may then be
applied to this data.®

An abbreviated decision list for the fraction/date class is shown below:

Decision List for Fraction/Date Class
Logl.  Evidence Pronunciation
8.84 <NUMBER> (X/Y) = FRACTION
758  (X/Y) of = FRACTION
6.79  Monday in £k words = DATE
6.05  Mon in £k words = DATE
596  (X/Y) mile = FRACTION
5.68  (X/Y) inch = FRACTION
422 on (X/Y) = DATE
3.96  from (X/Y) to = DATE

SThere are advantages to filtering or weighting the training data such that
each member of the class has roughly balanced representation. This causes the
trained decision list to model the dominant common features of the class, rather
than the idiosyncrasies of its most frequent members.
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4.2 Class Models — Use

The use of these class decision lists requires one additional step: translating
from the raw text (e.g. 5/16) to its full pronunciation using the paradigm
(e.g. FRACTION) selected by the decision list. In conjunction with the AT&T
TTS speech synthesizer, the decision lists specify the chosen paradigm by
using escape sequences surrounding the ambiguous form as output from
the list (e.g. “\'nfr 5/16 \!nfc” for FRACTION).

Although the rules for this translation are typically straightforward and
standard, a complication arises in the case of dates. American and British
conventions differ regarding the order of day and month, pronouncing 3/7
in “Monday, 3/7 at § PM” as March 7th and July 3rd, respectively. It
would seem reasonable to make this choice conditional on a global BRITISH
or AMERICAN parameter, set for the region of use. However, even if one
decided to treat ambiguous dates conservatively (e.g. three slash seven),
there is still considerable merit in pronouncing known fractions properly
(e.g. “3/7 of the” as three sevenths rather than three slash seven).

4.3 Class Models — Incorporating Prior Probabilities

Clearly not every member of the class has the same inherent probability,
independent of context. We can gain leverage by modeling these differences
in prior probability. For example, the class ambiguity YEAR/QUANTIFIER
exhibits the following distribution of the prior probability of being a year,
for numbers from 500 to 2000. 7

Prior Probabilities (Year vs. Quantifier)

08

06

P year)

T T
s00 1000 1500 2000

Number

"The spurt at 1000 is due to the possibility of numbers greater than 1000
being written with a comma. This tendency is greatest for literary and news text,
inconsistent in informal correspondence, and relatively rare in scientific text. The
second spurt at roughly 1492 is due to a strong American bias in the training
data’s historical references.
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These prior probabilities may be used dynamically as follows. Train a
decision list for the class assuming an uninformative prior. When applying
the list, if the highest matching pattern based on context indicates the
same pronunciation as the majority pronunciation based on the appropriate
prior, return this result. If it indicates the minority pronunciation, find
the highest matching pattern that indicates the majority pronunciation. If
the difference in log likelihoods exceeds the log of the prior ratio, use the
minority pronunciation.

4.4 Roman Numerals

Roman numerals are an example of where two-tiered class models may be
productively used. The majority of Roman numerals (including IT, TIT, VI,
VII, VIII, IX, XII, XIII, ...) exhibit the basic distinction between the uses
Chapter VII and Henry VII. These are modeled in the abbreviated decision
list below.

Decision List for Roman Numerals (e.g. VII)
LogL. | Evidence Pronunciation
9.63 <NEW-SENT> VII = SEVEN

9.59 | king (within +k words) = THE SEVENTH
9.35 Chapter VII = SEVEN

9.21 Henry VII = THE SEVENTH
9.16 Edward VII = THE SEVENTH
8.63 Title VII = SEVEN

7.82 Volume VII = SEVEN

7.65 | pope (within +k words) = THE SEVENTH
7.03 Prus VII = THE SEVENTH
6.57 Mark VII = SEVEN

6.04 Gemini VII = SEVEN

5.96 Part VII = SEVEN

[N ele]
1.83 <PROP-NOUN> VII = THE SEVENTH

However, four Roman numerals exhibit an additional possible pronunci-
ation. They include IV as /a1 vi/ (for intravenous) and I, Vand X (letters).
For these cases, an initial decision list makes the primary distinction be-
tween these additional interpretations and the NUMERIC options, based on
such collocations as IV drug, flurd, dose, injection, oral and intramuscular.
If the NUMERIC option is identified, the general Roman numeral list is con-
sulted to determine if the final pronunciation should be as in Article IV or
George IV. This two-tiered list maximizes use of existing class models.
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5 Evaluation

The following table provides a summary of the algorithm’s performance on
the classes of ambiguity studied.

