Normalization of Non-Standard Words:
WS '99 Final Report

Richard Sproat Alan Black Stanlev Chen
Shankar Kumar Mari Ostendorf Christopher Richards

September 13, 1999

Abstract

All areas of language and speech technology must deal. in one way
or another, with real text. Real text is messy: many things one finds
in text — numbers, abbreviations, dates, currency amounts, acronyvins

— are not standard words in that one cannot find their properties by
looking them up in a dictionary or deriving then morphologically from
words that are in a dictionary, nor can one find their pronunciation by
an application of “letter-to-sound” rules. For many applications, such
non-standard words — NSW’s — need to be normalized. or in other
words converted into standard words. Since the correct normalization
of a given token often depends upon both the local context and the type
(genre) of text one is dealing with, “text-normalization” is in general a
very hard problem. Typical technology for text-normalization mostly
involves sets of ad hoc rules tuned to handle one or two genres of
text (often newspaper-style text), with the expected result that the
techniques, do not usually generalize well to new domains.

The purpose of this project was to take some initial steps towards
addressing deficiencies in previous approaches to text normalization.
We developed a taxonomy of NSW’s on the basis of four rather distinet
text types — news text, a recipes newsgroup, a hardware-product-
specific newsgroup, and real-estate classified ads. We then investi-
gated the application of several general techniques including n-gram
language models, decision trees and weighted finite-state transducers
to the range of NSW types, and demonstrated that a systematic treat-
ment will lead to better results than can be obtained by the more ad
hoe treatments that have more typically been used in the past. For

abbreviation expansion in particular we investigated both supervised
and unsupervised approaches, and we report results for both of these.
Note that the unsupervised approach allows one to find and posit ex-
pansions for abbreviations for a domain given only a raw corpus from
that domain, so that in real estate classified ads, for instance, the
method will discover that the abbreviation BR means bedroom or FP
means fireplace.

The overall results that we will report will be terms of word-error
rate, which is standard in speech recognition evaluations, but which
has only occasionally been used as an overall measure in evaluating
text normalization systems.

CONTENTS

Contents

1 Motivation

2 Introduction: The Problem

3 Previous Approaches
3.1 Text-to-Speech Synthesis Systems
3.2 Text-Conditioning Tools
3.3 Sense-Disambiguation Techniques
3.4 Problems with Previous Approaches

4 Overview of the Team’s Contribution

5 A Taxonomy of NSW’s

6 Corpora and Tagging Conventions
6.1 Corpora Chosen
6.2 Initial Processing of Corpora
6.3 Tagging Conventions
6.4 Inter-Labeler Reliability Measures

7 Theoretical Models and Overall Architecture
7.1 Theoretical Preliminaries

7.1.1 Source-Channel Model
7.1.2 Direct Modelo

7.2 Architectural Overview

8 Description of Individual Modules

8.1 Lattice Format
8.2 Tokenizer
8.3 Splitter
8.3.1 Motivation
8.3.2 Method
8.3.3 Evaluation
8.4 A Classifier for Non-Standard Words
8.4.1 Imtroduction
8.4.2 The Overall NSW Classifier for All Tokens
8.4.3 Sub-classifier for Alphabetic tokens
8.4.4 Formulation of the Problem
8.4.5 Sub-classifier Features for Alphabetic Tokens

10

11

12
12
15
17
19

20
20
21
22

24

24
24
26
26

CONTENTS

8.4.6 Distribution of NSW tokens in labeled data
8.4.7 Supervised Training and Evaluation Paradigm for the
NSW Alphabetic Classifier
8.4.8 Unsupervised Training and Evaluation Paradigm for
the NSW Classifier
8.4.9 NSW Classifier: Cross Domain Testing
8.5 Algorithmic Expansions
8.6 Abbreviations
8.6.1 Supervised method.
8.6.2 Unsupervised method.
8.6.3 Tree-Based Abbreviation Model.
8.6.4 Experiments.
8.6.5 Brief Synopsis of Abbreviation Expansion Tools
8.6.6 Discussion
8.7 Language Modeling

9 Performance Measures

9.1 Truth
9.2 Noise

9.3 Manual Evaluation
9.3.1 Aligning Raw and Normalized Text
9.3.2 Results

9.4 Measurement criteria

9.5 Baseline systems

9.6 NSW based models

10 Discussion

11 Acknowledgments

A Appendix 1: Labeling Guide for NSWs
Al Background
A2 The labeling task
A3 A Simple Exampleo 00000
A4 A More Complex Example

A5 Tagging Chart
A.6 How run the labeler

B Appendix 2: Evaluation Guide

C Appendix 3: Lattice Format

48
19
19
50
52
55
56
57
58
63
64
68
68
68
68
69
70
71

72

77

I MOTIVATION 5

1 Motivation

All areas of language and speech technology —— be they machine transla-
tion, automatic speech recognition, or topic detection - must deal, in one
way or another. with real text. In some cases the dependency is direct:
machine translation systems and topic detection systems usually work on
textual mput. In other cases the dependency is indirect: automatic speech
recognizers usually depend on language models that are trained on text.
But in any case. systems must deal with real text, and real text is messy:
many things one finds in text

numbers, abbreviations, dates. currency
amounts, acronyms ...— are not standard words in that one cannot find
their properties by the trivial procedure of looking them up in a dictio-
nary, or their pronunciation by an application of “letter-to-sound” rules.
Such non-standard words (NSW’s) must typically be normalized, or in other
words converted into standard words. Since the correct normalization of a

given token often depends upon both the local context and the type (genre)
of text one is dealing with. “text-normalization” is in general a very hard
problem.

Unfortunately text-normalization is rarely considered to be interesting
per se, let alone worthy of serious study. As a result typical technology
mostly involves sets of ad hoc rules tuned to handle one or two genres of text
(often newspaper-style text), with the expected result that the techniques.
such as they are, do not usually generalize well to new domains. Note
that this statement correctly describes the state of affairs even in text-to-
speech synthesis, where one would have expected that the matter would
have received more serious attention.

In addition to the ad hocity of most approaches, an additional problem
with the lack of systematic work on the topic of non-standard words, is
that we do not have a clear idea of the range of types of NSW's that must
be covered. Anyone who has worked on text-normalization for a particular
domain will be very familiar with the range of possible NSW’s for that
domain, and will have developed some ways of dealing with them, but there
has been little or no work on developing a broader picture of the range of
cases one could expect to find if one looks over a wider set of text types.

The purpose of this project was to take an initial stab at addressing these
deficiencies in previous approaches. We developed a taxonomy of NSW's
on the basis of four rather distinct text types -—— news text, a recipes news-
group, a hardware-product-specific newsgroup, and real-estate classified ads.
We then investigated the application of several general techniques includ-
ing n-gram language models, maximum entropy models, decision trees and

2 INTRODUCTION: THE PROBLEM 6

weighted finite-state transducers to the entire range of NSW types (rather
than a selected subset), and demonstrated that a systematic treatment of
such cases will lead to better results than can be obtained by the spottier
ad hoc treatments that have more typically been used in the past. We also
employed a more standard and systematic procedure for evaluating perfor-
mance than has heretofore generally been used in the text normalization
literature.

This is not an end, but a beginning: it is hoped that the preliminary
results we have obtained will inspire others to take this field of inquiry
seriously, and to contribute to its future improvement.

2 Introduction: The Problem

Real text contains a variety of token types that are non-standard in the
sense that they are either: not ordinary words (dictionary words. or their
derivatives) or names: or are ordinary words but are typographically ab-
normal in some way. Typographic abnormality includes distinctive use of
capitalization to indicate emphasis, or non-distinctive use of capitalization
when the entire region of text is capitalized.

Such Non-Standard Words — NSW's - include: digit sequences; words,
acronyms and letter sequences in all capitals; mixed case words (WinNT,
Sun08) to be read in various ways; abbreviations; roman numerals; URL’s
and e-mail addresses. Many of these kinds of elements are pronounced ac-
cording to principles that are quite different from the pronunciation of or-
dinary words or names; furthermore there is a high degree of ambiguity in
pronunciation (higher than for ordinary words) so that many items have
more than one plausible pronunciation, and the correct one must be disam-
biguated from context: IV could be four, fourth, the fourth, or I.V.: IRA
could be LR.A. or Ira: 1750 could be seventeen fifty as a date or building
number, or seventeen hundred (and) fifty (or one thousand seven hundred
(and) fifty) as a cardinal number.

Such items are problematic for language and speech technology systems.
For Text-to-Speech systems (TTS) there is the problem of rendering them
appropriately in speech. This is particularly important for the goal of uni-
versal access, since web-based and email documents are more likely to have
NSW’s than newspaper text. for example.

For Automatic Speech Recognition (ASR) they cause problems for train-
ing language models on text, since the language models (LM) must model
what people will say, not merely what tokens exist in the text. Hence. it

3 PREVIOUS APPROACHES 7

is typical in preparing text for LM training to apply a variety of ad hoc
scripts — e.g. the Linguistic Data Consortium’s “Text Conditioning Tools”
described below — to normalize NSW’s in the text. As techniques for using
out-of-domain language model training data improve (Iyer and Ostendorf.,
1997), more sophisticated text normalization will be an important tool for
utilizing the vast amounts of on-line text resources.

In addition to normalizing text for language modeling in general it is
worth noting that many important parts of the text — dates, organization
names, money values, etc. -~ are exactly those which will typically be
represented by non-standard words. Thus language models from normalized
text are likely to be of specific benefit in information extraction applications,
which involve identifying such expressions.

3 Previous Approaches

In principle any system that deals with unrestricted text needs to be able
to deal with non-standard words. In practice most work on this topic has
been done in the context of two particular applications, namely text-to-
speech systems, and text “conditioners” for automatic speech recognition
applications. In the first application, obviously, the problem is to decide
how an automatic system should say the token: in the second the problem
is to predict how a person reading the text would say the token. We briefly
consider the techniques applied in these domains below.

Cross-cutting both of these domains (though to date only really applied
in TTS) are the application of sense disambiguation techniques to the prob-
lem of homograph resolution for NSW's. This is discussed here (Section 3.3)
as the ouly instance of a fairly principled corpus-based technique that has
been applied in this domain.

Problems with these previous approaches are outlined in Section 3.4.

3.1 Text-to-Speech Synthesis Systems

The great bulk of work on “text normalization” in most TTS systems is
accomplished using hand-constructed rules that are tuned to particular do-
mains of application (Allen. Hunnicutt, and Klatt, 1987: Black, Taylor, and
Caley, 1998: Sproat, 1997).

For example, in various envisioned applications of the AT&T Bell Labs
TTS system, it was deemed important to be able to detect and pronounce
(U.S. and Canadian) telephone numbers correctly. Hence a telephone num-
ber detector (which looks for seven or ten digits with optional parenthe-

3 PREVIOUS APPROACHES 8

ses and dashes in appropriate positions) was included as part of the text-
preprocessing portion of the system. On the other hand, although e-mail
handles were commonplace even in the mid-80’s, when this system was de-
signed, nobody thought of including a method to detect and appropriately
verbalize them. This kind of spotty coverage is the norm for TTS systems.

Expansion of non-standard words is accomplished by some combination
of rules (e.g. for expanding numbers, dates, letter sequences, or currency
expressions) and lookup tables (e.g. for abbreviations, or roman numerals).
Ambiguous expansions — e.g. St. as Saint or Street — are usually handled
by rules that consider features of the context. In this particular case, if
the following word begins with a capital letter, then it is quite likely that
the correct reading is Saint (Saint John), whereas if the previous word
begins with a capital letter. the correct reading is quite likely Street. Simple
rules of this kind are quite effective at capturing most of the cases that you
will find in “clean” text (i.e., text that, for instance, obeys the standard
capitalization conventions of English prose): but only of course for the cases
that the designer of the system has thought to include.

3.2 Text-Conditioning Tools

In the ASR community. a widely used package of tools for text normaliza-
tion are the Lingnistic Data Consortium’s (LDC) “Text Conditioning Tools”
(Linguistic Data Consortium, 1998). Like most TTS systems, these text-
conditioning tools depend upon a combination of lookup tables (e.g., for
common abbreviations); and rewrite rules (e.g. for numbers).

Disambiguation is handled by context-dependent rules. For instance
there is a list of lexical items (Act, Advantage, amendment ... Wespac, Wes-
tar, Wrestlemania) after which Roman numerals are to be read as cardinals
rather than ordinals.

Numbers are handled by rules that determine first of all if the number
falls into a select set of special classes — U.S. zip codes. phone numbers. etc..
which are usually read as strings of digits; and then expands the numbers
into number names (1,956 becomes one thousand nine hundred fifty siz) or
other appropriate ways of reading the number (1956 becomes nineteen fifty
SiT).

The main problem with the LDC tools, as with the text normalization
methods used in TTS systems, is that it is quite domain specific: it is spe-
cialized to work on Broadcast News-type text material, and does not reliably
work outside this domain. For instance, only about 3% of the abbreviations
found in our classified ad corpus are found in the LDC tools abbreviation

3 PREVIOUS APPROACHES 9

list.

3.3 Sense-Disambiguation Techniques

Sense disambiguation techniques developed to handle ambiguous words like
crane (a bird, versus a piece of construction equipment). can be applied
to the general problem of homograph disambiguation in TTS systems (e.g.
bass “type of fish’, rhyming with lass: versus bass ‘musical range’. rhyming
with base).

Many NSW’s are homographs, some particular cases, and some more sys-
tematic. A particular case is IV, which may be variously four (Article IV).,
the fourth (Henry IV'), fourth (Henry the IV), or L V. (IV drip). More
systematic cases include dates in month/day or month/year format (e.g.
1/2, for January the second), which are systematically ambiguous with frac-
tions (one half): and three or four digit numbers which are systematically
ambiguous between dates and ordinary number names (in 1901, 1901 tons).

Yarowsky (1996) demonstrated good performance on disambiguating
such cases using decision-list based techniques, which had previously been
developed for more general sense-disambiguation problems.

Once again though. such techniques do presume that you know before-
hand the individual cases that must be handled.

3.4 Problems with Previous Approaches

All of the previous approaches to the problem of handling non-standard
words presume that one has a prior notion of which particular cases must
be handled. Unfortunately this is often impractical, especially when one is
moving to a new text domain. Even within well-studied domains - such as
newswire text — one often finds novel examples of NSW’s. For instance the
following abbreviations for the term landfill occurred in a 1989 Associate
Press newswire story:

Machis Bros Lf (S Marble Top Rd) , Kensington, Ga .
Bennington Municipal Sanitary Lfl, Bennington, Vt .
Hidden Valley Lndfl (Thun Field), Pierce County, Wash .

None of these examples can even remotely be considered to be “standard?,
and it is therefore unreasonable to expect that the designere of a text nor-
malization system would have thought to add them to the list of known
abbreviations.

4 OVERVIEW OF THE TEAM’S CONTRIBUTION 10

When one moves to certain new domains, such as real estate classified
ads. the one often finds a quite rich set of novel examples Consider the
example below taken from the New York Times real estate ads for January
12, 1999:

2400 REALLY! HI CEILS. 18" KIT,
MBR/Riv vu, mds, clsts galore! §915K.

Here we find CEILS (ceilings), KIT (kitchen), MBR (master bedroom). Riv
vu (rwer view), mds (maids (room) (7)) and clsts (closets), none of which
are standard abbreviations, at least not in general written English.

A more general problem is that we do not in fact have a clear idea of
what types of NSW’s exist, and therefore need to be covered: there is no
generally known taxonomy of non-standard words for English, or any other
language, though there have been many taxonomies of particular subclasses
(Cannon. 1989; Romer, 1994).

4 Overview of the Team’s Contribution

To our knowledge, the work described here is the first systematic study of
NSW’s and algorithms for handling them.
Our specific contributions are:

o A proposal for a tazonomy of NSW’s based on the examination of a
diverse set of corpora and the NSW's contained therein.

e Publicly available hand-tagged corpora from several specific domains:
North American News Text Corpora; Real Estate Classified Ads:
rec.food.recipes newsgroup text; pc110 newsgroup text.

e An implemented set of methods for dealing with the various classes of
NSW’s. These include:

— A splitter for breaking up single tokens that need to be split into
- O
multiple tokens: e.g. 2BR,2.5BA should be splitinto 2 BR . 2.5 BA.

— A classifier for determining the most likely class of a given NSW.

— Methods for expanding numeric and other classes that can be
handled “algorithmically”.

— Supervised and unsupervised corpus/domain-dependent methods
for dealing with abbreviations: the supervised methods presume
that you have a tagged corpus for the given domain; the unsu-
pervised methods presume that all you have is raw text.

A TAXONOMY OF NSW’S 11

G

e A publicly available set of tools for text normalization that incorporate
the above-mentioned methods.

Each of these issues i1s described in detail in the sections below.

