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Abstract 
The clinical diagnosis of Alzheimer’s disease and other 
dementias is very challenging, especially in the early stages. 
Our hypothesis is that any disease that affects particular brain 
regions involved in speech production and processing will also 
leave detectable finger prints in the speech. Computerized 
analysis of speech signals and computational linguistics have 
progressed to the point where an automatic speech analysis 
system is a promising approach for a low-cost non-invasive 
diagnostic tool for early detection of Alzheimer’s disease. 

We present empirical evidence that strong discrimination 
between subjects with a diagnosis of probable Alzheimer’s 
versus matched normal controls can be achieved with a 
combination of acoustic features from speech, linguistic 
features extracted from an automatically determined 
transcription of the speech including punctuation, and results of 
a mini mental state exam (MMSE). We also show that 
discrimination is nearly as strong even if the MMSE is not used, 
which implies that a fully automated system is feasible. Since 
commercial automatic speech recognition (ASR) tools were 
unable to provide transcripts for about half of our speech 
samples, a customized ASR system was developed.  
Index Terms: speech recognition, dementia, machine learning, 
MMSE 

1. Introduction 
Alzheimer’s disease (AD) is the 6th leading cause of  death in 
the United States [1] and a significant burden on the nation’s 
and the world’s health care systems, those who suffer from it, 
and their families. It is very difficult to diagnose, particularly in 
the early stages [2]. A common screening test often 
administered by physicians, is the mini mental state exam 
(MMSE) [3]. By itself, it is not diagnostic, but is often used to 
identify patients for referral to specialists for careful diagnosis. 
The MMSE is a simple pencil and paper test taking about 10 
minutes and requiring only modest training. If an equally 
simple and short speech-based test could improve the accuracy 
of the MMSE this would seem to provide clinical value. 
 The idea that speech patterns might reveal early stage dementia 
has been investigated in [4], [5], and [6]. There are many 
relevant studies including those that attempt to establish 
                                                                 
 1 The interested reader may see our picture and listen to a voice sample 
at this web site: http://acoustics.org/2asp5-using-automatic-speech-

specific voice-based features whose distributions are 
statistically different between those with dementia and normal 
controls [7]. Computerized analysis of speech signals and 
computational linguistics have progressed to the point where an 
automatic speech analysis system is a promising approach for a 
low-cost non-invasive diagnostic tool for early detection of 
Alzheimer’s disease.  In two recent studies [8] and [9], by 
analyzing spontaneous speech, some biomarkers were extracted 
as features. Machine learning algorithms have been developed 
to build diagnostic models using syntactic and lexical features 
resulting from verbal utterances of patients [10]. Some efforts 
have also tackled discriminations among dementia types and 
degrees of severity [11], [12], [13], [14]. 

In this paper, we provide results from our ongoing work into 
the feasibility of developing such a test. Particularly, we 
describe our automatic speech recognition (ASR) technology 
that is needed to make the test fully automatic. Our database of 
speech samples, the acoustic and linguistic features we extract 
(fully automated), and our results showing an improvement in 
diagnostic precision over the MMSE alone, are presented. We 
also compare the results when using manual transcripts and our 
newly automated transcripts. 

2. Speech processing 

2.1. Database 

A standard protocol for collecting speech samples for aphasia 
work is to ask volunteers to describe what they see in a picture.   
They are able to view the picture while they speak (i.e. it is not 
a memory test).   This paradigm was used for all speech samples 
used in this work. For this task, we collected 72 recordings 
using modern digital recording equipment and a new picture1 
[15]. A brief demographic summary of the participants is shown 
in Table 1. Clinical diagnoses (ground truth) were provided by 
treating physicians. 

 Table 1: Demographic Summary 
AD = Alzheimer’s disease, NL = normal control 

Grp n Age 
(sd) 

race % 
(white) 

years_edu 
(sd) 

MMSE 
(sd) 

NL 46 71.43 
(12.6) 

98 13.28 (2.4) 28.70 
(1.5) 

AD 26 78.48 
(10.9) 

100 13.81 (2.3) 20.92 
(6.6) 

Total 72 74.04 
(12.4) 

99 13.48 (2.4) 25.89 
(5.6) 

recognition-to-identify-dementia-in-early-stages-roozbeh-sadeghian-j-
david-schaffer-and-stephen-a-zahorian/ 
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The average recording sample length was 75.1 seconds (sd 
61.0).  Some modest preprocessing was performed on audio 
files, such as removing the beginning and ending pauses, click 
removal and signal strength normalization. These processes are 
straightforward to automate. The resulting acoustic speech files 
were processed directly for acoustic features such as pauses and 
pitch contours.   A manual transcript was generated for each of 
the 72 recordings.  Linguistic features (e.g. word counts, 
syntactic complexity, idea density) were extracted from manual 
and automatic transcripts, and used for experiments as 
described in later sections of this paper. 

