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Abstract

Key features of mental illnesses are reflected in speech. Our research focuses on
designing a multimodal deep learning structure that automatically extracts salient
features from recorded speech samples for predicting various mental disorders
including depression, bipolar, and schizophrenia. We adopt a variety of pre-trained
models to extract embeddings from both audio and text segments. We use several
state-of-the-art embedding techniques including XLNet, BERT, FastText, and
Doc2VecC for the text representation learning and WaveNet and VGG-ish models
for audio encoding. We also leverage huge auxiliary emotion-labeled text and
audio corpora to train emotion-specific embeddings and use transfer learning in
order to address the problem of insufficient annotated multimodal data available.
All these embeddings are then combined into a joint representation in a multimodal
fusion layer and finally a recurrent neural network is used to predict the mental
disorder. Our results show that mental disorders can be predicted with acceptable
accuracy through multimodal analysis of clinical interviews.

1 Introduction

Human brain recognizes linguistic content and emotional intent of an expressed opinion by integrating
multiple sources of information. Our communicative perception is not only obtained from verbal
analysis of what words have been delivered but also acquired by investigating additional modalities
including speech audio and visual cues of how that utterance has been expressed Baltrušaitis et al.
(2019). More importantly, a single source of information (e.g. text-based mental mood understanding)
may not be enough to detect and handle ambiguity due to the plurality of meanings. For instance, the
emotive content conveyed by the spoken opinion "This was a different experience." may not be clear
by itself while considering the tonality, pitch, and intonation of the speaker, it can be taken as a happy
or sad narrative. This indicates the textual and audio characteristics of a statement are strongly related
and learning how to model these inherent interactions between them can resolve ambiguity to some
extent. Previous work in modeling human language often utilizes word embeddings pre-trained on a
large textual corpus to represent the meaning of language. However, these methods are not sufficient
for modeling highly dynamic human multimodal language. Therefore, to detect the mental state of
the speaker, we not only require to consider multiple modalities that are involving in the message
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Figure 1: Model architecture.

conveyance but also need to utilize adequate techniques which can learn complex interactions between
those modalities.

Moreover, aspects of speech and language content can inform the diagnosis and outcome prediction
in mental disorders Hall et al. (1995); Darby & Hollien (1977). Clinicians use these characteristics
in mental state examination by detecting key linguistic elements of their patient’s statement in
addition to its acoustic cues. However, systematic coding of speech can be laborious and there
is lack of agreement about which speech characteristics are most important for diagnostic and
prognostic purposes. This motivates us to learn an effective representation of key audio and language
characteristics that can identify the presence and severity of mental illnesses. In this paper we
introduce a multimodal deep learning structure that automatically extracts salient audio features from
audio speech samples (e.g. pitch, energy, voice probability) and linguistic cues extracted from their
transcribed texts (e.g. vocabulary richness, cohesiveness, average positive/negative sentiment score)
to predict a variety of mental disorders. We use pre-trained WaveNet model Engel et al. (2017) and
VGG-inspired acoustic model Hershey et al. (2017) to extract two audio feature encodings. For
textual features representation learning, we use pre-trained XLNet Yang et al. (2019) and BERT
(Bidirectional Encoder Representations from Transformers) Devlin et al. (2018) language models,
in addition to other unsupervised word and document embeddings algorithms to learn text-based
features embeddings. Our ultimate text-based and audio-based feature representations obtained from
concatenating the learned text and audio embedding vectors. Then, we learn an optimal configuration
to combine these two heterogeneous feature sets into a joint representation in a bimodal fusion layer.
Next, we train an LSTM with attention mechanism over this multimodal fusion layer to make the
final prediction. Figure 1 shows the architecture of our multimodal framework. We demonstrate the
validity of this approach using a dataset of recorded speech samples from individuals with mental
illness.

2 Related Works

When modeling human language, it is essential to not only consider the literal meaning of the
words but also the nonverbal contexts such as vocal patterns and facial expressions in which these
words appear. With respect to the modalities interactions learning, many efforts have been done
in multimodal sentiment analysis and emotion recognition. Some earlier work introduced acoustic
and paralinguistic features to the text-based analysis for the purpose of subjectivity or sentiment
analysis Mairesse et al. (2012). In Morency et al. (2011), multimodal cues including visual ones,
have been used for the sentiment analysis in product and movie reviews. Their approach directly
concatenated modalities in an early fusion representation, without studying the relations between
different modalities. Zadeh et al. (2018b) has introduced an opinion-level annotated corpus of
sentiment and subjectivity analysis in online videos by jointly modeling the spoken words and visual
gestures. Most recently, Wang et al. Wang et al. (2019) introduced a human language model that
learns how to modify word representations based on the fine-grained visual and acoustic patterns that
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Table 1: Statistics of the data