5 A Taxonomy of NSW's

After examining a variety of data, we developed a taxonomy of non-standard
words (NSWs). summarized in Table 1. to cover the different types of non-
standard words that we observed. The different categories were chosen to
reflect anticipated differences in algorithms for transforming (or expanding)
tokens to a sequence of words, where a “token” is a sequence of characters
separated by white space (see Section 8.2 for a more on defining tokens).

Four different categories are defined for tokens that included only al-
phabetic characters: expand to full word or word sequence (EXPN), say
as a letter sequence (LSEQ), say as a standard word (ASWD) and mis-
spelling (MSPL). The ASWD category includes both standard words that
are simply out of the vocabulary of the dictionary used for NSW detection
and acronyms that are said as a word rather than a letter sequence (e.g.
NATO). The EXPN category is used for expanding abbreviations such as
fple for fireplace, but not used for expansions of acronyms/abbreviations to
their full name, unless it would be more natural to say the full expansion
in that genre. For example, IBM is typically labeled as LSEQ (vs. EXPN
for International Business Machines), while NY is labeled as EXPN (New
York). Similarly, won’t is not labeled as an expansion, but gov’t should be.
Of these four categories, the problem of expanding the EXPN class of to-
kens is of most interest in our work, since pronouncing words and detecting
misspellings has been handled in other work.

Several categories are defined for tokens involving numbers. We iden-
tified four main ways to read numbers: as a cardinal (e.g. quantities). an
ordinal (e.g. dates), a string of digits (e.g. phone numbers), or pairs of digits
(e.g. years). However, for ease of labeling and because some categories can
optionally be spoken in different ways (e.g. a street address can be read as
digits or pairs), we defined categories for the most frequent types of numbers
encountered. We chose not to have a separate category for roman numerals.
but instead to label them according to how they are read, i.e. as a cardinal
(NUM, as in World War II) or an ordinal (NORD. as in Louis XIV or Louis
the XIV). For the most part, once a category is given, the expansion of
numbers into a word sequence can be implemented with a straightforward
set of rules. The one complicated case is money, where $2 billion is spoken

6 CORPORA AND TAGGING CONVENTIONS 12

as two billion dollars. so the dollars moves beyond the next token. Allowing
words to move across token boundaries complicates the architecture and is
only necessary for this special case, so we define a special tag to handle these
case (BMONY).

Sometimes a token must be split to identify the pronunciation of its
subparts, e.g. WinNT consists of an abbreviation Win for Windows and
the part N7 to be pronounced as a letter sequence. To handle such cases.
we introduce the SPLT tag at the token level, and then use the other tags
to label sub-token components. In some instances, the split tokens include
characters that are not to be explicitly spoken. These are mapped to one
of two categories - PUNC or SLNT - depending on whether or not the
characters are judged to be a non-standard marking of punctuation (i.e.
correspond to a prosodic phrase break). Both tags can also be used for
isolated character sequences (i.e. not in a split). The PUNC class was not
in the original taxonomy. but was introduced at the start of the workshop
after experience with labeling suggested it would be reliable and useful.

Three additional categories were included to handle phenomena in elec-
tronic mail: funny spellings of words (presumed intentional, as opposed to
a misspelling). web and email addresses, and NONE to handle ascii art and
formatting characters. The category NONE is assumed to include phenom-
ena that would not be spoken and is mapped to silence for the purpose of
generating a word sequence, but it also includes tokens that we simply do
not know how to render at this point, such as the quoting character “>"
and smiley faces “:)” in email, computer error messages, and stock tables
N news reports.

Although not included in the table below, an additional OTHER tag
was allowed for rare cases where the labelers could not figure out what the
appropriate tag should be. The OTHER category was not used in the word
prediction models.

6 Corpora and Tagging Conventions

6.1 Corpora Chosen

In order to ensure generalizability of the tag taxonomy and algorithis devel-
oped here, we chose to work with four very different data sources, described
below.

NANTC: The North American News Text Corpus (NANTC) is a stan-
dard corpus available from the Linguistic Data Consortium (LDC). The

6 CORPORA AND TAGGING CONVENTIONS 13

Table 1: Taxonomy of non-standard words used in hand-tagging and in the
text normalization models.

EXPN abbreviation, contractions adv, N.Y, mph, gov't
alpha LSEQ letter sequence CIA, D.C, CDs
ASWD read as word CAT, proper names
MSPL misspelling geogaphy
NUM number (cardinal) 12,45, 1/2, 0.6
NORD number (ordinal) May 7, 3rd, Bill Gates 111
NTEL telephone (or part of) 212 555-4523
NDIG number as digits Room 101,
N NIDE identifier 747, 386, 15, pcll0, 3A
U NADDR number as street address 5000 Pennsvivania, 4523 Forbes
M NZIP zip code or PO Box 91020
B NTIME a (compound) time 3.20, 11:45
E NDATE a (compound) date 2/2/99, 14/03/87 (or US) 03/14/87
R NYER vear(s) 1998 80s 1900s 2003
S MONEY money (US or otherwise) $3.45 HK$300. Y20,000, $200K
BMONY money tr/m/billions $3.45 billion
PRCT percentage 75%, 3.4%
SPLT mixed or “split” WS99, x220, 2-car
(see also SLNT and PUNC examples)
O SLNT not spoken, word boundary word boundary or emphasis character:
T M.bath, KENT*REALTY, _rcallv_, ***Added
H PUNC not spoken, phrase boundary non-standard punctuation: ©..7 in
E DECIDE.. Year, “***7 iy $99 9K***Whites
R FNSP funny spelling slloooooww, sh*t
URL url, pathname or email http://apj.co.uk, /usr/local, phj€iteleport.com
NONE token should be ignored ascil art, formating junk

6 CORPORA AND TAGGING CONVENTIONS 14

corpus Includes data from several sources (New York Times., Wall Street
Journal, LA Times, and two Reuters services). We used a small random
sample from these five sources taken from the 1994-1997 period. This cor-
pus was chosen because it represents clean well-edited text data of the form
often used in existing text analysis tools. Such data is already used for train-
ing language models in speech recognition and for training existing TTS
systems. Although the percentage of NSWs is relatively small, we include
this to allow easier comparison of our results with existing text analysis
techniques.

Classifieds: A corpus of classified ads was collected for this work by the
LDC. It contains real estate ads from three sources (Boston Globe. Washing-
ton Post, and the FindItOnline Classified Network). These were collected
during the first half of 1999. This corpus was chosen because of the high fre-
quency of NSWs particularly EXPN tokens, which pose particularly difficult
problems for text normalization.

pcl10: The pcll0 corpus was collected from a public mailing list on the
IBM pcll0 palmtop computer (pcllO@ro.mu). It consists of daily digests
from the list from 1998-1999. Messages are usually quite technical though
still in a chatty email style. It contains many abbreviations. misspellings,
unusual capitalization and lots of machine and part identifiers. Unlike gen-
eral newsgroups, however, it has very few off-topic articles. No significant
tidy up of the data has been done except automatic detection of mail head-
ers, so it is very noisy compared to NANTC. It was selected to represent
email, but from a forum that allows us to publicly distribute it.

RFR: The RFR corpus includes recipes from the rec.food.recipes elec-
tronic newsgroup. Although the submissions are via electronic mail, the
data is relatively clean because the list is carefully moderated. This means
that there is little of the discussion and quoting that is typical of many email
lists (including the pcl10 corpus), although there is a large mumber of URL
and email addresses. The data was collected during in the first half of 1999.
It was chosen because it represents a non-technical but very specialized style
of text that was easy to collect.

In total there are about 5.5 million tokens in the databases. with a
break down as shown in Table 2. The number of non-standard words given
in the table is based on the automatic detection algorithm described in

6 CORPORA AND TAGGING CONVENTIONS 15

Table 2: Size of different corpora and number of detected non-standard word
tokens.

Corpus NANTC | Classifieds | pc110 | RFR
total # tokens 4.3m 415k | 2064k | 209k
NSWs 377k 180k 72k | 46k
% NSW 8.8% 43.4 27.3 | 220

Table 3: Distribution of frequent alphabetic tags in the four corpora.

Domains
NANTC | Classifieds | pcl110 | RFR
ASWD 83.49 28.64 | 64.60 | 72.36
LSEQ 9.10 3.00 | 22.60 | 2.11
EXPN 7.41 68.36 | 12.80 | 25.53

Section 8.2, which does miss some tokens, and does not separately count the
sub-components of a SPLT token.

As should be clear from the partial distribution given in Tables 3-4.
these corpora are very different in nature. For the main three alphabetic
labels, there are a large percentage of ASWD tokens in all domains, which
are primarily out-of-vocabulary words. These include names of people and
places in news. names of streets and towns in the classified ads, and unusual
ingredients in recipes. In addition, the classified ads have a large number
of EXPN abbreviation tokens, as expected: the pcll0 domain has a large
percentage of letter sequences because of the technical jargon (e.g. PCM-
CIA); and the recipes have a large number of EXPN tokens corresponding
to measurement abbreviations. Looking at the distributions of numbers. it
is not surprising to see that years are frequent in the news domain, tele-
phone numbers are frequent in classified ads, identifiers are frequent in the
pcll0 corpus (equipment IDs), and the main use of numbers in recipes is to
indicate quantities.

6.2 Initial Processing of Corpora

In each case the raw data was converted to a simple XML based markup for-
mat. The NANTC data from the LDC already has some SGML based tags

6 CORPORA AND TAGGING CONVENTIONS 16

Table 4: Distribution of frequent number tags in the four corpora.

Domains

NANTC | Classifieds | pc110 | RFR
NUM 66.11 58.26 | 43.77 | 97.90
NYER 19.06 0.70 0.51 0.27
NORD 9.37 3.37 4.45 0.11
NIDE 2.24 5.83 | 37.41 0.47
NTEL 1.25 25.92 1.32 0.02
NTIME 1.21 3.28 4.16 1.12
NZIP 0.22 0.29 0.17 0.04
NDATE 0.20 0.13 1.33 0.05
NDIG 0.16 0.00 2.16 0.01
NADDR 0.13 2.20 0.15 0
Total Nums 73005 24193 7818 | 18195

these were partially augmented (in particular, explicit closing paragraphs
were added) in a fully automatic way and extraneous characters that inter-
fere with such mark up were quoted (that is “&” and “<”). For the other
corpora, paragraph boundaries were marked at blank lines and for the pcl10
and RFR, which came from electronic mail and usenet data. article headers
were marked up and ignored in later processing. Where the article content
contains quoted headers (effectively only in pcll0) this data remained as
part of the training data.

After markup only those tokens appearing within paragraphs were con-
sidered for analysis, all other tokens were ignored (primarily mail headers
and NANTC story headers and footers).

Once in a standard XML form we automatically extracted tokens that
were NSWs by the definition given in Section 8.2. Each NSW was extracted
with surrounding context (three tokens on each side) and a guess at the
NSW type was given. These tokens alone were presented for hand labeling
as discussed in the next section.

Each token identified as an NSW was given the tag W with an attribute
NSW and value as given by the labelers. When the NSW tag is EXPN, an
additional attribute PRON is given whose value is a string of space separated
words representing its expansion.

Additionally where a token was identified as being split, the split tokens

6 CORPORA AND TAGGING CONVENTIONS 17

were marked with a WS tag within a W marking the whole unsplit token.
Whitespace is preserved in the marked up files containing the additional
NSW tags (and possibly pronunciations) without losing any information
from the original text.

An example of marked-up XML text is given in Figure 1.

6.3 Tagging Conventions

The labeling task involves looking at a token within a short context (four
words on either side) and identifying one of the possible labels for that
non-standard word. Note that labeling involves (primarily) identifying what
words would correspond to the token if the text was read and indicating this

symbolically via the tags. Labelers are instructed to type in the expansion
explicitly only for tokens where the expansion is unclear or ambiguous, such
as sunny for sun (vs. Sunday). Expansions that are frequent for a particular
corpus, such as BA and LR in the classified ads, are expanded automatically
unless explicitly expanded by the labeler because of having a non-standard
usage (e.g., not bathroom or living room, respectively).

To speed up the tagging task, labelers are presented only with candi-
date non-standard words that have been identified using a simple dictionary
check. As a result, some of the non-standard words are not labeled, but the
percentage is small. Standard words that are presented as candidate NSWs
are simply labeled ASWD. Also to speed up labeling, the intermediate fag

SCORE was introduced for tokens such as 5-7, which are later automatically
re-labeled as SPLT and split into a NUM to NUM sequence. (The “-7 is an
EXPN that expands to the word fo.)

The labelers used a tagging tool, actually a special mode in the Emacs
editor, that presents each token on a new line surrounded by its context. A
guess at the label is given at the start and the labeler must either accept the
guess or provide an alternative. In the following example, which illustrates
the presentation, the corrected tags are given in the first colwinmn and the
initial guess is in the second cohumn.

NORD
NORD
NUM

ASWD
LSEQ
EXPN

NUM for Bosnia by Oct
NUM no later than Nov
NUM begin the sale of

ASWD possibility of doing this
LSEQ The Washington Post says
ASWD Rosenblatt Stadium in Omaha

15 * he would go to 109

15 * The United States along $
12 * million barrels of oil §
multilaterally * 0 O O O 358
U.S * relations with its alli$
Neb * they have never seen

The first two NSWs are not simple numbers but ordinals, since they are
dates and hence must be labeled NORD. The third line is correct, a simple

6 CORPORA AND TAGGING CONVENTIONS

<DOC>

<TEXT>

<p>

AAA INVESTMENTS SO SHORE,<W NSW="SPLT"><WS NSW="NUM"> 40</WS><WS
NSW="EXPN" PRON="plus">+

</WS></W> modern<W NSW="EXPN" PRON="brick"> brk</W><W NSW="EXPN"
PRON="apartments'"> apts</W> on<W NSW="SPLT"><WS NSW="NUM'"> 4</WS><WS
NSW="EXPN" PRON="plus'">+</WS></W> acres,<W N

SW="EXPN" PRON="individual"> indiv</W><W NSW="EXPN" PRON="heating'>
ht.</W> Income<W NSW=

"MONEY"> $400K.</W> Ask<W NSW="MONEY"> $2,975,000</W><W NSW="SPLT"><WS
NSW="EXPN'" PRON="w

ith"> w/</WS><WS NSW="MONEY'">$750K</WS></W> down. ROBERT<W NSW="LSEQ">
L.</W> TENNEY REAL
TY<W NSW="PUNC"> (</W><W NSW="NTEL'">617</W><W NSW="PUNC">)</W><W
NSW="NTEL"> 472-0629472-

0630</W>

</P>

</TEXT>

</DOC>

<DOC>

<TEXT>

<p>

AARA INVESTMENTS<W NSW="EXPN" PRON='"north west"> N.W.</W> OF BOSTON,<W
NSW="NUM"> 17</W><W

NSW="EXPN'" PRON="modern'"> mod</W> brick<W NSW="EXPN"
PRON="apartments"> apts,</W> new<¥W

NSW="EXPN" PRON="roof"> rf</W><W NSW="EXPN" PRON="and">& ; </W>
boiler,<W NSW="EXPN" PRO

N="included"> inc</W><W NSW="MONEY"> $126K,</W> ask<W NSW="MONEY'">
$815K</W><W NSW="SPLT"

><WS NSW="EXPN" PRON='"with'"> w/</WS><WS NSW="MONEY">$200K</WS></W>
down

</P>

</TEXT>

</D0OC>

<DOC>

<TEXT>

<P>

AAA INVESTMENTS<W NSW="EXPN" PRON='"north west"> N.W.</W> OF BOSTON,<W
NSW="NUM"> 17</W><W

NSW="EXPN" PRON="modern"> mod</W> brick<W NSW="EXPN"
PRON="apartments"> apts,</W> new<W

NSW="EXPN" PRON="roof"> rf</W><W NSW="EXPN" PRON="and">&</W>
boiler,<W NSW="EXPN" PRO

N="included"> inc</W><W NSW="MONEY"> $126K,</W> ask<W NSW="MONEY">
$825K</W><W NSW="SPLT"

><WS NSW="EXPN" PRON="with"> w/</WS><WS NSW="MONEY">$200K</WS></W>
down

</P>

</D0C>

Figure 1: A sample of XML-markup of NSW's.

18

6 CORPORA AND TAGGING CONVENTIONS 19

number. The fourth multilaterally is a standard word that appears because
1t is not in our lexicon: however, it is correctly guessed as a word (ASWD).
The next line is correctly labeled as a letter sequence. The last line Neb is
an abbreviation for Nebraska and hence should be marked as EXPN.