2.2. Acoustic feature extraction 

Each wave file was processed by three methods for separating 
speech from pauses, one using pitch, one using energy, and one 
using a Voice Activity Detector (VAD) [16]. With the speech 
sample broken into pause and speech events, 22 metrics were 
computed including the total speech length, the number of 
pauses, the fraction of the speaking time that was pause, the 
fraction of pauses in certain time windows (e.g. less than 0.5 
second, 0.5-1 second, …), and the fraction of the pauses in each 
quartile of the sample. In addition, the distribution of the voiced 
pitches in 10ms windows provided a mean, median, variance, 
minimum, and maximum that we hoped might provide an 
indication of emotive effect in the voice. Space limits preclude 
full description of all features. 

2.3. Linguistic feature extraction 

Each transcript was passed to the Charniak Parser [17] trained 
with the Penn Treebank Switchboard corpus. The raw text of 
the transcript, and the part-of-speech (POS) tagged parser 
outputs were used to compute a number of linguistic metrics. 
The syntactic complexity measures computed by Roark et al. 
[18] were computed, including a re-implementation of idea 
density [19]. A number of metrics that capture various aspects 
of vocabulary richness were also computed as well as counts of 
words related to the picture content.  The Linguistic Inquiry 
Word Counts (LIWC) were also computed [20]. These and all 
the other features, such as speech pause and pitch features, were 
combined into a single feature vector for each subject. These 
232 features from the speech samples were combined with 
demographic features and MMSE to give 237 total potential 
features.  

3. Speech and punctuation recognizer  

3.1. ASR system 

In a fully automatic system, all the steps must be done 
automatically, including the crucial step of speech-to-text. 
Several attempts to apply commercial ASR tools revealed their 
limitations: these tools typically need training for each speaker 
and have restrictions on sample length. Since commercial ASR 
tools failed on about half our samples, we had to develop our 
own automatic speech recognition (ASR). There are some 
aspects which made the task more doable: limited domain 
vocabulary and no requirement for real-time ASR.  In addition, 
ASR is eventually combined with easy to detect acoustic 
metrics, such as pauses, thus presumably reducing the burden 
of the ASR.  However, there are also some challenges: limited 
training data, poorly articulated words, presence of non-speech 
sounds, and instances of word patterns difficult to predict by a 
language model, and difficulties associated with ASR for the 
elderly [21]. We initially did use the commercial ASR system 

Nuance Dragon Naturally speaking (version 13) but the system 
was not promising since we had to tune the software for each 
speaker which is not feasible in clinical practice. Also, even 
using this strategy, the overall Word Error Rate (WER) was 
quite high (about 35%), on the samples it could handle. 

The first steps for designing a custom ASR system for this 
project were to prepare the dictionary (lexicon), make 
transcriptions to use for creating a language model, and to 
eliminate some problems in the speech data.  Many of the data 
problems were due to errors in the manually transcribed words. 
Another problem was the Out of Vocabulary (OOV) words in 
transcripts. For the ASR acoustic models, we first created 
simple monophone models, then used those models to design 
triphone models, and finally incorporated a deep neural net 
(DNN) to compute posterior probabilities of the tied states in  
the triphone models.  All models were built with 39 MFCC 
features, computed with 25ms frames spaced apart by 10ms. A 
bigram language model was developed based on the manually 
provided transcriptions. For monophone models, 3 state HMMs 
with 64 mixtures were used whereas for triphone models, 500 
tied states were modeled with 8000 Gaussian mixtures. 

The ASR was performed using the powerful and flexible 
Kaldi [22] toolbox. The DNN was implemented with two 
hidden layers, each having 1024 neurons.  The initial learning 
rate α=0.015 and it was decreased to α=0.002 in the final step. 
The activation function was hyperbolic tangent. To speed up the 
training, a minibatch size of 128 was used. Since there are many 
non-speech events and silent sections in the speech files, a VAD 
(Voice Activity Detector) was used to remove them. We used a 
context window of 9 frames (4 behind, middle frame, 4 ahead). 
Since the amount of data was low, we trained on all speakers 
except one left out for testing, and repeated for all speakers 
(referred to as leave one out (LOO) method). The mean of the 
WER (averaged over all speakers) using this method was about 
31%. Fig. 1 shows WER for all subjects. 

The average test accuracy was 68.7%±16% with a 
maximum accuracy of 93.2% and minimum of 22.1%. The 
transcriptions for the tests speakers were used for the 
punctuation algorithm, described in a later section. 