Attribute Count Attribute Count
Total number of subjects 363 Total number of segments 17,565
Average word count in segments 17 Average length of audio segments (seconds) 6.47
Number of objective segments 7,441 Number of subjective segments 10,124
Number of segments with positive sentiment 5,761 Number of segments with negative sentiment 3,417
Number of segments with anger emotion 1,294 Number of segments with fear emotion 807
Number of segments with joy emotion 4,649 Number of segments with sadness emotion 1,150
Number of segments with neutral emotion 9,398 Number of segments with neutral sentiment 8,268
Number of cohesive segments 2,896 Number of ruminated segments 229
Number of overinclusive segments 481 Number of worry segments 1,302
Number of criticism segments 1,750

occur during word segments. They modeled the dynamic interactions between intended meaning of a
word and its accompanying nonverbal behaviors by shifting the word representation in the embedding
space.

In recent years, automatic mental depressive disorders prediction from speech samples has been
extensively studied Cummins et al. (2015); Al Hanai et al. (2018). It has been shown that verbal
interaction reduction and monotonous voice sound are indicative of depression Hall et al. (1995).
Moreover, there is a perceptible acoustic change in the pitch, speaking rate, loudness, and articulation
of depressed patients before and after treatment Darby & Hollien (1977). Moore et al. Moore II et al.
(2008) have been explored the emotional content of speech (i.e. vocal affect) and its relationship
with the overall mental mood of the patient. While previous works have been successful with respect
to accuracy metrics, they have not created new insights on how the fusion is performed in terms of
what modalities are related and how modalities engage in an interaction during fusion. Zadeh et al.
Zadeh et al. (2017, 2018b) proposed a Graph Memory Fusion Network(Graph-MFN) model that
considers every combination of modalities as vertices inside a graph and calculates the efficacies
of the connections between different nodes to learn the best fusion mechanism for modalities in
multimodal language.

3 Dataset

The data consists of audio speech samples from 363 subjects participating in the Families Overcoming
Risks and Building Opportunities for Well Being (FORBOW) research project. Participants are
parents (261 mothers and 102 fathers) in the age range of 28-51 years. In these clinical interviews,
parents were asked to talk about their children for five minutes without interruption. These 363
speech samples belong to 222 unique individuals from 180 unique families. Out of these subjects,
149 were diagnosed with Major Depressive Disorder (MDD), 66 with Bipolarity Disorder (BD), 19
with Schizophrenia, and 129 were the control group with no major mood disorders.

We transcribed these audio files using Google Cloud Speech API and after extracting the text, we
broke down each sample into multiple segments based on changes in emotion, sentiment, objectiv-
ity/subjectivity, etc. which resulted in 17,565 segments. A segment has been coded as subjective if it
includes expression of opinion, beliefs, or personal thoughts of the speaker. In contrary, if the segment
consists of facts or observations of the speaker, it has been coded as objective. Four basic emotions are
considered in this analysis including anger, fear, joy, and sadness. Six multidisciplinary researchers
rated each segment for sentiment, objectivity/subjectivity, emotion (anger, fear, joy, sadness, neutral),
cohesion, rumination, over-inclusiveness, worry, and criticism. 5,818 segments were rated by two or
more researchers and the intraclass correlation for ratings of different researchers was high showing
strong agreement in the labeling. In addition to the segment-level labeling, they also rated affect,
warmth, overprotection, cohesion, and criticism at the document-level (i.e. for each audio sample).
Document-level assessments are provided as nominal ratings between 1 and 5. Table 1 shows the
basic statistics of the data and the segment-level labels. Figure 2 illustrates the heatmaps of ratings
for segment-level and document-level labels.
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(2) He he's a boy full of energy.
(3) He loves life.

(29) he also has sometimes trouble interacting with people because he wants to do what he wants to do.
(31) we argue a fair amount with him to get him to do the things that he needs to do and to try and teach him the right things to do in life.

(32) So there's a fair amount of sort of arguing and negotiating that goes on between him and me,
(48) he he can he has sort of an addictive personality

(57) He's messy and disorganized
(59) and he just doesn't really care about that kind of thing.

Figure 3: Our model prediction for emotional content of every segment in a randomly selected speech
sample. The picture shows how the sentiment and emotions changes for each segment during the 5
minute interview. White areas are associated with neutral emotion. This subject has been diagnosed
with bipolar disorder.