6.4 Inter-Labeler Reliability Measures

A portion of the data was marked by multiple labelers to assess transcriber
reliability. The level of agreement between the different labelers for the
categories described above was measured using the kappa statistic, which is
the ratio

P() - P{’
B = ——

1 - P,
where P, is the percent agreement measured between labelers and P, is
the agreement that would be predicted by chance. Assuming that all N
coders label all D data points with one of C classes, the specific formulas
for computing these quantities for the multi-class, multi-labeler case are

o 3

N

1 N y
P(: - m Z Z P(:-},

=1 5=1,%1
where
@
P =" pilk)p; (k)
k=1

is the chance agreement for coders ¢ and j (p;(k) is chance of labeler i
assigning class k), and

/]):1 Zi;l npr (g — 1)
DN(N —-1)

P():

where ny; is the number of coders that labeled datum [with class &. The
kappa score is computed using publicly available software developed by
Flammia (Flammia, 1998). The kappa statistic is widely used for evalu-
ating labeler consistency (Hirschberg and Nakatani, 1996; Carletta et al..
1997; Jurafsky et al., 1997: Flammia, 1998), and it is generally agreed that
a kappa score of greater than 0.7 indicates good agreement.

We measured inter-labeler agreement on two subsets of data for a set of
25 NSW tags. including the 23 tags in Table 1, the OTHER tag and the
intermediate SCORE tag. In both cases, the NSW type SPLT was regarded
as a separate category by itself, so if a token A4 was split by the labeler as

7 THEORETICAL MODELS AND OVERALL ARCHITECTURE 20

[A — ag aq (1.2], the categories for ag, a1 and as were not taken into account.
For D = 2268 NSW tokens from the news data and three N = 3 labelers.
the agreement was 1 = 0.81. For D = 622 NSW tokens from the classified
ads and N = 9 labelers, the agreement was x = 0.84. Both results indicate
good reliability.

In looking at the data to understand the disagreements that are there, we
find that the main problems are labeling errors and lack of specific examples
in the labeling guide. rather than real ambiguities. Labeling errors include
unnoticed misspellings (labeled ASWD), simple typing errors. and labeler
misspellings in expansions. The main problem with unclear guidelines was
for the use of the split command, and labeling unspoken tokens with NONE
vs. SLNT. For future use, the labeling guidelines have been expanded to
address these problems. For the data used in the workshop. the amount of
noise that these errors introduce is relatively small. However, it is significant,
given that the accuracy level of our algorithms is relatively high (at least in
the supervised learning cases). For that reason, there was some effort made
to detect and correct errors, particularly simple errors where correction could
be automated (e.g. missing splits).

7 Theoretical Models and Overall Architecture

7.1 'Theoretical Preliminaries

We pose the problem of predicting the expanded form of non-standard words
as one of finding the most likely word sequence w = wy, ws, ... w, given the
observed token sequence o = 01,09,...0,. The observed token sequence
corresponds to the input text which is marked as to whether each token is
an NSW. and the output word sequence corresponds to the desired words
to be spoken. Mathematically, the objective is:

w = argmaxp(wl|o) (1)
w
= argmax[Zp(Wgtlo)} (2)
w t
~ argmaxp(w.t|o) (3)
w.t

where t is the sequence of token tags, which may be at the output word
level (n-length) or the input token level (m-length). In equation 3, we make
the assumption that for a particular output word and a particular observed
token, there is usually only one tag that would be appropriate. Thus, most

7 THEORETICAL MODELS AND OVERALL ARCHITECTURE 21

of the probability mass in the joint word-tag conditional distribution is as-
sociated with a single tag. This assumption is useful for simplifying the
recognition decoding problem. but it is also quite reasonable for most of the
cases we are interested in.

The basic problem posed in equation 3 can in principle be solved using
two different approaches, which we will refer to as the source-channel model
(or noisy channel model) and the direct model, as described respectively in
the two sections to follow.

7.1.1 Source-Channel Model

The source-channel model is analogous to the approach used widely in speech
recognition. That is, we view the desired word sequence that w as being
generated by some source with probability p(w), and transmitted through a
noisy channel which randomly transforms the intended words to the observed
character sequence w according to the channel model p(olw). Mathemati-
cally, this corresponds to:

W = argmax p(w|o) = argmax p(o|w)p(w).
w w

Adding the NSW tags to this picture, the problem becomes

w &~ argmaxp(o, tjw)p(w) (4)
w.t
= argmaxp(olt, w)p(t|w)p(w) (5)
w.,t
where we have decomposed the overall probability distribution into three
components: a language model p(w) (as in speech recognition), a tag model
p(tlw). and a tag-dependent observation model p(olt, w). Assumptions be-
hind the implementation of the different models are described below.

Language Model. The language model p(w) serves the same function as
in speech recognition, so it is natural to borrow speech recognition techniques
for modeling and estimation here: in our particular implementation we use
trigram language models with modified Kneser-Ney backoft (Kneser and
Ney, 1995; Chen and Goodman, 1998).

Tag Model. In the source-channel framework, we represent one tag per
word, and assume that tags depend only on the current word:

pltjw) = [p(tslw:). (6)

1=2]

7 THEORETICAL MODELS AND OVERALL ARCHITECTURE 22

In order to train this model, we need a tag sequence that is expanded to
match the word sequence one-to-one, i.e. using sub-token labels in split
tokens. For cases where single tokens in the observation space map to mul-
tiple words in the output space, we can either repeat tags or represent the
multiple word sequence as a single “word”. Given the two parallel tag and
word sequences, the tag model can be trained using standard n-gram back-
off techniques. However, one might want to introduce an intermediate stage
of back-off depending on the word class, i.e.,

p(tilw;) = plt;lc(w;)) — p(t;)

where the word class might be defined in terms of part-of-speech (or semantic
class) label or word frequency in the target domain. For cases where the
observation o; contains only alphabetic characters but is labeled as an NSW
because it is out of vocabulary, it may be useful to compute features of the
word to predict the tag probability, as in (Bikel et al., 1997).

Observation Model. For purposes of simplifying the discussion, assume
that the hypothesized word sequence can be reliably “parsed” so that there
is a one to one mapping between observation tokens o; and words w,;. Next,
we assume that the observed realization of a word will be conditionally
independent from word to word, given the tag and possibly statistics about
the domain. Thus the observation model becomes:

"
plojt,w) = Hp(o,j{t,j."z,u,;).
1=1

and the key problem is to find p(o;

ti,wy) .

7.1.2 Direct Model

An alternative to the source-channel model is to represent the posterior
probability of words given observations directly; hence, this approach is
often referred to as the direct model. The overall objective, including the
tags, 1s:

w &~ argmaxp(w,t|o) (7)
w.,t

= argmax p(w|o, t)p(t]o). (8)
w.t

In the direct model, there are two main component models: the tag se-
quence model and the tag-dependent word sequence model, both of which

7 THEORETICAL MODELS AND OVERALL ARCHITECTURE 23

are conditionally dependent on the observed token sequence. Using the di-
rect modeling framework has the advantage that it is practical to use the full
observation sequence for prediction, as opposed to only the local observation
in the source-channel model. However, the disadvantage is the potentially
large parameter space, because of the large number of factors that get incor-
porated into the models, particularly the word-sequence model. To simplity
this problem. we will use decision tree and maximum entropy techniques, as
well as the standard Markov assumptions on the word sequence.

Tag prediction model. In the tag sequence model, we will start by as-
suming that tags are conditionally independent of all but the most recent
tag given the observation sequences, and then use decision trees to simplify
the prediction space:

m

p(tlo) = [[p(tlti-1.0) (9)
1=1

= Hx)(m%T{tH-O}) (10)
1=1

(Note that, in this case, it is simplest to use an m-length tag sequence.
i.e. that has a one-to-one mapping with the observed token sequence.) In
fact, it may be sufficient to simply condition on the observation space and
not the previous tag. which simplifies the search and makes it possibly to
separately explore tag predictors designed for subclasses of NSW's such as
the numbers (NDIG, NUM, NORD, NIDE, etc.). The types of questions
that may be useful in the decision tree include:

e is the word mixed case?

does the word have a number in 1t?

does the word have non-alphanumeric characters in it?

does the word have a “$” in it?

e is the word in an abbreviation list?

Unlike in the source-channel case, it is straightforward to evaluate this tag
sequence model apart from other component of the system, since we have
tag-labeled test data.

8 DESCRIPTION OF INDIVIDUAL MODULES 24

ME word sequence model. The second model component is the word
sequence model:

n
p(wlo,t) = HP(‘UM wi—1,t;,0). (11)
=1

The probability p(w;|w;_,t;,0) is impractical to estimate using standard
maximum likelihood techniques, because of the large size of the conditioning
space. However, it is well suited to using maximum entropy techniques as a
way of combining separately estimated statistics for p(w;|w; 1), p(w;|t;) and
plwilo;), as well as trigger models and or predictors based on long distance
statistics as in p(w;|s(0)).

7.2 Architectural Overview

The implemented system implements a subset of the ideas described in the
theoretical discussion in the previous section. The architecture of the im-
plemented system is diagrammed in Figure 2. Each of the modules will be
described in detail in Section 8, but a few things should be noted here. given
the preceding discussion. The classifier, which decides upon the most likely
tag or tags for a given NSW token, is based upon a (CART-style) decision
tree, which is an instance of what we have termed the direct model in the
previous discussion. The language model in the currently implemented ar-
chitecture, an n-gram language model, is consistent with the source-channel
approach. The tag expansion models, corresponding to what we previously
termed the observation model, range from algorithmic — e.g. in the case of
an NDIG tag, where one merely wants to produce a string of digit names;
to more probabilistic, as in the case of EXPN’s where one is especially in-
terested in estimating p(o;|t;, w;), as previously described.

8 Description of Individual Modules

The following subsections describe in detail each of the modules introduced
in Section 7 and diagrammed in Figure 2.

8.1 Lattice Format

The format for the lattices is simple and is described briefly in Appendix C.

8 DESCRIPTION OF INDIVIDUAL MODULES 25

pls wash your WS99 coff.
cup w/n-grams :)

\l’ Text

Tokenizer
\L Tokens

Splitter
\l, Split Tokens

Classifier

‘L Tagged Tokens

ASWD

Tag
NUM Expanders
EXPN

‘L Word Lattices

Language Model
Best Words

Figure 2: Overall architecture of the implemented system. Input text is passed
through a tokenizer, which produces a stream of (basically) whitespace-separated
tokens. Then splittable tokens are split by the splitter into further tokens. The
resulting token stream is then passed through the classifier, which outputs a se-
quence of tokens tagged with their NSW class. The tag expanders produce a lat-
tice of possible outputs for each class of NSW. The language model is then used to
disambiguate the output.

8 DESCRIPTION OF INDIVIDUAL MODULES 26

[NANTC l classifieds y pellO } RFR ‘
| 436 | 1677 [1480 [7.00 |

Table 5: Percent of split NSW tokens in the August 9 training set.

8.2 Tokenizer

The text is broken up into whitespace-separated tokens, and leading and
trailing standard punctuation is removed and saved as features of the token.

8.3 Splitter

After the tokenizer resolves the original input text into whitespace separated
tokens, these are passed on to the splitter where they are further broken
down into subtokens. In the following sections we discuss the motivation
for splitting tokens; the algorithms and approaches we developed for doing
so: and finally. we present an evaluation of the splitter’s performance. The
reader should note that in the following sections, references to fokens and

ONE.

all tokens do not include those tokens labeled as N

8.3.1 DMotivation

The problem of expanding single non-standard words is exacerbated by the
various phenomena which result in the effective deletion of whitespace be-
tween certain tokens. This deletion process has several avenues of expression:
some are unintentional, as is the case for typo- and scanographical errors:
and others, intentional. as is often true in the classifieds domain. In the lat-
ter case, in printed media, one often saves money by omitting spaces where
possible.

Furthermore, “truth” as expressed by the hand-labeled data indicates
that not an insignificant portion of the “non-standard” tokens in each corpus
should be split. As shown by Table 8.3.1, The precise number varies by
corpus, from less than 4.4% of NSW tokens in NANTC, to approximately
16.8% of NSW tokens in the classifieds.! It is worth noting that in the
classifieds domain, where NSWs account for 43.4% of all tokens. 7.29% of
all tokens should be split.

Examples In most text, there will be several forces at work which result
in aggregate tokens. hence necessitating a splitter. Some examples from

*These numbers are relative to the August 9 training set.

8§ DESCRIPTION OF INDIVIDUAL MODULES

[SNo]
I

the various corpora will help to illustrate the problem at hand. Take, for
instance, the following table. Each example demonstrates a different class of

E I classifieds pclll | RFR “

4BR xjack 11/2
four bedrooms | X jack | one and a half

T
|
1 i

Token

Realization

Table 6: Examples of tokens to split.

tokens which require splitting. From left to right, we have a letter sequence
with a morpheme affix; a concatenation of a number and an abbreviation;
a brand name subject to English phonotactics; and an ambiguous numeric
token, which must be split to remove ambiguity.

8.3.2 Method

The essential observation in both of these approaches is that splitting tokens
is a two-part process. First, one must identify which tokens or subtokens
(i.e., internal character sequences) must be grouped in order that they not
be split. This is important, because many of the same cues which indicate a
likely split point (e.g. commas, hyphens, slashes) also serve as joining points
in certain common entities (e.g. numbers, telephone numbers, and dates,
respectively).

While there are a plethora of special cases to cover while grouping, the
second phase of splitting is relatively straightforward. While the former
included, among others, rules to capture dates, letter sequences, telephone
numbers, monetary expressions, and so forth, a mere four to six sufficed
to hypothesize split points (other than the implicit ones resulting from the
grouping process). In particular, the most productive split points were the
following: at transitions from lower to upper case; after the penultimate
upper-case character in transitions from upper to lower case; at transitions
from digits to alphabetic characters; and at punctuation.

During the course of the workshop, we developed two rule-based ap-
proaches to hypothesizing the subparts of aggregate tokens. The first of
these was implemented in the Perl text processing language; this version
of the splitter is the one from which our reported results are derived. The
second method makes use of weighted finite-state transducers.

Perl The component responsible for designating strings to group and ig-
nore was written as a boolean-valued function of a single argument, where a

8 DESCRIPTION OF INDIVIDUAL MODULES 28

return value of “true” indicated that the argument, a string, was not to be
subject to the splitting step. The splitting step took the following recursive
form. For each splitting rule in an ordered list, ignore each token in the
given list of tokens if possible. Otherwise, split them with the current rule,
return the split pieces as input to the same function, and advance to the
next splitting rule in the list. Finally, return the resulting list of subtokens
when there are no more splitting rules to apply.

Weighted Finite-State Transducers The WEST splitter, constructed
with the AT&T lextools and fsm tools, provides an alternate approach to
the recursive, sequential method used by its Perl counterpart. Rather than
consider the string and substrings of the given token sequentially and atom-
ically, the WEST splitter considers all strings as members of the transitive
closure of groupable and splittable character sequences. Specifically. each
possible grouping and splitting of the token is considered in parallel, and
that configuration with the least resulting weight is chosen as the result.
Due to this property, weights are chosen to minimize the number of splits
made. and hence it tends to preserve the structure of the groupable entities.

The WEST splitter has a couple of advantages over its previously de-
scribed sibling. For one. it has the (yet-unused) ability to produce output
in the form of a lattice. to cover cases where several reasonable splits are
possible. Moreover, the WFST paradigm lends itself to models which are
more modular and easier to manipulate in arbitrary ways. On the other
hand, it is significantly slower, and and the increased wall-clock time is not
offset by a comparable increase in performance.

8.3.3 Evaluation

We evaluated the splitter in two stages. The first, “coarse-grained” stage
vields a measurement of how well the splitter decides whether the given
token should be split; these measurements are reported in terms of precision
and recall.

The second, “fine-grained” stage vields a measurement of how well the
splitter splits a given token, where a split is either correct (all generated
subtokens exactly match those in truth) or incorrect. These measurements
are reported in terms of “split correct” and “total correct”; the former con-
siders only those tokens which are known to be split, while the latter con-
siders all tokens regardless.

The results of both of these stages are found in Table 8.3.3. Recall that
the performance of the WEFST splitter was nearly the same, and is hence

8§ DESCRIPTION OF INDIVIDUAL MODULES 29

‘ Kl NANTC | classifieds & pcll0 | RFR |
Recall 98.89 94.96 87.66 | 98.88
Precision 74.41 87.32 81.68 | 89.51
Split Correct 92.54 85.99 74.11 | 89.54
Total Correct 98.45 95.19 92.97 | 98.40

Table 7: Results for the Perl-based m4 splitter.

omitted.

In the above table the relatively poor precision in each domains is quite
striking. It is, however, in many cases an unfair measure of the system’s
quality. While the results indicate that the splitter does over-generate splits,
there are a number of mitigating factors. The most prevalent of these is
that even though labeler agreement is high with respect to whether a given
token should be split, it is low with respect to where to split it. This is
compounded, moreover, by a high degree of labeler errvor; for instance, it is
very often the case that a hyphen used in a delimiting context, as in 12:00-
3:00 and $975K-81,595.000 . is not used to split the token as it should.
Further over-generative errors are suspect because it is unclear whether the
split form would be pronounced differently from the “correct” form, as is
the case with many tokens whose internal punctuation was the impetus for
the split.