System Performance

Prior %
Type of Ambiguity (Examp.) Prob. Correct
Diff. Part of Speech (lives) 62 98
Same Part of Speech (bass) 72 97
Proper Names (Nice, Begin) 63 97
Roman Numerals (I11) 75 97
Fractions/Dates (5/16) 59 94
Years/Quantifiers (1750) 67 93
Abbreviations (St., Dr.) 87 98
AVERAGE 69 96

A breakdown of performance on a sample of individual homographs fol-
lows:

Sample Prior %
Word Pronl Pron2 Size Prob. Correct
lives larvz livz 33186 69 98 &
wound wasnd wund 4483 55 98
lead (N) lid led 12165 66 98
tear (N) tea® tIo* 2271 88 97
axes (N) laeksiz laekslz 1344 72 96
Jan dzeen jan 1327 90 98
routed autid 1autid 589 60 94
bass bels baes 1865 57 99
Nice nals nis 573 56 94
Begin bi'gin beigin 1143 75 97
Chi tfi kai 1288 53 98
Colon kow'losn koulon 1984 69 98
St. seint strit 624 74 99
in. Intf Intf1z 222 76 96
111 3 the 3rd 28146 70 98
v al vi NUMERIC 2090 83 99
IV (NUMERIC) 4 the 4th 1744 63 98
VII 7 the 7th 1514 76 98
AVERAGE 96558 69 97

8As a standard for comparison, the PARTS tagger achieves 88% and 82%
accuracy on this test data for lives and wound, respectively. A primary reason for
the difference in performance is the lexicalization issue discussed in Section 2.
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Evaluation in each case is based on 5-fold cross-validation using held-out
test data for a more accurate estimate of system performance. Unless other-
wise specified in the text, these results are based on the simplest and most
readily replicable options in the algorithm above, and are hence representa-
tive of the performance that can be expected from the most straightforward
implementation. Using more sophisticated interpolation techniques yields
performance above this baseline. The sources of the test (and training) data
are described in Section 3, Step 1.

6 Discussion and Conclusions

The algorithm presented here has several advantages which make it suit-
able for general lexical disambiguation tasks that require attention to both
semantic and syntactic context. The incorporation of word and optionally
part-of-speech trigrams allows the modeling of many local syntactic and
semantic constraints, while collocational evidence in a wider context allows
for topic-based semantic distinctions. A key advantage of this approach is
that it allows the use of multiple, highly non-independent evidence types
(such as root form, inflected form, part of speech, thesaurus category or
application-specific clusters) and does so in a way that avoids the com-
plex modeling of statistical dependencies. This allows the decision lists to
find the level of representation that best matches the observed probabil-
ity distributions. It is a kitchen-sink approach of the best kind — throw in
many types of potentially relevant features and watch what floats to the
top. While there are certainly other ways to combine such evidence, this ap-
proach has many advantages. In particular, precision seems to be at least as
good as that achieved with Bayesian methods applied to the same evidence.
This is not surprising, given the observation in [LTV93] that widely diver-
gent sense-disambiguation algorithms tend to perform roughly the same
given the same evidence. The distinguishing criteria therefore become:

e How readily can new and multiple types of evidence be incorporated
into the algorithm?

e Are probability estimates provided with a classification?

e How easy 1s it to understand the resulting decision procedure and the
reasons for any given classification?

e Can the resulting decision procedure be easily edited by hand?

e Is the algorithm simple to implement, and can it be applied quickly
to new domains?

The current algorithm rates very highly on all these standards of evalua-
tion, especially relative to some of the impenetrable black boxes produced
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by many machine learning algorithms. Its output is highly perspicuous:
the resulting decision list is organized like a recipe, with the most useful
evidence first and in highly readable form. The generated decision proce-
dure is also easy to augment by hand, changing or adding patterns to the
list. The algorithm is also extremely flexible—it is quite straightforward
to use any new feature for which a probability distribution can be calcu-
lated. This is a considerable strength relative to other algorithms which
are more constrained in their ability to handle diverse types of evidence.
In a comparative study [Yar94b], the decision list algorithm outperformed
both an N-Gram tagger and Bayesian classifier primarily because it could
effectively integrate a wider range of available evidence types.

Overall, the decision list algorithm demonstrates considerable hybrid
vigor, combining the strengths of N-gram taggers, Bayesian classifiers and
decision trees in a highly effective, general purpose decision procedure for
lexical ambiguity resolution.
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