4 Proposed Method

To address multilateral dynamic of human language as well as automatic extraction of the most
salient speech characteristics, we propose a multimodal deep learning algorithm for automatic
clinical speech samples analysis that effectively learns a non-linear combination between textual and
acoustic modalities using an attention gating mechanism. In multimodal dynamics, we first build a
model for each modality independently with its own structure. We have a sequence of observations
and we want to do inference in a sequential supervised learning manner. Then, to learn a joint
representation of audio and text, we need to adopt an efficient fusion strategy to map these two
sets of heterogeneous features into a common space. We analyze every modality in fine-grained
(i.e. segment-level) and coarse-grained (i.e. document-level) and combine the textual and acoustic
learned feature representations in two levels. The key insight to our model is that depending on the
encoded information in textual and acoustic modalities, the relative importance of their associated
learned embeddings may differ in the bimodal feature fusion layer. Here, our unimodal representation
learning algorithms for audio and text features extraction are discussed separately.
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4.1 Textual Features Representation Learning

Our textual features representation learning module has two major components: 1) segment-level
features extraction to learn fine-grained textual embeddings for every segment, and 2) emotion-specific
representation of text segment which extracts emotion information contained in every segment. These
two textual feature embeddings are then concatenated to create our ultimate segment-level text
features representation.

After learning segment-level textual features representation, we feed this sequence of segment
embeddings to another recurrent network (i.e. LSTM) with an attention gating mechanism and train
it to make the final prediction of mental disorders. Moreover, we consider the learned representation
of the last dense layer of this LSTM network as a document-level representation of every transcribed
speech sample. The attention vector values demonstrate the relative importances of the segments
in a document regarding the mental disorders prediction task. Then, we train different classifiers
including Random Forest (RF), Support Vector Machines (SVM), k Nearest Neighbors (KNN), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Naive Bayes over this
coarse-grained encoding of textual features to predict mental disorders. We refer to this layer as our
unimodal text representation layer. The following subsections discuss the details of the above two
components of our segment-level textual features representation learning module.

4.1.1 Segment-level Textual Feature Extraction

To extract segment-level textual features, we use two pre-trained language models: 1) BERT language
model Devlin et al. (2018) which is basically a multi-layer bidirectional LSTM networks trained
with attention mechanism to learn text-based features embeddings. 2) XLNet Yang et al. (2019)
which is a generalized autoregressive model that captures longer-term dependency. More specifically,
XLNet maximizes the expected log likelihood of a sequence w.r.t. all possible permutations of the
factorization order and so does not suffer from BERT pretrain-finetune discrepancy. After learning
BERT (or XLNet) representation of every token in the text segment, we take the average of learned
representations to obtain the representation associated with the whole segment. However, since
language models provides us with context-dependent word embeddings, we also employ a pre-trained
FastText model Bojanowski et al. (2017), trained on Wikipedia, to learn another distributed word
representations for every token in the text segment. FastText model incorporates subword information
and considers character ngrams. Hence, it can learn the compositional representations from subwords
to words which allows it to infer representations for words do not exist in the training vocabulary.
Similar to BERT and XLNet segment representations, we take average of the learned FastText word
embeddings of all the tokens in a segment to achieve FastText segment representation.

Moreover, to make sure our learned segment-level representation contains the most distinctive
linguistic content of the clinical interviews - as there is an strong association between some mental
disorders and patients’ use of words, we apply a pre-trained Document Vector through Corruption
(Doc2VecC) model Chen (2017) to learn segment-level text features representation of every segment
in the transcribed speech sample. Doc2VecC captures the semantic meaning of the document by
focusing more on informative or rare words while forcing the embeddings of common and non-
discriminative words to be close to zero. We pre-train our Doc2VecC model on a large corpus
of 21M tweets data. Then, we concatenate BERT (or XLNet), fastText, and Doc2VecC segment
embeddings to obtain the first part of our segment-level text features representation. We use the
embeddings dimensionality of d={1024, 100, 100} for BERT (or XLNet), fastText, and Doc2VecC
models, respectively.

4.1.2 Emotion-specific Representation of Text Segment

Additionally, to incorporate the emotion information contained in text data, we train an LSTM
network for emotion recognition using an auxiliary annotated dataset and learn the emotion-specific
representation of every segment using the transfer learning framework Pan & Yang (2010). We use
SemEval-2018 AIT DIstant Supervision Corpus (DISC) of tweets Mohammad et al. (2018) which
includes around 100M English tweet ids associated with tweets that contain emotion-related query
terms such as ‘#angry’, ‘annoyed’, ‘panic’, ‘happy’, ’elated’, ’surprised’, etc. We collected 21M
tweets by polling the Twitter API with these tweet ids and fed them into the LSTM network to predict
their emotion labels. The output emotion is the label of the class with the highest probability among
the four basic emotions of anger, fear, joy, and sadness. Next, we freeze the LSTM network and
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�Allison is a very complex child. 