8.4 A Classifier for Non-Standard Words
8.4.1 Introduction

The purpose of the NSW classifier is to categorize a token from output of the
splitter into any one of predefined NSW types Eg. NUM, MONEY, ASWD,
EXPN., LSEQ. NYER etc. This predicted category is then used as an input
for the tag expander that determines the expansion of the token to words.

8.4.2 The Overall NSW Classifier for All Tokens

The role of the NSW classifier is to assign a tag to each NSW token. This
overall classifier is implemented by a CART model. The CART model makes
use of a number of features for the classification.

The features used in the CART tree fall into two classes:

1. Simple domain independent features:
These look at properties of the individual token, and require no do-

8 DESCRIPTION OF INDIVIDUAL MODULES 30

main specific information to calculate. Examples of such features are:
token length, contains numbers (and type), contains vowels. all cap-
itals. Such features are used over a window of current and previous
and next 2 tokens.

2. Domain dependent features:
As the type of alphabetic tokens changes over the different domains we
also calculate a set of features that are based on domain specific infor-
mation. These features consitute a subclassifier for alphabetic tokens.
Features from this subclassifier are used within the overall classifica-
tion tree. This sub-classifier is discussed in detail in the following
sections.

8.4.3 Sub-classifier for Alphabetic tokens

Alphabetic tokens are those that consist of strings of alphabetic characters
with optional periods between characters. They also consist of those tokens
with both alphabetic characters and characters such as apostrophes (7 or
‘) and slashes(/). These alphabetic tokens can be classified into three fun-
damental categories characteristic of alphabetic tokens [also seen from the
distribution of hand labeled tag categories for the different domains Table 10

N

|
1. ASWD : The tokens to be treated as words. eg. NATO, Kinshasa

2. LSEQ : The tokens which are to be treated as sequences of letters. eg.

[B.M, USA

3. EXPN : The tokens that have to be expanded using the abbreviation
expander. eg km, blvd

8.4.4 Formulation of the Problem

The Non-Standard word Classifier problem can be given a statistical for-
mulation as follows : The probability of assigning NSW tag t to observed
string o can be estimated using the familiar Bayes approach as :

_ milolt)p(t)

p(tlo) (o)

where t € [ASW D, LSEQ, EXPN]. In this equation:

8 DESCRIPTION OF INDIVIDUAL MODULES 31

L.

The probability pi(o|t) can be described by a trigram Letter Language
Model (LLM) for predicting observations of a particular tag t.

N
pi(oft) = Hp(l/,;il,,-_l, li_s),

P

where o = ({1]y,Lx) is the observed string made up of N characters.
Such Letter Language Models have been used earlier for applications
such as text compression(Bell, Cleary, and Witten, 1990) and estima-
tion of language entropy (Brown et al., 1992).The language model used
is the most widely adopted n-gram (in our case trigram) formulation.
(Jelinek, 1997)

. The probability p(t) is the prior probability of observing the NSW tag

t in the text.

. The probability of the observed text or the normalization factor is

given by

plo) = piloft)p(t)

This model assigns higher probability to shorter tokens in comparison to
12e CS. cver.tne L vabilities § ich are cor ared always
longer ones. However.the probabilities p(tio) which are compared always

correspond to the same token, compensating for the length factor.

8.4.5

Sub-classifier Features for Alphabetic Tokens

The sub-classifier for alphabetic tokens outputs the following letter language
model based features for the full CART tree which performs the overall
classification.

. pltlo).t € ASWD,LSEQ, EXPN

Prmar = max; p(tjo) (maximum probabilty of an alphabetic category).
tmar = argmax, p(tjo) (most probable alphabetic tag).

diff = Difference between 1-best and 2-best probabilities p(t|o)

Some samples of tokens with the 6 LLM features is displayed in the Table 8.

8 DESCRIPTION OF INDIVIDUAL MODULES 32
| Token | p(ASWDJo) [p(LSEQlo) | p(EXPN/o) | Prmas tmax | diff |

mb 0.0001 0.0038 0.9962 | 0.9962 | EXPN | 0.9924
Grt 0.0024 0.0000 0.9976 0.9976 | EXPN | 0.9952
NBA 0.0017 0.9983 0.0000 | 0.9983 | LSEQ | 0.9966
Cust 0.5456 0.0000 0.4544 | 0.5456 | ASWD | 0.0912

Table 8: Samples of alphabetic tokens with LLM features

Domain NANTC ads | pcll0 | RFR
Yealphabetic 54.52 | 38.65 | 40.31 | 31.75

Table 9: Distribution of alphabetic tokens in NSWs across domains

8.4.6 Distribution of NSW tokens in labeled data

It we look at the distribution of the alphabetic NSWs among the NSWs
in the domains from Table 9., we find that percentage of alphabetic NSWs
is substantial across all domains, ranging from 30% to 50%.We can get a
prior distribution of different NSW tags for these alphabetic NSW tokens
by looking at the hand labeled data in the training set of these domains

[Table 10]

Percentages | NANTC ads | pcll0 | RFR
ASWD 81.50 | 29.73 | 64.33 | 70.61
LSEQ 12.30 | 12.46 | 20.88 | 2.25
EXPN 5.68 | 55.60 | 11.33 | 25.88
MISC 0.52 | 221 3.47 | 1.26

Table 10: Distribution of NSW tags in the Alphabetic NSW tokens across
Domains

8.4.7 Supervised Training and Evaluation Paradigm for the NSW
Alphabetic Classifier

The Algorithm. As a first approach we train the NSW classifier in a
supervised manner. For this approach to work we require hand labeled
NSW data to know the NSW tag ¢ assigned for the observed token o in each
of the 4 domains.

8§ DESCRIPTION OF INDIVIDUAL MODULES 33

The overall algorithm for the supervised training of the tag classifier for
the 3 way alphabetic distinction is as follows:

The hand labeled training data for a specific domain is separated into a
development(devtrain) section and a held-out(devtest) section. For each of
the tag categories [ASWD, LSEQ or EXPN] we obtain a list of the tokens
from the training data. This gives us 3 training sets which are used for
training the Letter Language Models for the 3 major NSW tags.

The 3 Letter Language models are evaluated on the devtest data to
obtain the test probabilities p;(o]t) for each NSW token t. The prior prob-
abilities p(t) for each NSW tag is obtained by the relative frequencies of the
tag t in the devtrain data for the domain. These results are used to calculate
the LLM features which are fed into the overall CART tag classifier.

Results. To obtain an estimate of the sub-clagsifier accuracy, an inter-
mediate token error rate can be calculated on the alphabetic tokens. The
accuracy of the classifier in predicting tags of alphabetic tokens is evaluated
on the devtest sections of each domain. Three cases are examined:

1. Baseline : All tokens are labeled with the most frequent tag [ob-
tained from the distribution of the NSW tags in the devtrain section
of the domain] for that domain. So we label all tokens as ASWD in
NANTC,pcl10 and RFR domains and as EXPN in classifieds domain.

2. Uniform: Here Letter Language Model is used to obtain p;(o|t) for
each domain while p(t) is kept same (uniform) across all tags. In
other words we do not make any assumptions about the distribution
of tags for the domain.

3. Unigram: Here Letter Language Model is used to obtain pi(olt) for
each domain while p(t) is based on the unigram frequencies of tags in
that domain.

The accuracy of the classifier on the devtest in these 3 experiments is pre-
sented in the Table 11

8.4.8 TUnsupervised Training and Evaluation Paradigm for the
NSW Classifier

The Algorithm. In this approach we do not require any labeled NSW
data thus making it useful for applying the technique to any new domain.The
overall approach is described below:

8§ DESCRIPTION OF INDIVIDUAL MODULES 34

Domain NANTC ads pell0 RFR
Baseline | 83.9]ASWD] | 80.53[EXPN] | 63.77JASWD] | 69.98[ASWD]
Uniform 88.92 98.5 90.83 97.36
Unigram 95.72 98.74 92.27 97.92

Table 11: Accuracy of the classifier:Supervised Training paradigm

We use the unlabeled data in a given domain to extract possible EXPN and
LSEQ tokens by using some simple heuristics. These heuristics allow us to
come up with a EXPN and LSEQ list of tokens on a domain dependent
basis without need for labeled NSW tokens.The unsupervised lists serve as
the training data for the ASWD LSEQ and EXPN Letter Language Models.

1. ASWD list: The CMU dictionary| 98k] with words with more than 4
characters is used as the training data.

2. LSEQ list: These tokens are extracted by searching for tokens which
have alternate characters{which are lower or upper case] and periods
in them. The LSEQ tokens from NANTC domain are considered to
be fairly standard and can be used in other domains also.

3. EXPN list : The heuristics consist of some specific text patterns

(a) Alphabetic tokens with no vowels.

(b) Tokens followed by a period and then a token starting with a
lowercase character.This is intended to search for abbreviations
ending with a period and not followed by a sentence boundary.
Example: frple. ba in which frple is an abbreviation that has be
expanded.

(¢) Plural forms of the tokens falling in the previous 2 categories.

The number of occurrences of each of these tokens in the devtrain section
of domain is also incorporated in these lists.

Evaluation. The NSW tokens from the test data (which is from the same
domain as the training data) are extracted. The alphabetic tokens are fil-
tered from these NSW tokens for the classifier input. The Letter Language
Models for ASWD., LSEQ and EXPN types are evaluated on these alpha-
betic tokens to obtain p;(o]t) for each of them. Based on these, the six Letter
Language Model features are output to the CART model for the overall tag
classification.

§ DESCRIPTION OF INDIVIDUAL MODULES 35

Classifier Accuracy for Unsupervised Training paradigm. The ac-
curacy of the NSW classifier on alphabetic tokens in the unsupervised eval-
uation paradigm is presented in the Table 12

Domain | NANTC ads | pcll0 | RFR
Accuracy 92.98 | 87.90 | 68.90 | 92.06

Table 12: Accuracy of the classifier:Unsupervised Training paradigm

Classifier results: Accuracy on all NSW tokens. The CART model
for the overall classifier is built in two different ways: with and without
Letter Language Model features in order to judge the effect of these extra
features on the overall accuracy. In each case it is trained on the devtrain and
tested on the devtest setion of the training data for each of the 4 domains.
These accuracy values of the Overall NSW classifier are presented in Table 13

Accuracy NANTC | ads | pcll0 | RFR
supervised:No LLM Feats 97.7 1 92.7 90.9 + 97.3
supervised:All LLM feats 98.1 | 93.5 91.8 | 96.8

Table 13: NSW Classifier Results : Accuracy on all NSWs

8.4.9 NSW Classifier: Cross Domain Testing

A set of experiments were carried out to examine the effect of training a
classifier on one domain and testing the resulting CART model on the other
domain. News(NANTC) domain was chosen as the training domain. The
LLM features for the training domain were obtained using the supervised
paradigm and the LLM features for the test domains were obtained in an
unsupervised manner. We obtain 2 extra LLM features for both training
and test domains that indicate if the NSW token is present in a LSEQ or
a EXPN lookup list for that domain. The lookup list for the training is
obtained from the labeled data while it corresponds to the unsupervised
hypothesised list (Section 8.4.8) in the test data. The results from this
experiment are presented in Table 14.

8 DESCRIPTION OF INDIVIDUAL MODULES 36

Domain NANTC | ads | pcll0 RFR‘
Accuracy 96.5 | 784 | 58.8 | 90.3 |

Table 14: NSW Classifier Results : Cross Domain Testing

8.5 Algorithmic Expansions

For most of the tags the expansion to a word sequence is algorithmic. That
is although there may possibly be some choices in the pronuncation, the
expansion algorithm is deterministic and not dependent of the domain or
context.

The expander for EXPN, because it is the only expander that contains
Interesting content is discussed in the next section.

Even within these algorithmic expanders some are more trivial that oth-
ers. The tagged tokens are treated as follows

NONE expanded to no words.

SLNT also expanded to no words.

PUNC expanded to itself.

ASWD expanded to itself.

LSEQ expands to token to a list of words one for each letter.

NUM expanded to string of words representing the cardinal number. This
covers integers, float and roman forms.

NORD expanded to string of words representing the ordinal number. The
token may be simply numeric, numeric appended th, st or rd included
or may also be roman.

NDIG expanded to string of words one for each digit.

NYER expanded to words as in a pronunciation of a year. That is each
pair of digits is pronounced as NUM except where the following two
are (0, where the group of four are pronounced as a whole.

NADDR expanded as words using the same algorithm as NYER.
NZIP spoken as string of digits. with silence for any dash within the token.

NTEL expanded as string of digits with silence for punctuation.

§ DESCRIPTION OF INDIVIDUAL MODULES 37

NIDE expanded as string of letters of pairs of numbers (as in NYER).

MONEY expands to string of words to say the number; deals with various
currencies.

BMONY expands to string of words to say the number; deals with var-
ious currencies. The pronunciation for the following token (if it is
million, billion, or trillion) is included within the expansion of this
token, before the money identifier. Thus tokens which are preceded
by a BMONY token (million, billion or trillion) or are ASWD are
expanded to nothing.

NDATE expanded as a number sequence.

NTIME expanded as a numbers with hours, minutes and seconds as ap-
propriate.

PRCT pronounced as number with ‘%’ sign removed and the word percent
appended.

EMAIL written as is with no expansion.
URL written as is with no expansion.
OTHER written as is with no expansion.

MSPL written as is with no expansion: spelling correction is outside the
domain of this project.

FNSP again written as is as there no record of the “proper” word. If fact
there often isn't a proper word as in tokens like Hmmmm and Arghhhh.

8.6 Abbreviations

As we discussed in Section 7 one way of viewing the general problem to be
solved in NSW expansion is an attempt to maximize the following quantity:

w o~ argmaxp(o,t|w)p(w) (12)
w.t

= argmax p(olt, w)p(t|w)p(w) (13)
w.t
We assume p(w) is given by the langnage model and that it is the task
of the NSW expander to provide p(tjw) and p(o|t. w). Let us term the first
two terms of the equation — p(olt, w)p(tiw) — the lewical terms.

8 DESCRIPTION OF INDIVIDUAL MODULES 38

In the case of abbreviations. which are often highly corpus-dependent
(different abbreviations occur in classified ads from what one finds in pcl10
netnews), the lexical terms are best estimated on a particular corpus. How
one does this depends upon whether or not one has training data for the
particular domain. In case one does, one can do supervised estimates of
plolt. w)p(t/w); in case one does not one must resort to unsupervised tech-
niques. We describe each of these approaches in the next two subsections. In
Section 8.6.3 we present a decision-tree model for predicting the probability
of a particular abbreviation given the word — p(o|t. w).

Finally in Section 8.6.4 we describe experiments on both the supervised
and unsupervised methods for classified ad data.

8.6.1 Supervised method.

If one has an appropriately tagged training corpus for a particular domain,
one can compile a list of abbreviations from that corpus. This is equiv-
alent, of course, to the traditional approach used in TTS systems or the
LDC text-conditioning tools, of hand-constructing a list of abbreviations
for a particular domain. The main difference is that we also estimate the
probability p(o|w) = p(o|t, w)p(t|w) (in our case using the maximum like-
lihood estimate), given the distributions of words and their abbreviations
in the training data. Note that since in this case since we know the word
and its abbreviation(s), we do not need to separately estimate p(t|w) (the
probability that a word will be abbreviated in any form) and p(olt, w) (the
probability of a particular abbreviation given that we know the word and
that it will be abbreviated). Rather we can estimate their product directly.

8.6.2 Unsupervised method.

In the unsupervised method we assume that we have the following three
things:

1. An automatically inferred list of “clean” words from the corpus;

S}

An automatically inferred list of potential abbreviations from the cor-
pus;

3. A procedure for aligning clean words and n-grams of clean words in
the corpus with their potential abbreviations.

The first two items can be inferred using the classifier described Section 8.4.
Given the first two items, in order to produce the alignment required by

§ DESCRIPTION OF INDIVIDUAL MODULES 39

3 we need an abbreviation model that for a given full word or phrase, can
predict the set of possible abbreviations.

For example, suppose we have the abbreviations kit and livrm in our
corpus as in the example

eat-in kit livim dinrm 17x25 famrm

and that elsewhere in the corpus we find examples like the following:

...eat-in kitchen ...
... living room ...

We would like to guess that kit might be an abbreviation of kitchen (among
other possibilities) and that livrm is a possible abbreviation of living room
(among other possibilities). We would also like to assign some nominal
probability estimate for p(olt, w) — the probability. given that one wants
to abbreviate, e.g.. kitchen. that one would do it as kit. Note that at this
stage we do not have any methods for estimating p(t|w) -—— the probability
that one would abbreviate kitchen in any form, though as we shall see, it is
possible to reestimate the combined term p(olw) = p(ojt. w)p(t|w) in some
conditions.