One way of checking both the overall correctness of the 
ASR system, and also to determine the potential accuracy if 
more training data were available, is to use components of the 
test data for training. 
 

 
Figure 1: The accuracy of ASR using LOO method 
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  Ultimately, of course, the training and test data must be 

completely separate in order to be able to predict how well a 
system will perform on new unseen data. However, controlled 
insertion of test data into the training set can be used 
diagnostically to determine which aspects of training are most 
deficient.    In this work, 4 different cases were evaluated: 1) 
No test data used for training; 2) for both the LM (Language 
Model) and AM (Acoustic Model), the training and test sets are 
identical; 3) for the AM, training and test sets are identical, LM 
has different training and test sets; 4) for the LM, training and 
test sets are identical, AM has distinct training and test sets. In 
Figure 2, we show the accuracy for each speaker for each 
condition. Case 2 (average accuracy of 96.0%) is an upper limit 
of performance if a really large database were available.   Case 
3 has an average accuracy of 82.9%,  whereas case 4 has an 
average accuracy of 76.7%,  thus indicating more training data 
for the AM would likely benefit accuracy more than increased 
data for the LM.  Altogether, however, a larger database should 
be used.  In future work, priority should be given to enlarging 
the database.  For the present paper, except for Fig. 2, all results 
pertain to “honest” case 1.  

3.2. Automatic Punctuation 

One of the challenges in extracting the linguistic features is how 
to determine the punctuation of the automatically transcribed 
speech because ASR systems typically only recognize words, 
and ignore punctuation. However, punctuation is required for 
determining some linguistic features. To resolve this issue, the 
approach of Tilk and Alum [23] was used to punctuate the 
output of the ASR system. In this method, a bidirectional 
Recurrent Neural Network (RNN) with an attention mechanism 
is used to punctuate the text. In each of the recurrent layers, 
Gated Recurrent Units (GRU) are used to eliminate the effect 
of different time scales which appear as dependencies. To 
capture the relevance of the parts in a context, an attention 
mechanism was used whereby it chose which punctuation 
(period, comma or question mark) to use. 

For training this RNN model, similar to the approach of Tilk 
and Alum [23], the English part of “Europalv7” [24] was used 
which contains more than 2 million sentences with around 53 
million words from more than 800 speakers.  There is a lexicon 
of all possible words in which assigned relevant number to each 

                                                                 
 2 All linguistic features were extracted from the ASR transcripts 
unless otherwise noted. 

word and RNN will use these assigned numbers for further 
processing. The RNN was configured with two hidden layers, 
each with 256 neurons. The inputs of the network are (at 
maximum) 200 words of a sentence starting from the first word 
of the sentence. The outputs correspond to locations and type of 
punctuation. 

It is very difficult to meaningfully quantify the accuracy of 
the automatic punctuation,   partly because even the manually 
transcribed punctuation is highly subjective.   We observed the 
automatic punctuation matched the manual punctuation 
(commas, periods, question marks) for approximately 50% of 
the cases.   Extraneous punctuation occurred in about 10% of 
locations where there should have been none. The parser 
requires sentence boundaries, and some of the linguistic 
features use the punctuation, so the accuracy of the punctuation 
would be expected to affect the ultimate diagnostic 
classification performance, the most important figure of merit. 

4. Experiments  
The 72 subjects were divided 90/10 into training and validation 
sets and full 10-fold cross validation was performed.  

We tested several approaches to feature selection and 
several classifiers, but here we report only the method using a 
best-first greedy algorithm with a multi-layer perceptron 
classifier. For this model, a NN with one hidden layer 
(containing 25 neurons) was used as a two-way classifier. The 
activation nodes were sigmoid. The inputs were features2 to be 
evaluated (from training data) and the outputs were labels for 
each subject.  

4.1. MMSE feature evaluation 

The most informative single feature was generally the MMSE 
score alone.   MMSE scores greater than or equal to 24 points 
(out of 30) indicates a normal cognition. Below this, scores can 
indicate severe (≤9 points), moderate (10–18 points) or mild 
(19–23 points) cognitive impairment [25]. To test the goodness 
of this feature, a two way NN (with similar specifications to 
above mentioned model) was trained as the AD/NL classifier 
using only this feature for the classifier. An accuracy of 70.8% 
was obtained; the confusion matrix given in Table 2.   