�She has a wonderful personality. 

�She's very honest. She's generous. She has lots of talents. 

�She likes to bake 

�and she's very artistic, very respectful.

� Allison completed grade 12 last year. 

�What we're having our struggles right now with her trying to find a job. 

�A lot of it is because of mental illness. 

�So we're struggling with that. 

�Allison has five anxiety disorders 

�and it has been challenging right from oh, about as far as I can remember from maybe age 2. 

�Allison started with selective mutism going to school and she didn't speak until Grade 7 and then she has social anxiety, 

�So it's not easy dealing with Allison because I always found that trying to get her to do something was like pulling teeth. 

�I I've had to do everything with her step by step�in step ladders and we're still working and moving forward. 

�It's really difficult trying to find her a job somewhere because 

�Allison also has a math disability. 

�So her learning of math I don't think exceeded the grade four level.

� So she wouldn't be able to work somewhere on cash.

� And the other thing is is it's hard for her to communicate with people. 

�So she'd have to have a job behind the scenes. 

�So we're gonna, we're gonna have to work on that. 

�Yeah, I've had a lot of struggles with Allison. 

�And I just take it day by day. 

�Mhm.

� Allison has a wonderful love of animals. 

�And Allison receives a lot of relaxation and peace through animals.

�And she gets along fairly well with her sisters. 

�They do have their squabbles but for the most part they do get along. 

��Is there, how much time is left?

Figure 4: A random sample from subjects with depression. Each line shows a segment and they are
colored based on the attention weights learned in our attention-based LSTM model. Darker colors
mean the model is paying more attention to those segments for the final recognition (patient’s name
is replaced with blank for anonymity).

remove its softmax output layer. Then, we feed our sequence of segment embeddings learned by
pre-trained fastText model and consider the learned representation of the last dense layer of the
network as an emotion-specific representation of the input text segment.

4.2 Audio Features Representation Learning

Our audio features representation learning module shares quite a similar structure with our textual
feature extraction one. There are two major components in our audio feature extraction module:
1) segment-level acoustic features extraction to learn audio embeddings for every segment, and 2)
emotion-specific representation of audio segment which extracts vocal affect information contained
in every segment. These two set of audio feature embeddings are then concatenated to create our
ultimate segment-level audio features representation. To obtain the document-level audio features
representation, we need to reduce the dimensionality of the extracted time-domain and frequency-
domain audio features for each segment. Therefore, we train an LSTM classifier using our 12
segment-level labels (i.e. subjectivity/objectivity, sentiment, emotions, cohesion, rumination, over-
inclusiveness, worry, and criticism) to get the audio segment encoding in the lower dimension.
Then, similar to our text unimodal representation learning algorithm, we feed this sequence of low-
dimensional audio segment encodings to another recurrent network to predict the mental disorders.
We consider the learned representation of the last dense layer of this LSTM network as our audio
document-level features representation and train different classifiers over it. We refer to this layer as
our unimodal audio features representation layer and train the same classifiers have been used in our
text unimodal analysis over this layer to predict mental disorders.

4.2.1 Segment-level Audio Feature Extraction

For segment-level audio features representation learning, we first use a pre-trained WaveNet autoen-
coder model Engel et al. (2017) which basically is a neural audio synthesis network. The input audio
signal is encoded to the 16 channel embedding by a deep autoregressive dilated convolutions neural
network. Then, a similar decoder is trained to invert the encoding process and reconstruct the input
audio signal from the learned 16 channel embedding. We feed the sequence of our audio segments
to the pre-trained WaveNet model and take the 16 channel encoding as the learned audio segment
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features representation. Secondly, we employ a pre-trained VGG-inspired acoustic model Hershey
et al. (2017) as another audio feature extractor. This VGG-like network learns a 128-dimensional
embedding from Mel spectrogram of the input audio segment. We take the encoding representation
obtained from training this VGG-like network over the spectrogram features of every sound frame.
We also extract eight time-domain audio features from each frame such as pitch, energy, Normalized
Amplitude Quotient (NAQ), peak slope. Regarding the frequency-domain analysis, we extract 272
Mel-Frequency Cepstral Coefficients (MFCC) in addition to their statistics (e.g. mean, standard
deviation, range, skewness, and Kurtosis) for each audio segment. The first part of our segment-level
audio features representation is then obtained by concatenating the two audio segment embeddings
learned by WaveNet and VGG-like models in addition to the traditional audio features that have been
extracted from every audio segment.