8.6.3 Tree-Based Abbreviation Model.

By and large abbreviations involve removal of letters, though there are some
cases where one finds (usually pronunciation-influenced) letter substitutions
(e.g. lgstz for linguistics). There are various obvious generalizations on how
one may form abbreviations:

e Delete vowels and possibly sonorant consonants (hdwd for hardwood).
e Delete all but the first syllable (ceil for ceiling).
e Delete all but the first letter (N for north).

However it is in practice difficult to formulate a set of rules to handle ab-
breviation, much less provide an estimate of how likely a given abbreviation
1s.

We therefore decided to train a decision-tree model using the classifica-
tion and regression tree (CART) (Breiman et al., 1984) code by Mike Riley.
The system was trained on 854 pairs of abbreviations and their expansions

- taken from the classified ads, as this is the domain richest in productive
deletions. The features chosen were as follows:

8§ DESCRIPTION OF INDIVIDUAL MODULES 40

o The class of letter two to the left (—2), one to the left (—1), one to the
right (+1) and two to the right (+2) of the current letter, as well as
the class of the current letter itself. Class was here defined (somewhat
solecistically) as obstruent, sonorant, vowel and “y” (containing just
the letter “y”).

e The boundary to the immediate left and right of the consonant: word-
boundary, morpheme-boundary or no boundary.

o The fate of the —2 letter and —1 letter: deleted or not deleted.
e The fate of the +1 letter and +2 letter: deleted or not deleted.

The last feature — which clearly depends upon knowing the future output

was shown nonetheless to produce better results, cross-validated on the
training data: without this feature the tree performed at 85% and with the
feature it performed at 88% in predicting deletion. Note that the baseline
for this task is 54%.

Information about word-internal morpheme boundaries was obtained us-
ing a crude morphological analyzer. that allows a concatenation of one or
two three-or-more-letter words from the CMU dictionary, possibly followed
by -s or -es.

The tree-based model was compiled into a weighted finite-state trans-
ducer (WFST) using an algorithm related to that reported in (Sproat and
Riley, 1996). In practice it was found that the model had too great a predilec-
tion to allow deletion of word-initial letters: this in part had to do with errors
in alignment in the training data, but was also affected by the small training
sample size and the fact that word-initial deletion of some letters is occa-
sionally found (e.g. zpwy for expressway). We therefore arranged for the
compiled transducer to disallow word-initial deletions. We also had little
data on added characters — e.g. =7, #/7 — which one finds in abbrevia-
tions, usually as indications that one is dealing with an abbreviation (“.7),
or that there are some deleted characters (/" as in w/ for with). In the
WEFST we optionally allowed a sequence of deleted characters to surface as
one of these characters.

Of course, by restricting the abbrevation operation to deletions one is
ruling out some abbreviations such as sociolz for sociolinguistics, which
involve letter substitutions, or the use of non-alphabetic characters such
as “47 for plus. A restricted set of the former transductions (e.g. “cs”
becoming “x7), could be added to the model. The latter kind is impossible
to infer anyway: one simply must depend upon a lexicon that tells you that

8§ DESCRIPTION OF INDIVIDUAL MODULES 41

SO SO SO

SHORE SHORE SHORE
<[s> <[s> < s>

40 QNUM+PL GQNUM+PL
+ QEXPN QEXPN
MODERN MODERN MODERN
BRK BRICK <UNK>
APTS APARTMENTS <UNK>
ON ON ON

<Js> <Js> <Js>

4 QNUM+PL QNUM+PL
+ QEXPN OEXPN
ACRES ACRES ACRES

Table 15: Sample text and annotation for abbreviation expansion experiments.

one of the readings of “+7 is plus: this is unlikely to be amenable to purely
unsupervised inference.

8.6.4 Experiments.

Overview of Experimental Paradigm. All experiments described here
were run a portion of the classified ad corpus divided into 307.735 tokens of
training data, and 76.676 tokens of test data.

;From the initial classification we have:

e An estimate of which words are standard.
e Non-alphabetic or mixed non-standard words.

e An estimate of which words are alphabetic non-standard: i.e. EXPN,

LSEQ or ASWD.

Note that the classifier assumed here was the initial pre-workshop classifier,
rather than the classifier developed in the context of the workshop. This is
expected to affect the number false positives (see the discussion at the end
of this section). and the number of true EXPN’s that were missed by the
method: but the overall trends in the data are probably not affected.

The language model used in all cases was a trigram-language model using
modified Kneser-Ney backoff (Kneser and Ney, 1995; Chen and Goodman,
1998). In the case of supervised training, the language model was trained

8 DESCRIPTION OF INDIVIDUAL MODULES 42

on the training data. with all ordinary words as themselves, all EXPN’s as
their expansion, and all non-alphabetic or mixed NSW’s as their tag, with
the additional stipulation that plural NUM’s were distinguished from /. The
kind of fraining data given to the language modeling tools in the supervised
case is shown in the second column of Table 8.6.4.

For unsupervised learning, the language model is not supposed to know
the true expansion of an abbreviation, since for an untagged corpus this
would be unknown. On the other hand, we do not want to train the language
model with text that includes the abbreviations. So in the unsupervised
case we transduce all EXPN’s to the unknown word tag (<UNK>), with
everything else being the same as in the supervised case. This is shown in
the third column of Table 8.6.4.

For the supervised lexical expansion models, we simply collect the set of
EXPN's and their hand-annotated expansions, and compute the statistics
for each case.

For the unsupervised lexical models, all we know is the set of potential
EXPN’s and the set of clean words. We can also compute the set of clean
word pairs that occur in the training corpus. These lists can be further
pruned in various ways, e.g. to eliminate low-frequency words. Call the
thus-derived lexicon of EXPN's NSW and the lexicon of clean words and
clean word pairs SW. Denote with A the abbreviation model implemented
as a WEST, as described in Section 8.6.3. In order to compute our list
of potential abbreviation-word pairs, we need to compute the composition
of SW with 4 and NSW. For the testing phase, we need to model the
expansion of EXPN’s into words or word pairs, rather than the other way
around, so we actually want to compute the inverse of this composition:

[SWoAoNSW|™! (14)

In the testing phase we assume that, since we are dealing with unseen
data, we do not know exactly which words are EXPN’s, but only which
words are alphabetic NSW’s and which are therefore potential EXPN's.
(Once again. we were using data tagged with the pre-workshop classifier.)
All such potential EXPN’s are submitted to the expander which will pro-
duce a weighted lattice of alternatives. This results in errors (which are
reflected in the error rates reported here) where true alphabetic EXPN's
were missed because they were not classified as EXPN’s, as well as “false
positives” (which are not reflected in the error rates) of tokens that were
treated incorrectly as EXPN's; the latter point is discussed in the discussion

8§ DESCRIPTION OF INDIVIDUAL MODULES 43

at the end of this section. The error rate is computed by computing the
token error rates (see Section 9.4) on the true EXPN’s.

Finally, note that in these experiments we uniformly map characters
to upper case, since the language modeling tools prefer case-uniform text.
This results in some loss of information. For example w in the classified ads
is usually with, whereas W is usually west, something that the supervised
methods could take advantage of. On the other hand, the unsupervised
methods have no way of taking advantage of case information: we can pre-
dict that either west or with could be abbreviated as w (or W), but we
currently have no basis for predicting a preference for upper case in one
instance and lower case in the other (though in this case this is surely re-
lated to the content-word /function-word distinction, plus the fact that west
is frequently capitalized). Hence for the sake of uniformity across the two
training conditions we ignore case distinctions.

Supervised Method. The supervised method was tested in two condi-
tions:

1. Without the language model, in which case we pick the expansion
that maximizes p(wlo). In other words, the expander is behaving as
a unigram language model.

2. With the language model, in which case we pick the expansion that
maximizes p(ojw).

The error rate in the no-language-model case was 6.7%, and in the with-
language-model-case 4.8%.

The relatively low error rates mean that the training corpus is covering
most of the cases that one encounters in the test corpus, though about 5%
of the cases in the test corpus are still unseen.

The relatively small difference between the with-language-model and no-
language-model cases reflects the fact that most abbreviations are unam-
biguous in this domain, though some (e.g. DR for drive or dining room) are
ambiguous. Interestingly most of the difference for the particular run done
in this experiment has to do with a bug in the database labeling: the abbre-
viation SF was tagged as meaning south facing in most instances, though
a few correct instances of square foot/feet were found. Without the lan-
guage model the expansion with the highest lexical prior — south facing —
was chosen. With the language model, the correct choice was allowed and
preferred.

8§ DESCRIPTION OF INDIVIDUAL MODULES 44

Unsupervised Method: Experiment 1. In all the unsupervised meth-
ods tested, language modeling was used.
The first unsupervised method constructed SW out of:

o All singleton clean words.

e All clean-word bigrams occurring in the data, occurring a minimum of
3 times.

The three-word minimum was felt to be a reasonable cutoff, since anything
occurring fewer than three times is probably unreliable. This first test had
an error rate of 33%.

Unsupervised Method: Experiment 2. It was observed that some of
the errors introduced in the first experiment involved proposed expansions
where the target was a rare word. For example, SF was expanded as SURF,
which occurred only twice in the training data. Thus in the second experi-
ment we tried removing low-frequency unigrams from the set of clean words.
SW then consisted of:

o All singleton occurring more than 10 times
e All SW bigrams occurring in the data filtered with the above list.

Here the error rate increased to 34.5%.

Unsupervised Method: Experiment 3. In experiment 3. we returned
to the original way of compiling SW, and added a third component, namely
a short list of arguably standard abbreviations:

aug (August); av (Avenue); blud (Boulevard); ext (extension); ft
(foot, feet): inc (incorporated); 1 (left); n (norvth); r (right): rd
(road); st (street); w (west); w/ (with); x (extension); sf (square
foot, square feet); etc (etcetera); n.w (northwest)

Here the error rate reduced substantially, to 24%.

One might be inclined to think this as cheating but it is reasonable to
put a more positive spin on this: it gives some indication of how much of a
reduction in error rate one can do if one is willing to do a small amount of
handwork.

§ DESCRIPTION OF INDIVIDUAL MODULES 45

Unsupervised Method: Experiment 4. In experiment 4 we had the
same setup as experiment 3, but returned to investigating further purely
automatic methods. Given SW defined as for experiment 3. we:

e Reran the ezpander and the language model on the training data.

o Selected the most frequent expansion found for each potential EXPN
in the training data as “truth”.

e Used these single items to predict the expansion of potential EXPN’s
on the test data.

Here again the error rate was reduced substantially, to 19.9%.

Unsupervised Method: Experiment 5. An obvious unfortunate prop-
erty of experiment 4 is that any given abbreviation can only have one expan-
sion, whereas we know that at least some EXPN’s are ambiguous. We tried
allowing for such ambiguity by following the same general procedure as in
experiment 4, but this time selecting two alternatives, if the second most fre-
quent alternative occurred at least half as many times as the most frequent
alternative. In such cases we retain both alternatives, and weight them ac-
cording to their frequency: more specifically, we take the distribution from
the training-data run to be truth, and we estimate p(ojw) = p(o|t, w)p(t|w)
as we would in the supervised case.

Unfortunately this resulted in no reduction of error rate: 19.9%. However
we decided to retain the ability to allow for alternatives since it at least has
the potential to do better than a method that only allows one alternative,
as we have seen in the supervised case.

Unsupervised Method: Experiment 6. In experiment 5, although we
treated the guessed expansions on the training data as truth, we still used
the same language model on the test data as had been trained on the original
unexpanded training data. The problem with this is that for some words we
have very poor estimates of their true probability of occurrence from their
occurrence in the raw training data: this is because they are highly likely to
be abbreviated. Thus bedroom is about twice as likely to occur abbreviated
(usually as BR) in the classified ads as it is to occur fully spelled out.
Experiment 6 addresses this deficiency by retraining the language model on
the expanded training data. Once the language model was retrained, we
once again rescored the lattice of possible expansions for the training data,

8§ DESCRIPTION OF INDIVIDUAL MODULES 46

H Experimental Condition ‘ Token Error rate (%) “
Supervised no language model 6.7
Supervised with language model 4.8

Experiment 1 33.4

Experiment 2 34.5

Unsupervised Experiment 3 24.2
Experiment 4 19.9

K Experiment 5 19.9

; Experiment 6 19.5

Table 16: Summary of experimental results: abbreviation expansion.

and reestimated p(ojw) = p(olt, w)p(t|w) for each of up to two expansions
for each abbreviation.
This method resulted in a modest reduction i error rate, to 19.5%.
The results of each experiment are summarized in Table 8.6.4.

8.6.5 Brief Synopsis of Abbreviation Expansion Tools

The released version of the abbreviation expansion tools contain tools for
constructing abbreviation expanders for both the supervised and unsuper-
vised scenarios.

For the supervised case, the tools (as opposed to the test versions we
described above) assume case sensitivity in constructing the tables so that,
e.g., w might expand by default to something other than W. Two such
models are constructed, one appropriate to the situation where you have no
language model (maximizing p(wlo)) and the other which is appropriate to
the situation where one has a language model (maximizing p(o|w)).

For the unsupervised case, the setup outlined in Experiment 5 is provided
— 1e., with no retraining of the language model on the tagged data. (The
user can of course also retrain the language model on this retagged data.)

8.6.6 Discussion

The work discussed in this section has shown that if you are unwilling or
unable to tag data from a novel domain, and if that domain provides enough
“clean” text to allow one to make inferences about possible expansions for
abbreviations, and if one is willing to tolerate approximately four times the

§ DESCRIPTION OF INDIVIDUAL MODULES 47

error rate of a supervised method, then it is possible to automatically infer
models that handle abbreviations.

A post-hoc analysis of the errors in experiment 6 leaves even more room
for optimism: fully half of the “errors” were either not errors at all because
the hand-labeling was wrong, or were acceptable alternatives. A common
instance of the latter was bath rather than bathroom as an expansion of BA,
which in the context of real estate descriptions is perfectly acceptable, or
even preferred. Thus the true error rate may be closer to about 10%.

One serious problem is “false positives” - cases where a token was
expanded that should not have been. These were not counted in the errors
described above, but were nonetheless quite substantial: in experiment 6.
for instance, there were about 80% as many false positives as counted errors.
This of course relates to the reliability with which we can detect a potential
abbreviation.

The approach described here relates to a couple of other strands of re-
search. One is automatic spelling correction, where the problem is to find
the closest and contextually most appropriate correctly spelled target word
to a misspelled token. The typical approach is to assume that the correct
target is within some small edit distance of the misspelled token. and then
use some form of language modeling technique to select the correct one
given the surrounding words (see, e.g., (Golding and Roth, 1999)). There
are three differences between the present work and the previous work on
spelling correction, however.

First of all, as has already been mentioned, spelling correction algorithms
limit the target words to those known clean words that are within a small
edit distance of the token. In contrast, we made no assumptions about
how distant in terms of edit distance the abbreviation could be from its
target. Secondly, the target correctly spelled word corresponding to a single
misspelled token is itself assumed to be a single token. For abbreviations,
we must at least allow that a single abbreviation come from potentially two
original words. Thirdly, most work on spelling correction systems assume
you know that you are dealing with an error. Indeed, it is typical to evaluate
such systems by demonstrating performance on a few selected spelling errors.
In contrast, one of the tasks that we attempt to address in this work is
detection of potential expansions, in addition to prediction of their actual
expansion.

There is also a similarity between the current work and work reported in
(Taghva and Gilbreth, 1995) on using approximate string matching meth-
ods to induce interpretations of acronyms or letter sequences from their full
word expansions found somewhere in the immediate context of the given

9 PERFORMANCE MEASURES 48

letter sequence. Thus from a text such as today, leaders of the North At-
lantic Treaty Organization (NATO) met in Brussels ..., one would infer
North Atlantic Treaty Organization as a possible interpretation of NATO.
The present method, however, does not presume that the answer is in the
immediate context, or even particularly close by.

8.7 Language Modeling

As mentioned earlier, we used trigram language models constructed with
modified Kneser-Ney smoothing. In terms of perplexity, modified Kneser-
Ney smoothing has been found to consistently outperform all other popular
n-gram smoothing methods (Chen and Goodman, 1998). Language models
were trained separately for each of the four domains, and separately for the
unsupervised and supervised systems in each domain. The vocabulary for
each n-gram model was constructed by collecting every token that occurred
in the corresponding training set. The method by which the unsupervised
and supervised training sets are created is described in Section 8.6.4. Some
tokens are mapped to a tag label, in which case the tag label is added to
the vocabulary and treated like any other token in the vocabulary.