Table 2: Confusion matrix using MMSE score only as 
a feature 

 Estimated 
AD NL 

Actual  AD 23 3 
NL 18 28 

 
 

4.2. Using complete set of features 
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Figure 2: ASR accuracy for each speaker with selective 
 use of test data for training 

For the next set of experiments, a greedy approach was used 
whereby initially each of the 237 potential features was 
evaluated individually and the best performing feature was 
found. Best performance was determined by highest accuracy 
of the MLP on a group of test speakers. The decay parameter 
for this experiments was set to be 0.1 while the rate of dropout 
was set to 0.02 experimentally. The accuracy achieved was 
94.4% using only five features, one of which was the MMSE 
score. The five features selected (in order of importance) were 
MMSE score, race, fraction of pauses greater than 10sec, 
fraction of speech length that was pause and LIWC 
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Table 3: Confusion matrix using 5 best features 
selected from the complete features set 
 Estimated 

AD NL 
Actual AD 24 2 

NL 2 44 

 

4.3. Demographic, Linguistic and acoustic features only

 

 
Table 4: Confusion matrix obtained using best 12 

demographic, linguistic, and acoustic  features 
 Estimated 

AD NL 

Actual AD 23 3 
NL 3 43 

 
 

Table 5: Features selected using all the features 
except MMSE 

Feature No. Feature Name 
1 Race 
2 Speech rate (pitch based) 
3 Content density 
4 Fraction of pause greater than 1 sec 
5 Speech rate 
6 Total no. of pauses 
7 LIWC_compare 
8 Idea Density Ratio 
9 Fraction of pause less than 0.5 sec 
10 LIWC_we 
11 LIWC_quant 
12 LIWC_leisure 

 

4.4. Demographic and acoustic features 

For the last set of experiments, we considered the case where 
only demographic and acoustic features (no linguistic or 
MMSE) are in the initial candidate feature pool (81 features).  
Using the identical procedure as used for the previous two 
cases, an accuracy of 83.3% was obtained. This reveals that if 
only demographic and acoustic features (the “easy” ones) are 
considered, reasonably high accuracy is obtained, considerably 
higher than the 70.8% from the MMSE score alone, but much 
lower than the 91.7% possible if linguistic features are also 
included.  The confusion matrix is given in Table 4.  Table 5 
lists the 7 features selected. 

Table 4: Confusion matrix of using 7 best 
demographic and acoustic features 

 Estimated 
AD NL 

Actual AD 15 11 
NL 1 45 

 
Table 5: Features selected using only demographic 

and acoustic features  
Feature No. Feature Name 
1 Race 
2 Speech rate (using energy) 
3 Speech rate (using VAD) 
4 Speech less than 0.5 sec (pitch) 
5 Total number of pauses (energy) 
6 Total utterance length (pitch) 
7 Total no. of pauses (pitch) 

 
5. Conclusion and Discussion 

There do appear to be strong patterns among the speech features 
that are able to discriminate the subjects with probable 
Alzheimer’s disease from the normal controls.   

The greedy algorithm combined with the neural network 
two-way classifier was very promising for both feature 
selection and final recognizer.  In future work, the NN method 
could be improved in terms of more thorough searching by 
saving the top N (where N is some small number such as 5 to 
10) choices at the end of each iteration, at the expense of some 
slowdown in speed.  

We believe this study provides encouragement to seek 
speech patterns that could be diagnostic for dementia. The 
weaknesses of this study include the cross-sectional design that 
strives for a single pattern that works over the whole variety of 
subjects in each class. A longitudinal study would permit each 
subject to serve as his own control, helping to mitigate the large 
within-group variance in speaking patterns. The features used 
are by no means all the speech features that have been 
associated with dementia. The computational linguistics 
domain contains several additional interesting speech features 
that, with some effort, could be included in our basket. 

The accuracy of 94% for diagnosing Alzheimer seems 
promising considering this small number of samples. 
Additionally, the results of manually and automatically 
transcribed systems are close to each other which shows that the 
ASR system worked in an acceptable range and the punctuator 
system was likely accurate enough. 

quantitative feature (words indicating quantities). The 
resulting confusion matrix is given in Table 3. 

As described above, the accuracy of an AD/NL classifier is 
much higher if features are based on more than just the MMSE 
score (94.4% accuracy versus 70.8%). However, given that the 
MMSE score appears to be the most informative feature, but 
would be difficult to automate, a logical next step is to 
evaluate a system which does not include the MMSE score as 
a possible feature. If all possible features, except MMSE 
scores, are considered, detection accuracy of approximately 
93.1%, for linguistic features derived from manual transcripts, 
and 91.7% for linguistic features derived from the 
ASR/automatic punctuation transcripts. The confusion matrix, 
based on the automatically generated transcripts, is given in 
Table 4. In order to achieve the 91.7% accuracy, 12 features 
were needed, as listed in Table. 
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