While we use language models within a source-channel framework as is
done in speech recognition, there are several significant differences between
language modeling for text normalization and language modeling for speech
recognition. The most notable difference is the bootstrapping issue: the
most useful language model for text normalization is presumably one built
on normalized text, which by assumption we do not possess. As shown in
Section 8.6, we can still get useful performance from language models built
on unnormalized text, e.g., when an abbreviation occurs in its expanded
form in some portion of the text. However, if a word is consistently abbrevi-
ated in text, a language model will not help determine its expansion unless
trained on text, such as hand-labeled text, that includes the expansion. Be-
cause of the need of hand-labeled text, the language models we used were
constructed on substantially smaller data sets than used in many speech
recognition systems. Because of the sparse data issue, the language models
constructed were unable to discriminate abbreviation expansions as well as
they might have.

9 Performance Measures

This section describes some issues in choosing an automatic scoring method
(o o
for calculating the performance of the models we built as well as comparing

9 PERFORMANCE MEASURES 49

these models to pre-existing systems that attempt the same task.

9.1 Truth

In order to evaluate our performance it was necessary to generate “truth”
in the sense of the words that would be said given “perfect” knowledge.
This “perfect” knowledge consists of the hand labeled NSW tags (and in
the case of EXPNs, the expansions given). The “truth” was generated for
each marked up XML file in the each corpus. For the purposes of the results
presented here only one value for truth was given even though there may in
reality be more than one reasonable way to say a token.

However we do not wish to exclude the possibility that truth should
allow for alternatives. For synthesis obvicusly only one value is sufficient
but for language modeling we wish to produce lattices with probabilities for
choices, though so far we have not yet done that.

9.2 Noise

Given that labeling was done by a number of different humans the labeling
contains a certain amount of noise. This noise includes mislabeling (i.e.
mistakes) as well as alternative labeling in the same context but different
occurrence (i.e. genuine choice). The alternatives in labeling may be because
there are genuinely different options in saying a token or just that different
labeler chose different tags. Although a number of systematic passes over
the database have been made to correct errors, we know errors still exist.

Although the amount of noise in the data is small and would normally
not be an issue, our models have very low error rates compared to say speech
recognition. Our error rates can be as small as 0.30% or less, and so even
an error rate of 0.1% will affect our measurement of error rate.

Two methods have been used to estimate the amount of noise in our
labeling. First in generating truth the algorithmic expanders can flag when
a given token with a given label doesn’'t match the expected form of that
type. For example where a token marked NYER actually consists of a range
of years 1990-95. Although we have been quite liberal in accepting such
labeling there are still a number of cases that the algorithmic expanders can’t
deal with. For each database we counted the number of tokens for which
some part s detectably not expanded properly. These DNTs (detectably
noisy tokens) include labeled misspellings, and funny spellings and tokens
labeled OTHER. (It does not include URLs and EMATL tags).

9 PERFORMANCE MEASURES 50

NANTC | ads | pell0 | RFR
total # tokens 4.49m | 477k | 289k | 220k

of DNTs 1546 | 4583 922 134
% DNTs 0.034 | 0.96 0.32 | 0.061

To put these figures in perspective, as we will see later these detectable noisy
tokens are contributing to around 10-15% of our token error rate of our best
predictive models. But these only cover the detectable errors, and we also
wish to judge how good our generated words are with respect to human
acceptability of the expansion both due to undetectable noise in the data
and where there exist valid alternatives.

9.3 Manual Evaluation

In this section, we discuss the methodology used to manually evaluate the
performance of our system relative to other existing systems as well as the
results of this evaluation. Briefly, we examined the output of several nor-
malization systems and manually judged the acceptability of the output to
estimate token error rates. While automatic evaluation is more desirable,
this requires the presence of reference data describing all of the acceptable
normalized forms of some raw text. The hand-labeled text collected in this
project does not meet this standard for two primary reasons:

o The hand-labeled text only specifies a single acceptable alternative, not
all acceptable alternatives. There are many different types of tokens
that can be expanded in multiple ways.

e The text was not completely labeled, in the sense that some ambigu-
itles still exist. For example, the expansion of common abbreviations
such as BR in classified ads is not manually specified but is instead
performed automatically. Thus, we do not know if the correct ex-
pansion is bedroom or bedrooms. Another ambiguity is the presence
of punctuation after abbreviations. For example, the manual labeling
does not specify whether there should be end-of-sentence punctuation
after an abbreviation such as “St.”.

Due to resource limitations, it was impractical to create reference data de-
scribing all acceptable alternatives in sufficient amounts for all four domains
to precisely estimate error rates during the workshop: thus, we chose a man-
ual evaluation scheme.

The basic procedure we used is as follows: We randomly sample a space-
separated token from the unnormalized version of our test set. We then

9 PERFORMANCE MEASURES b1

present that space-separated token and surrounding tokens and the nor-
malized version of these tokens to the adjudicator, who determines the ac-
ceptability of the normalization of the original token. Through repeated
sampling, we can estimate the token error rate of a normalization system.

The guidelines given to adjudicators for determining the acceptability of
a normalized token is included as an Appendix. The most notable points
are that:

e All of the normalized tokens that should be produced from the original
raw token must be present and correct (and no extra tokens must be
present) for the token to be judged correct. There is no partial credit.

e The presence of punctuation must be predicted correctly, but not the
identity. For example, it is acceptable to substitute a sequence of
dashes for a single dash. This decision was motivated by the fact that
the presence of punctuation is useful for guiding speech synthesis and
language model training, but that the identity of punctuation is less
important.

To reduce the number of samples needed to achieve a certain accuracy
in estimating error rate, we did not sample tokens uniformly from the test
set but instead used the technique of wmportance sampling. Intuitively, by
sampling more frequently from the tokens that are likely to be errorful, we
can emphasize the differences in performance between various systems. We
partition tokens into several catgories, sample from each category depending
on the error rate and the frequency of the category, and scale the number of
errors found in each category appropriately to get an estimate of the overall
error rate.

More precisely, we partitioned the (unnormalized) space-separated to-
kens in the test sets into fourteen categories according to typographic in-
formation. Example categories include: tokens containing only lower-case
letters optionally followed by a comma; tokens containing only lower-case
letters followed by a period; tokens containing a digit; and tokens contain-
ing a hyphen or slash. On training data, we manually evaluated the LDC
tools on thirty tokens from each category in each of the four domains to get
a rough estimate of the error rates we would find. Using these estimates
and the frequency of each token category in the training data, we calculated
the proportion of samples to take from each category in each domain to
minimize the standard ervor of our overall estimate of ervor rate. A simple
analysis reveals that the number of samples to take from a given category to

S
IR

9 PERFORMANCE MEASURES 52

satisfy this condition should be proportional to f\/E(1 — E), where f is the
frequency of the category and E is the error rate on tokens in the category.

We selected a total of about 500 samples to evaluate each system in each
domain, using the above calculation to determine the number of samples
taken from each category, but taking a minimum of thirty samples from
each category. For each sample token, we presented the output of each of
the evaluated systems in sequence but in random order. As each system is
evaluated on the same tokens and as the output of each system is presented
to the adjudicator in succession, paired significance tests can be meaningtully
carried out.

Because of the manual labor required to evaluate each additional system
using this methodology, it was only practical to do a limited number of such
evaluations. Thus, we evaluated only one of the many systems developed
during the workshop in this manner. To evaluate how the many developed
systems compare against each other, we used the collected hand-labeled data
as reference text and used automatic means to score system output against
the hand-labeled data. This method proved to be quite useful and effective
for internal evaluation.

9.3.1 Aligning Raw and Normalized Text

As mentioned earlier, for each token to be judged we present that token
and swrrounding tokens as well as the normalized versions of these tokens to
the adjudicator. To do this. we need to know which raw tokens align with
which normalized tokens, and this alignment information cannot easily be
recovered from all of the systems evaluated. In particular, the LDC tools
are a collection of complex Perl scripts from which alignment information
is difficult to extract. Consequently, we developed an algorithm to auto-
matically align raw and normalized text, given a large corpus of normalized
text.

This alignment is not trivial because the tokens in normalized text can
be substantially different from the tokens in the raw text. For example.
classified ads can be almost entirely composed of abbreviations and numbers,
so that normalized ads have very few tokens identical to those in the original
ad. In addition, the normalized version of a token may have a very different
length than the original: e.g.. a single numeric token often expands to many
words.

This alignment task can be viewed as a simple version of the bilingual
word alignment task faced in machine translation, and we use similar tech-
niques as those used in bilingual alignment (Brown et al., 1990). The bilin-

9 PERFORMANCE MEASURES 53

raw token | normalized token

rm room, family, colonial

firs floors, hardwood

Rd to, road, route

Ar Hoor

LR with. room, kitchen. fireplace, living, dining

Table 17: Examples of token translations found for unnormal-
ized /normalized text alignment in the classified ads domain

gual word alignment task consists of determining which words in a bilingual
corpus are translations of each other, a bilingual corpus being two corpora
containing the same text but in different languages. Our task can be consid-
ered an instance of this task. where instead of text in two different languages
we have an unnormalized text corpus and its normalized version. Our task
is somewhat easier than the usual bilingual alignment task because of the
presence of a large number of cognates. or tokens with the same spelling in
both languages, and because there is very little word-order rearrangment in
normalized text. unlike between distinct languages.

A strategy used in bilingual word alignment is to first construct a bilin-
gual dictionary, or list of which words in one language translate to which
words in the other language. This can be done by first aligning higher-level
units (such as sentences) in the two corpora using some other means, such
as aligning sentences with similar length (Brown, Lai, and Mercer, 1991),
and then collecting word pairs that tend to co-occur in aligned sentences.
These words will usually be translations of each other.

In our scenario, we have text that has been segmented into paragraphs,
and this segmentation is undisturbed by normalization. By counting how
often token pairs tend to co-occur in corresponding unnormalized and nor-
malized paragraphs, we can approximately reconstruct which tokens are
expanded to which tokens by a normalization system.

More precisely, we segment unnormalized text into tokens by keeping
together alphabetic characters and separating all other (non-space) char-
acters into their own token. (This has the advantage of letting us induce
the expansions of numbers on a digit-by-digit basis.) Normalized text is seg-
mented into tokens using spaces. Then, we take all token pairs that co-occur
in aligned paragraphs significantly more often than one would expect given
the total number of paragraphs each occurs in to be “translations” of each
other. We use a y? test with significance threshold of 107°%. Some examples

9 PERFORMANCE MEASURES 54

3300+ st 10 Rm,
three thousand three hundred PLUS SQUARE FOOT ten ROOM ,

5BR, 2BA, library, DR,
five bedroom , two bathroom , library , dining room

HW flrs, gas FP’s, 2C gar, yrd. Grt loc.
HARDWOOD FLOORS , gas FIREPLACES , two C gar , YARD

Table 18: Examples of text alignment in the classifieds ads domain

of translations discovered for the classifieds domain are given in Table 17.
While the translation lists have many extraneous entries, this does not affect
performance unduly due to the highly constrained nature of the task.

To calculate the alignment between the unnormalized and normalized
versions of a paragraph given a set of translation pairs, we use the dynamic
programming algorithm for calculating word edit distance between two word
sequences. However, instead of using a cost of 1 for each insertion, deletion,
and substitution, we use a cost of 3 for insertions and deletions and 4 for
substitutions as is done by NIST’s sclite tool for calculating speech recog-
nition word-error rates. Furthermore, a cost of 0 is assigned to substitutions
between tokens with identical spelling and a cost of 1 is assigned to substi-
tutions between nonidentical tokens that are “translations” of each other.
These cost assignments are arbitrary and were found to yield adequate per-
formance. As some paragraphs are extremely long and the edit distance
algorithm is quadratic in time and space, we used beam search to prevent
excessive computation. Some example alignments from the classifieds do-
main are presented in Table 18. While not perfect, these alignments are
mostly correct.

In the actual evaluation process, we present a total of about 120 char-
acters of context around the token to be judged and around the normalized
token that we decide is aligned with the original token. The alignment
process has done its job adequately if the correctness of the original token
can be judged given the amount of context presented. We found that less
than 0.3% tokens were misaligned in each domain according to this criterion,
where many of these “misalignments” were not the fault of the alignment
algorithm. For example, some tokens expand to more than 120 characters
when normalized, and thus cannot be judged when presenting only 120 char-
acters. Thus, the alignment algorithm implemented was entirely adequate

9 PERFORMANCE MEASURES 59

,‘ classifieds ’ news text | pcllO news i recipes
Festival 34.5% £ 1.8% | 0.7% £ 0.7% | 5.9% + 1.1% | 4.2% + 1.0%
LDC 32.4% £ 1.8% | 0.2% + 0.6% | 6.3% £ 1.1% | 3.0% = 1.0%
m4 12.3% £ 1.5% | 0.4% = 0.7% | 3.4% £ 1.0% | 2.6% + 0.9%
hand-label | 9.6% + 1.4% | 0.3% =+ 0.6% | 2.2% £ 0.9% | 2.6% + 0.9%

Table 19: Token error rates of various systems on various domains as esti-
mated through manual evaluation

for its purpose. When a token could not be judged from 120 characters of
context, the whole surrounding paragraph is presented to the adjudicator.

9.3.2 Results

Using the methodology described above, we estimated the token error rate
of three different normalization tools: the Lingunistic Data Consortium nor-
malization tools, the normalization tools provided with the Festival speech
synthesis toolkit. and the system we developed that is referred to as m4 else-
where. We also evaluated the quality of the hand-tagged data described in
Section 6. Performance was evaluated separately in each of the four domains
considered.

The results of this manual evaluation are presented in Table 19. We
also performed Student’s t-test for paired samples to test the statistical
significance of performance differences found. All performance differences in
the table are significant at the 2% level except for the following: in the news
text domain, no differences are significant except for that between LDC and
Festival; in the pcl10 domain, the difference between LDC and Festival is
not significant; and in the recipes domain, the differences between LDC, m4,
and the hand-labeled data are not significant.

For each domain, we see that m4 performs at least as well as the LDC
and Festival systems. and for some domains it performs substantially bet-
ter. Furthermore, it is not much worse than the hand-labeled data in each
domain. While the token error rate of the hand-labeled data is quite low in
three of the domains, it is near 10% for the classifieds domain. To achieve
performance better than this level, it is likely that the labeling of the clas-
sifieds data must be improved. The m4 system is trained on hand-labeled
data, and its performance is probably limited by the quality of the fraining
data used. All of the systems evaluated perform quite well on the news text.

9 PERFORMANCE MEASURES 56

To make further distinctions between the performance of different systems
on this domain would require a substantially larger sample set than was
actually used.

We perused the errors of the hand-labeled data in the four domains,
and found that the errors came from a variety of sources over the different
domains. Examples of the more common errors are:

e In the classifieds domain, punctuation was not correctly placed after
abbreviations. As mentioned earlier, this information is not provided
by labelers.

o In the classifieds domain, many non-standard words were not correctly
identified as non-standard and were thus not presented to labelers, ¢.g..

OH, SE. PH. ac.

e In the pcl10 domain. E-mail addresses and URL’s were not expanded
correctly. This information was not generally provided by labelers.

e In the recipes domain, whether an abbreviation expands as plural or
singular (e.g.. Jg) is often incorrect. Again, this information was not
provided by labelers.

9.4 Measurement criteria

Each database was split into train and test sets with approximately one
third for test and two thirds for training. Splits were done on a per-file basis
and although there are distinct sources for parts of the news and classifieds
data (i.e. different newspapers) we did not take account of these. and so files
from each newspaper appear in both train and test (except in a few cases).

In addition we split the training set into a devtrain and devtest sets with
approximately a 90/10% split. The test set was only used to test what we
considered final models and no error analysis was ever carried out on those
results. The devtrain and devtests however were investigated fully, though
models were only trained from data in devtrain.

In order to provide day-to-day measurements of how our models im-
proved and to show relative accuracy over different models we required an
automatic scoring method. Using the user based scoring method discussed
above would be too expensive. Thus, despite the known noise in our data
and in truth itself., we choose two figures to measure the accuracy of our
models.

9 PERFORMANCE MEASURES 57

token error rate: the percentage of original unsplit tokens whose expan-
sion to words does not completely match the expansion to words in
the truth.

word error rate: the percentage of wrong words in an expansion (includ-
ing insertions deletions and substitutions) with respect to truth.

The first of these is a good measure because the number of original unsplit
tokens is the same for almost all of the models we present results for (The
LDC text conditioning tools do not preserve token boundaries over their
expansions so we can only report word error rates.) The word error rate,
although highly correlated with token error rate is not so straightforward,
if a model mistakenly identifies an abbreviation as a letter sequence the
number of word errors will be greater than if it wrongly identifies it as a
ASWD.

Another measure that would be interesting is the split token ervor rate.
This however can’t be calculated as our splitter does not necesssarily match
the split tokens in truth.

However looking at the actually erroneous tokens we feel these figures
do adequately represent the relative accuracies of these models.

9.5 Baseline systems

One of the purposes of this project is to introduce the idea of measuring the
accuracy of a text analysis system. Thus in order to place our own models
in context we have choosen two publicly available pre-existing text analysis
systems to show what the current state is.

The first is the LDC text conditioning tools. These are standard tools
used in normalizing text in order to build language models for automatic
speech recognition. They counsist of a set of simple rule driven scripts that
have been augmented with rules to expand text as used by various DARPA
evaluations. Although not inetended to be domain dependent they are heav-
ily biased towards news type data.

The second system is Festival, a publicly available text-to-speech synthe-
sis system. The text analysis part consists of both rule driven and statistical
prediction models for number and homograph disambignation. Festival was
primarily trained and tested on news-type data though an email database
was also used. Although we are using Festival as the framework for building
our new NSW models this test is on the 1.4.0 release without any benefits
from new models produced in this project.

9 PERFORMANCE MEASURES 58

LDC tools Festival
TER | WER | TER | WER
NANTC 2.88 1.00 1.38
classifieds - 30.81 || 30.09 | 33.48
pcll0 — | 22.36 | 14.37 | 32.62
RFR 9.06 6.28 | 16.19

As the mechanism used to generate the truth that these systems are com-
pared against is using some of the same mechanism that the Festival text
analyser is using there is probably a slight bias in these results towards Fes-
tival. Looking closely at “errors” between the LDC NANTC results we feel
that perhaps a truer error rate would be close to 1.5, as many of the “er-
rors” fall into punctuation, hyphenation type problems, although we tried
to account for many of these. Also given the results of the use oriented mea-
surement is seems we can’t make any strong statement about the different
between Festival and the LDC tools performance on NANTC.

However we feel that the above table shows that these existing systems
do reasonably on NANTC-type data and perform miserably on any of the
other domains.

9.6 NSW based models

There are five threads in the presentation of these results. First we’ll present
the best domain dependent model. This uses the training data as much as
possible and gets our best results. The second thread is modifying our best
model by removing parts of it to indicate how important each part is. The
third thread is to incrementally add oracles at each stage that look at truth.
This is another indication of how well each component works.

The fourth thread discusses the building of domain independent models,
where the data to be run on is not part of the training set and does not fall
into the same domain. The final thread discusses domain dependent but
unsupervised models. These models are of use when data for a new domain
is available but it has no labeling.

m4 counsists of the following parts
e domain independent token splitter

o NSW tags predicted by a CART tree trained on the NSW labeled tags
in devtrain. The features used include letter language model based
features for alphabetic NSWs.

9 PERFORMANCE MEASURES 59

o Tokens classified as EXPN are expanded using a WFST, build from
domain dependent expansions, that produce a list of potential expan-
S1018.

e A language model trained on domain depenedent labeled data which
chooses between the different expansions.

The results over the domains are as follows

m4
TER | WER
NANTC 0.39 0.82
classifieds 7.00 9.71

pcll 3.66 9.25
RFR 0.94 2.07

Next, to investigate how important each compounent is we removed parts
to see how this affects results.

m4 as above

m4.nolm as in m4d but we take the most probable EXPN expansion and
does not use the language model to choose between options.

md.noef as in m4 but tag prediction tree don’t use any features dependent
on the letter language model.

m4.noeflm as in m4, with no letter language model features, most probable
exansion and no language model.

m4 m4.nolm m4.noef m4.noeflm
TER | WER | TER | WER | TER | WER | TER | WER
NANTC 0.39 0.82 1| 0.39 0.81 || 0.38 0.78 1| 0.38 0.78
classifieds 7.00 9.71 6.82 9.70 7.55 1 10.39 7411 10.42

pcll0 3.66 9.25 | 3.63 9.25 | 3.93 | 10.90 | 3.90 | 10.90
RFR 0.94 2.07) 0.93 2.06 || 0.88 2.07 | 0.88 2.07

As one can see, always using the most probable expansion for EXPNs with-
out using a langauge model is overall better than letting the language model
choose. Looking at actual errors it is not the case that using the language
model always makes correct choices wrong, it does get some tokens right
that are wrong without it, but unfortunately it also makes some right things

9 PERFORMANCE MEASURES 60

wrong. There are, in fact, only a few places where expansions have valid
alternatives and in those cases its not clear how a general n-gram language
model would help disambiguate themn, so perhaps this result should not be
surprising. But in removing the possibility of choice will guarantee that the
less probable expansions will never get selected, which seems deficient.

When the letter language model features are deleted they certainly make
both the classifieds and pcl10 domains worse. These two domains have a
much higher occurrence of domain specific acronyms and abbreviations and
it is probably those that are better predicted with the extra features. The
other two domains. NANTC and RFR seem to suffer from using these extra
features.

The next set of experiments show what happens when we give the model
truth through an oracle. This can only be realistically done in two places.

m4.nosplt In this case we use the original split token as labeled rather
than rely on our own splitter.

m4.nost Here we use the original split and the hand labeled tags. Thus
the only part left is the expansion expander at the language model.

The third possible test is to also use the correct expansions but in that case
the language model would have no choices and therefore the answer would
be truth. Again m4 is shown for comparison

m4 md.nosplt md.nost
TER | WER | TER | WER | TER | WER
NANTC 0.39 1 0821 020} 044 0.03 0.06
classifieds || 7.00 9.71 1 5.40 6.35 | 3.15 4.24

pclll 3.66 9.25 | 2.58 4.61 1 0.49 0.75
RFR 0.94 2.07 4 0.59 1.11) 0.16 0.24

This shows that there is a difference in our splitter compared to the orig-
inal hand label splits that is affecting performance. The CART predictors
were trained from the original hand split tokens and may benefit if they
were trained on the type of tags that come from owr own splitter, though
this could require re-labeling. In many cases we feel our splitter is more
reasonable that the human specified form (or at least more consistent).

When we give the model actual tags it naturally does better, but at
the same time the performance shows there is still a substantial part of the
problem left, particularly in classifieds, which is the domain with the most
abbreviations.

9 PERFORMANCE MEASURES 61

The fourth line of experiments were to find out how well we can build
a domain independent model. At first we considered building models based
on three of our labeled domains then testing on a third, but our initial
experiments (based on the performance on the CART trees build in this
manner) was that the NANTC domain is about as generic as we can get
and it performs as well on the other domains as a combined model probably
would.

For comparison we include Festival's results and m4 results before giving
m4.domin which is m4 with all domain dependent parts fixed to use NANTC
based models. m4.dominE again uses NANTC domains models but for
EXPNs it uses a list of the most frequent abbreviations taken from the
data, i.e. it does use domain dependent data. The rationale for this test is
to find out what would happen in you at least created a new list of domain
dependent expansions for the model, which is considered much less work
than labeling data

festival md m4.domin md.domink

TER | WER || TER | WER | TER | WER || TER | WER

NANTC 1.00 1.38 | 0.39 0.82 0.39 0.82 0.39 0.82

classifieds || 30.09 | 33.48 7.00 9.71 || 25.20 | 29.11 || 19.69 | 21.18

pcll0 14.37 | 32.62 || 3.66 9.25 | 12.35 | 18.69 || 12.09 | 18.07

RFR 6.28 | 16.19 || 0.94 2.07 2.71 4.66 2.32 4.14

Although the results for our NANTC model compare favorably with Festi-
val's they are still some what poor. In the classifieds domain we are still
getting around 1 in 4 words wrong. The addition of a list of known ab-
breviations in the domain helps but it probably still isn’t useful enough to
consider using the output for any real task.

The final set of experiments that we report here are on building domain
dependent models on unlabeled data. That is we assume there is some
example data from the domain but don’t expect it to be labeled. We consider
scenario a likely one in the case of text condition building language models.
A database of text will be provided so it may be analysized to build models
automatically. So far we have only done this for the classified domain. The
steps involved are

e Use the NANTC model to generate tags for the new domain, dumping
the features for each new NSW with its predicted tag.

o Instead of taking the NANTC prediction as correct, for all alphabetic
tokens we take the best based on the letter language model features

9 PERFORMANCE MEASURES 62

built from unsupervised data, as described above. All other tokens we
just use the NANTC guess.

e We then build a prediction tree based on these new labeled features
in our unknown domain.

e With this new classifier we expand the data this time generating words
where we can and the literal EXPN for EXPN tokens as we don't yet
know what it expands to.

e A WFST built to automatically expand abbreviations. as described
above, is then used to find the expansions.

e We then re-expand the the data giving the most probable expansion.
o A language model is then build on the expanded data

e The final model runs by predicting a number of possible expansions
and the language model is used to decide between them

The NANTC tree on classifieds for NSW tags gives 67.44% correct (on
devtest). When devtrain is marked with the NANTC prediction and al-
phabetic tokens are modified to have the tag best predicted by the letter
language model, a tree built from that data give 86.72% tag correct on
devtest.

The results here first show the fully domain dependent supervised (trained
on labeled data) model from m4. The second is usl.nolm, is the unseuper-
vised domain depened model taking the mode probable expansion. usl.lin
allows multiple expansions and uses a domain dependent language model.
us2 uses an explicit list of expansions which assumes that a labeler has given
the expansion, though what is an abbreviation has been been automatically
detected in the same way as in usl. This third test is to show the results if
at least some time ig taken to explicitly specify expansions.

TER | WER
md 7.00 9.71
usl.nolm || 12.64 | 13.50
usl.lin 12.50 | 13.40
us2 10.58 | 13.51

The results are reasonable and significantly better than the domain indepen-
dent models though we still are requiring no labeling of the data. The most

10 DISCUSSION 63

common mistake this model makes is failing to identify an easily pronounce-
able word as an abbreviation (e.g. kit for kitchen). This type of mistake
however doesn’t detract from understanding in spoken output.

10 Discussion

The work reported here represents, we believe. a significant advance in the
state of the art in text normalization. We have provided not only supervised
models that perform well on four distinct domains, but have also provided
methods that allow one to build text normalizers for new domains given
that one has raw text from that domain.

Of equal importance is the fact that we have provided performance mea-
sures as a whole for the various text-normalization approaches on the dif-
ferent domains. This contrasts with the more normal practice of reporting
error rates (if at all) on selected text-normalization problems, such as the
problem of distinguishing ordinary numbers from dates. Such microscopic
evaluations are important of course: it is certainly useful to have finer-
grained information on ervors. However in the absence of overall statistics
it is hard to put such finer-grained measures in context.

As we said in the introduction, this work represents not an end, but a
beginning. There is substantially more work to be done in the area of text
normalization. Towards this end the tools and the databases created for this
project will be publicly available, and this will hopefully encourage others
to improve upon the work we have done here.

One weak link in the work we have done here is language modeling. The
trigram language model was critical only in the generation of unsupervised
abbreviation lists: in the final runs on the test data, language modeling was
not of significant help. This result may be surprising given that we know
that some abbreviations are ambiguous, and their ambiguity is typically
resolvable from the immediate context. On the other hand, it is likely that
a trigram model based on words is too impoverished to provide much help
in resolving the many cases (e.g. St for Saint versus Street) that are better
be cast in terms of features of the context. This suggests the use of “direct
models”, such as decision lists, decision trees or maximum entropy methods,
something that we did not have time to adequately investigate in the context
of this workshop.

Finally, our work has focused exclusively on English, and one iimportant
area to investigate is the application of these and related techniques to lan-
guages besides English. We expect that many of the techniques would carry

11 ACKNOWLEDGMENTS 64

over, mutatis mutandis, to other Western languages (broadly construed).
Complexities will arise in languages like Russian where even seemingly in-
nocuous abbreviations like kg can be read in various ways depending upon
the case, number, gender and other properties of words in the context: the
best approaches to handly such cases currently involve hand-constructed
rules (Sproat. 1997). Some languages, such as Chinese present additional
problems, including the lack of space delimiters for words (see, e.g.. (Sproat
et al., 1996)): on the other hand there seem to be an almost total lack of
abbreviations. in the techunical sense used here in Chinese (see, e.g.. (Sproat,

2000)).
11 Acknowledgments
We would like to thank Kevin Walker, Chris Cieri and Alexandra Canavan of

the Linguistic Data Consortium for their work on obtaining our Classified Ad
data. We also thank Michael Riley and David Yarowsky for useful discussion.

References 65

REFERENCES

Allen, Jonathan, M. Sharon Hunnicutt, and Dennis Klatt. 1987. From Teuxt
to Speech: the MITalk System. Cambridge University Press, Cambridge.

Bell, T. C., J. G. Cleary, and I. Witten. 1990. Text Compression. Prentice
Hall, Englewood Cliffs.

Bikel, D, S. Miller, Richard Schwartz, and Ralph Weischedel. 1997. Nymble:
a high-performance learning name-finder. In Applied Natural Language
Processing Conference, pages 194-201.

Black, Alan, Paul Taylor, and Richard Caley. 1998. The Festival speech
synthesis system. http://www.cstr.ed.ac.uk/projects/festival.html.

Breiman, Leo. Jerome H. Friedman, Richard A. Olshen, and Charles J.
Stone. 1984. Classification and Regression Trees. Wadsworth & Brooks,
Pacific Grove CA.

Brown. Peter, John Cocke, Stephen Della Pietra, Vincent Della Pletra. Fred-
erick Jelinek, John Lafferty, Robert Mercer, and Paul Roossin. 1990. A
statistical approach to machine translation. Computational Linguistics.

16(2):79-85. June.

Brown, Peter, S. A. Della Pietra, V. J. Della Pietra. J. C. Lai, and R. L.
Mercer. 1992, An estimate of the upper bound of the entropy of English.
Computational Linguistics, 18:31-40.

Brown, Peter, Jennifer Lai, and Robert Mercer. 1991. Aligning sentences in
parallel corpora. In Proceedings 29th Annual Meeting of the Association
for Computational Linguistics, pages 169-176, Berkeley, CA, June.

Cannon, Garland. 1989. Abbreviations and acronyms in English word-

Carletta, Jean, Amy Isard, Stephen Isard, Jacqueline Kowtko. Gwyneth
Doherty-Sneddon, and Anne Anderson. 1997. The reliability of a dia-

Chen, Stanley F. and Joshua Goodman. 1998. An empirical study of
smoothing techniques for language modeling. Technical Report TR-10-
98, Harvard University.

References 66

Flammia. G. 1998. Discourse segmentation of spoken dialogue: an empirical
approach. Ph.D. thesis, MIT.

Golding, Andrew and Dan Roth. 1999. A Winnow-based approach to
spelling correction. Machine Learning.

Hirschberg, Julia and Christine Nakatani. 1996. A prosodic analysis of
discourse segmentation in direction-giving monologues. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics.

Iyer, Rukmini and Mari Ostendorf. 1997. Transforming out-of-domain es-
timates to improve in-domain language models. In Proceedings of Fu-
rospeech, volume 4, pages 1975-1978.

Jelinek, Frederick. 1997. Statistical Methods for Speech Recognition. MIT
Press, Cambridge.

Jurafsky, Dan. R. Bates, N. Coccaro, R. Martin, M. Meteer, K. Ries, Eliza-
beth Shriberg, Andreas Stolcke, Paul Taylor, , and C. Van Ess-Dykema.
1997. Switchboard discourse language modeling project final report.
Summer Research Workshop Technical Reports 30, Johns Hopkins Uni-
versity, Baltimore, MD.

Kneser, Reinhard and Hermann Ney. 1995. Improved backing-off for m-
; . 5
gram language modeling. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing, volume 1, pages 181—
184.

Linguistic Data Consortium. 1998. 1996 CSR Hub-4 language model.
http://morph.ldc.upenn.edu/Catalog/LDCIST31 htanl.

Romer, Jirgen. 1994. Abkiirzungen. In Hugo Steger and Herbert Ernst Wiegand,
editors, Schrift und Schriftlichkeit/Writing and its Use, volume 2. Walter de
Gruyter, Berlin, chapter 135, pages 1506~1515.

Sproat, Richard, editor. 1997. Multilingual Text to Speech Synthesis: The Bell
Labs Approach. Kluwer Academic Publishers, Boston, MA.

Sproat. Richard, editor. 2000. A Computational Theory of Writing Systems. Cam-
bridge University Press, Stanford, CA.

Sproat, Richard and Michael Riley. 1996. Compilation of weighted finite-state
transducers from decision trees. In 34th Annual Meeting of the Association
for Computational Linguistics, pages 215-222, Santa Cruz, CA. Association for
Computational Linguistics.

References 67

Sproat, Richard, Chilin Shili, William Gale, and Nancy Chang. 1996. A stochastic
finite-state word-segmentation algorithm for Chinese. Computational Linguis-
tics, 22(3).

Taghva, Kazem and Jeff Gilbreth. 1995, Recognizing acronyms and their defini-
tions. Technical Report 95-03, Information Science Research Institute, Univer-
sity of Nevada, Las Vegas, June.

Yarowsky, David. 1996. Homograph disambiguation in text-to-speech synthesis. In
Jan van Santen, Richard Sproat, Joseph Olive, and Julia Hirschberg, editors,
Progress in Speech Synthesis. Springer, New York, pages 157-172.

A APPENDIX I: LABELING GUIDE FOR NSWS 68

A Appendix 1: Labeling Guide for NSWs

A.1 Background

Although we may think text is made up of words, actually there are often
tokens within text that are not simply “words.” For example, numbers, ab-
breviations etc are surprisingly common. What is more the pronunciation
of these tokens is not always trivial. Counsider the digit string 1985. This
will be pronounced differently depending on its context. As a year it is nine-
teen eighty-five, while as a number as in 1985 pages it is one thousand nine
hundred (and) eight-five, while as a telephone number it could be one nine
eight five. Abbreviations are also common: e.g. 20GB 50Mhz Depending
on the type of text the percentage of non-standard words with non-trivial
pronunciations in the text can be as much as 50%. As part of a project to
investigate the relationship between written text and the its pronunciation
we wish to label large amounts of text from at least four different domains.
These are: news stories from press wires; some USENET /email data: clas-
sified ads: and IRC (internet relay chat). The project is to design statistical
models to predict the pronuncation of such words for both speech synthesis
and for building language models in speech recognition. This project will
run at Johns Hopkins University from mid July to the end of August this
vear.

A.2 The labeling task

The labeling task itself involves looking at a mumber of words within a short
context (three words at either side) and identifying one of around twenty
possible labels for that non-standard word. To aid this. the presentation
method only presents tokens which might be NSWs though the heuristic
for finding them is slight over general such that some identified NSWs are
actually just words that aren’t in our lexicon. Sometimes (more often in
some text types) the token must also be split to identify its pronunciation
of its subparts: e.g. WinNT consists of an abbreviation Win for Windows
and the part NT to be pronounced as a letter sequence.

A.3 A Simple Example

For example the labeling tool, actually a special mode in the Emacs editor,
presents each token on a new line surrounded by its context. A guess at the
label is given at the start and the labeler must either accept the guess or
provide an alternative.

A APPENDIX 1: LABELING GUIDE FOR NSWS 69

NUM for Bosnia by Oct * 15 * he would go to 109

NUM no later than Nov * 15 ¥ The United States along §
NUM begin the sale of * 12 * million barrels of oil §
ASWD possibility of doing this * multilaterally * 0 O 0 O 358
LSEQ The Washington Post says * U.S * relations with its alli$
ASWD Rosenblatt Stadium in Omaha * Neb * they have never seen

The first two NSWs are not simple numbers but ordinals, since they
are dates and hence must be labeled NORD. The third example is a simple
number. The fourth, multilaterally, is a standard word but because it is
not in our lexicon it appears as a potential NSW; however it is guessed to
actually be a regular word (ASWD). The next example is a letter sequence.
Finally, the last example Neb is an abbreviation for Nebraske and hence
should be marked as EXPN; thus the guessed tag (ASWD) is wrong. Thus
after labeling, the above will look like.

NORD NUM for Bosnia by Oct * 15 * he would go to 109

NORD NUM no later than Nov # 15 # The United States along $
NUM NUM begin the sale of * 12 # million barrels of oil §
ASWD ASWD possibility of doing this * multilaterally * 0 0 0 O 358
LSEQ LSEQ The Washington Post says * U.S * relations with its alli$
EXPN ASWD Rosenblatt Stadium in Omaha * Neb * they have never seen

A.4 A More Complex Example

Some NSWs have internal structure. such as PCCard, 64MB. LuviewPro,
and these need to be identified more fully. For such NSWs you may select
the split option (the character '/") and the labeler will prompt you with the
token, you insert spaces at the appropriate boundaries, then HIT return and
the sub parts can be labeled. For example:

ASWD down 110 Preferably a * 4MB * unit with no HD $
requires splitting into 4 and MB giving

SPLT ASWD down 110 Preferably a * 4MB #* unit with no HD $
4
MB

which are labeled as NUM and EXPN. For every token that is labeled
EXPN only one expansion should exist. Such examples are myg, kg, N. Y.,
Capt. Note the EXPN label may sometimes be used for things which could
also be split: D-Mass, R-TX (identifying party and state of US senators
and representatives).

A APPENDIX 1: LABELING GUIDE FOR NSWS

A.5 Tagging Chart

The labeler runs as a special mode in the Emacs editor, single key strokes

add labels to the NSW on the current line.

Key Label
m MSPL
e ESPN
1 LSEQ
a ASWD
f FNSP
X NONE
s SLNT
n NUM
o NORD
t NTEL
d NDIG
i NIDE
, NADDR
z NZIP
c NTIME
C NDATE
u URL
y NYER
$ MONEY
b BMONY
S SCORE
h PRCT

OTHER
SPACE
T
/

Explanation
misspelled word
abbreviation/contraction
letter sequence
read as word
funny spelling
token should be ignored
not pronounced
number (cardinal)
number (ordinal)
telephone (or part of)
number as digits
indentifier

number as street address

zip code or PO Box
a (compound) time

a (compound) date

url/pathname

year(s)
money (US or otherwise)
money tr/m/billions

scores, ranges (not dates)

percentage
unknown (use sparingly)
Selects the guessed token

prompts for user specified token

prompt for split of token

Example
geogaphy
adv, N.Y, mph
CIA, D.C, CDs
CAT, proper names
sllloooww, sh#t
ascii art, formating junk
punctuation in compounds
12, 45, 1/2

May 7, 3rd, Bill Gates III

212 555-4523
Room 101,
747, 386, 8086

5000 Pennsylvania, 4523
Forbes

91020

3.20, 11:45

2/2/99, 14/03/87 (or US)
03/14/87

http://slashdot.org
/usr/local

1998 80s 1900s 2003
$3.45, HK$300, Y20,000
$3.45 billion

NN-NN

75% 3.4%

Note that labeling should (primarily) identify how you would pronounce

the token. Note if the guess is ROM, a roman numeral, identify its uses as a
NUM (as in World War 1) or NORD as in Louis XIV or Louis the XIV. For
unusual abbreviations, or ones where the token itself might be ambiguous

it 1s neccesary put the expansion in the label itself. All labels starting with

lower case letters are treated as in-line expansions. This seems particular
useful with split NSWs.

A APPENDIX I: LABELING GUIDE FOR NSWS 71

A.6 How run the labeler

The labeler is an special mode in Emacs. To run it you need the script
toklabel and the Emacs Lisp file toklab. el. Download these files and save themn
in a new directory. Edit vour copy of toklabel so the value of TOKLABDIR
is the name of the directory that containg both the toklabel script and the
toklab.el file. You will be given files like ezample.feats which after labeling
should be saved to example.done. You do this by downloading the file (for
example into the same directory as the scripts) and type

./toklabel example.feats

This presents a screen (you may wish to make the window wider) with
the tokens in context. Pressing any of the single characters described above
will add the appropriate token in column 1. The space key will select the
default. For some texts the default will often be right, for some tokens the
default will almost always be right, but note for the occasional weird forms,
for example numbers that look like years, letter sequences that are really
words etc. The list of labels and examples may be obtained in Emacs itself
with the command C-h m (described-mode). When vou type something you
didn’t mean to and things become strange you can use Emacs’ undo feature,
available from the Edit menu and as C-__ (that’s control underscore). Also
you can override the special characters to type vour own by preceding them
with C-¢ (though the r key will usually be sufficient).

B APPENDIX 2: EVALUATION GUIDE 72
B Appendix 2: Guide for the Manual Evaluation

of Text Normalization Performance

Evaluating text normalization quality involves editing a simple text file. A
sample excerpt of such a file is:

.en boot without *your config.sys (&1t ;Fb> d...
...en boot without your config dot sys (< F. five >. d...
1

.ngers >of the *747 airplane, may be...
...ngers >. of the seven forty seven airplane , may be...
1

>> >> How *did we determine there is a USB...
...>. > >. >, How D. I. D. we determine there is a U.
0

<<<I am Type *II mnow... PC110 strand. ..

<<<I. am Type two now P. C. one one zero strand...
1

to look at the *IBM as you can compare the Type...

... to look at the I. B. M. as you can compare the Type...
1

off, pop the %12, and then put it back.>>>
...ro off pop the twelve , and then put it back .>>>
1

Text comes in pairs of lines. the first line being the original raw text and the
second line being normalized text. For each pair, the labeler is supposed to
evaluate the correctness of a single space-separated token. The particular
token to evaluate is marked with an asterisk to the left and always starts in
the same column. The number below the pair of lines is the judgement of
correctness of that example; it is set to 1 originally, which denotes correct.
The labeler’s job is to edit that character to be I for correct, 0 for incorrect,
and m for misalignment. To be rated as correct, all tokens that should
be generated by that token must be correct, e.g., 747 must generate all
three tokens seven forty seven correctly, and in the last example both
the twelve and the comma must be present.

B APPENDIX 2: EVALUATION GUIDE 73

The misalignment judgement means that it is not possible to make a
judgement from the context presented, which may be because the automatic
alignment between pairs is wrong or because the generated tokens run off
the screen. For example, the following should be labeled as a misalignment

... (At #http://www.cadex.com/cfm/index.cfm
...CAt h. t. t. p. colon slash slash w. w. w. dot cadex

because we cannot tell if the whole token is correct without more context to
the right. However, the following example should be marked as correct

.mAh, *they’re $35.00 (sometimes)
.mAh they’re thirty five dollars (sometimes)...

because even though the automatic alignment is not completely accurate,
there is adequate context to judge the correctness of the token.

The <<< symbol signals the beginning of a paragraph, >>> signals the
end of a paragraph. and ... denotes that the paragraph continues outside
of the context.

To decide whether a space-separated token is correct, use the following
guidelines:

e As mentioned above, all tokens in the normalized text corresponding
to that raw token must be correct to be considered correct.

e As mentioned above, do not count minor alignment errors as wrong:
i.e., 1f the normalized token corresponding to a raw token does not
occur directly underneath, that is not cause to mark something incor-
rect.

¢ Grading punctuation: punctuation does not have to be gotten ex-
actly correct; the only thing that is important is whether the pres-
ence of punctuation is predicted correctly. For example, expanding a
comma as a semi-colon is fine, or expanding a left-quote as a right-
quote is fine. However, having punctuation where there should be
noune or not having punctuation where there should be some is an er-
ror. For example, expanding “The US came” as “The U. S. . came”
is an error. as is expanding “in the US. In other news” as “in the
U. S. In other news”. Furthermore:

— It is OK to substitute a single punctuation mark for multiple
consecutive marks, or vice versa. For example, expanding *- -
- =7 as =7 is fine.

B APPENDIX 2: EVALUATION GUIDE 74

— Extraneous or missing punctuation at the beginning or end of a
paragraph (not sentence) is fine.

— These rules are motivated by the principle that in language mod-
eling or speech synthesis, we need punctuation to identify things
such as segment boundaries or locations to place pauses, but the
identity of the punctuation is less important. In addition, seg-
ment boundaries or pauses at the beginning or end of a paragraph
are clear.

e Rule of correct intention: if it is clear that the given text nor-
malizer “understood” the given token, but just didn’t output exactly
the correct tokens according to our grading specifications because it
didn’t know what the grading guidelines were beforehand, then the
token should be judged correct. Examples:

— Expanding IBM as I B M is technically incorrect because it should
really be I. B. M., but should be marked as correct.

— Expanding http://yahoo.comash. t. t. p. : slash slash
yahoo dot comis technically incorrect because the colon as writ-
ten would be treated as punctuation instead of read as the word
colon, but this case should be marked correct.

— Expanding call (808)425-1345 as call (eight oh eight)
four two five - one three four fiveistechnically incorrect
because there probably shouldn’t be punctuation aftter call, but
this should marked as correct.

— Expanding -=-====~=~= as line of hyphens is fine.

e Principle of acceptability: any expansion that is acceptable either
for language modeling conditioning or speech synthesis is acceptable,
and only such expansions.

— There may be many ways to read a token. For example, 105 dogs
could be normalized as one hundred five dogs or a hundred
and five dogs.

— If vou do not know for sure that an expansion is incorrvect, mark
it as correct. For example, if you see Ex Michael 222-2178. ex-
panding Ex as itself is acceptable (unless you know what it really
is) even though it may very well be some sort of abbreviation.

— Expanding “garbage” is not acceptable. For example, the string
charset="150-8859~1" found in E-mail headers should not be

B APPENDIX 2: EVALUATION GUIDE 75

pronounced in speech synthesis or be in language model training
text. Such garbage should expand to nothing.

o Gritty details:

— Grading hyphenated words: all hyphenated words should be split
into space-separated words, unless the split words are not words
by themselves (or at least not the intended words). For example,
two-sided should be expanded as two sided, while re-jumpering
should be expanded as is.

— The tokens Mr., Ms., and Mrs. may be left as is and considered
correct (though expansion to full word is also OK).

— Mismatches in capitalization are not errors.

— The tokens I and I. (and A and A.) should be correctly differ-
entiated. The former token is the word I and the latter is used
to spell out letter sequences containing the letter /. This is not
an issue for the other letters since they are not ambiguous. Also,
the rule of correct intention applies when expanding acronyms,
see above.

— Misspellings are errors unless corrected in the expansion.

— Concatenations of words are errors unless separated. ¢.g..

garrisonsquare should be expanded garrison square.

Plural and singular forms must be distinguished correctly if spelled

differently. e.g.. 3g should be expanded as three grams, and the

expansion three gram is incorrect.

— Plural and possessive forms must be distinguished correctly if
spelled differently, e.g., the wtrfrnts. best area should be ex-
panded as the waterfront’s best area; if the apostrophe is
excluded, it is an error.

— All punctuation characters (e.g., &) should be assumed to be
punctuation and not read as a word, except where the rule of
correct intention applies.

— For strings that should be read verbatim, such as computer com-
mands (e.g., format c: /ix=5) or WWW addresses, every (nonre-
dundant) character must be read correctly to be correct (e.g.,
format c¢. colon slash i. x. equals five oreven better, format
space c¢. colon space slash i. x. equals five).

B APPENDIX 2: EVALUATION GUIDE 76

— Do not punt on anyv token, even though we may not be considering

W 3 O B o

processing all tokens in our own system (e.g., expanding WWW
addresses).

— There may be ambiguous cases in assigning an ervor to a raw
token. For example, if the text three eggs two cups milk one
apple is expanded as is, there are two errors because of missing
punctuation between eggs and two, and milk and one. It is
ambiguous which of these raw tokens to assign the errors to. Use
the following guideless to resolve the ambiguity:

% For money, getting the word dollars correct is the respon-
sibility of the raw token containing the $. unless it is absent
in which case it is the responsibility of the number.

« Otherwise, resolve ambiguity by choosing the leftmost raw
token of the possibilities to be responsible for the error.

C APPENDIX 3: LATTICE FORMAT

-]
-]

C Appendix 3: Lattice Format

This section describes the file format that we use to represent the lattice of
possible expansions for utterances. Lattices for multiple utterances can be
stored in the same file.

At the beginning of the lattice for each utterance, the following line must
be included:

FSM-ID: <unique-ID>

The ID is arbitrary; it is used to guide later processing. At the end of the
lattice for each utterance, the following line must be used:

END
To list an alternative for the nth word in a sentence. use the line:
<n-1> <n> <raw-word> [<expanded-word>] [<cost>] [<tag>]

The fields should be separated by exactly a single tab. Multiple words in
<expanded-word> should be separated by spaces. The last three fields are
optional. If <expanded-word> is missing or empty, it is assumed to be the
same as <raw-word>. To specify an empty <expanded word>, use the token
<sil>. <cost> should be a log probability, base 10 (and will thus usually be
negative). <tag> is the NSW tag associated with the raw token, e.g., ASWD.

Alternatives must be listed for words in the order they occur in the
sentence, i.e., alternatives for the (n + 1)st word must follow those of the
nth word.

The following is a sample file:

FSM-ID: a034ci1

0 1 NATO NATO -0.1 ASWD

0 1 NATO N. A. T. O. -0.4 LSEQ
1 2 LIVES LIVES 0 ASWD

2 3 #H# <sil> 0 SLNT

3 4 ON

4 5 AND

5 6 ON

END

FSM-ID: a034c2

0 1 NATO NATO -0.1 ASWD :

0 1 NATO N. A. T. O. -0.4 LSEQ

1 2 LIVES LIVES 0 ASWD

C

APPENDIX 3: LATTICE FORMAT

3 Hit# <gsil> 0
4 #it# <sil>

SLNT