4.2.2 Emotion-specific Representation of Audio Segment

To incorporate the emotion information contained in the audio segment into our audio feature
representation learning, similar to our text modality feature extraction analysis, we use transfer
learning. First, we use the COVAREP software Degottex et al. (2014) to extract acoustic features
including 12 Mel-frequency cepstral coefficients, pitch, voiced/unvoiced segmenting features, glottal
source parameters Drugman et al. (2012), peak slope parameters and maxima dispersion quotients
Kane & Gobl (2013) for audio speech samples. All extracted features are related to emotions and
tone of speech. Next, we train an LSTM model on an auxiliary dataset for emotion recognition task.
We train our model on CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI)
dataset Zadeh et al. (2018b,a). CMU-MOSEI contains 23,453 annotated video segments from 1,000
distinct speakers and 250 topics. Each video segment contains manual transcription aligned with
audio to phoneme level. Every segment has been annotated for Ekman emotions Ekman et al. (1980)
of {happiness, sadness, anger, fear, disgust, surprise}. However, we only include the audio segments
that have been labeled for four basic emotions {happiness, sadness, anger, fear} to match our speech
samples emotion annotation. Then, we freeze the model and remove its softmax output layer and feed
the COVAREP features associated with each audio segment to this pre-trained model. We use our
audio segments’ labels to fine-tune the pre-trained model and take the learned representation of the
last dense layer of the LSTM network as the emotion-specific COVAREP-based feature representation
of the audio segment.

Secondly, we learned emotion-specific features representation for audio segments based on their
spectrograms. We extract the spectrogram features of every audio segment and feed it as an input to
a Convolutional Neural Network (CNN) plus LSTM model to predict the segment’s emotion. By
applying 2D-Convolutional layer on spectrogram, we learn the most distinctive spatial and temporal
audio features. We use our emotion labels to train this CNN plus LSTM model and take the learned
representation of the last dense layer of the network as the emotion-specific spectrogram-based
feature representation of the audio segment. Then, we concatenate the two COVAREP-based and
spectrogram-based emotion-specific audio segment representations to obtain the emotion-specific
audio features representation for every segment.

4.3 Multimodal Fusion Learning

After learning features representation for each modality, we adopt two different feature-level fusion
strategies: (1) document-level fusion which combines the two document-level feature representations
of audio and text in one multimodal layer as a feature representation of the entire speech sample, and
(2) segment-level fusion which concatenates the text and audio representations of each segment and
outputs the bimodal segment-level feature representation for every segment.

4.3.1 Document-level Fusion

In document-level fusion, we fuse the two heterogeneous document-level feature sets of text and
audio into a joint representation in a bimodal fusion layer. Moreover, we train an LSTM with attention
gating mechanism over this multimodal fusion layer of audio-textual learned representation. The
attention layer learns to assign different weights to language and audio embeddings depending on
the information encoded in the words that are being uttered and acoustic modalities. Eventually, we
train a sigmoid output layer on top of this weighted bimodal fusion layer to make the final prediction.
Additionally, similar to the unimodal analysis we take the representation of the last hidden layer and
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Table 2: Accuracy (%) of mental disorder recognition for our unimodal and multimodal systems
over 5-fold cross-validation. The text results correspond to the XLNet language model since XLNet
outperformed BERT in our experiments.

Control Depression Bipolar Schizophrenia
Text Audio Multi Text Audio Multi Text Audio Multi Text Audio Multi

LSTM 70.7 67.52 67.52 65.62 58.33 54.17 55.56 54.32 55.56 67.39 63.04 63.04
RF 71.97 67.52 77.07 66.67 60.42 71.88 55.56 49.38 71.6 69.57 58.7 63.04
SVM 71.97 67.52 70.7 64.58 58.33 54.17 53.09 48.15 60.49 65.22 56.52 58.7
KNN 70.06 54.78 76.43 61.46 57.29 64.58 55.56 54.32 65.43 71.74 71.74 73.91
LDA 73.25 68.79 70.7 72.92 56.25 56.25 60.49 50.62 65.43 73.91 58.7 69.57
NB 71.97 78.98 78.98 64.58 63.54 60.42 53.09 54.32 62.96 69.57 58.7 71.74
tf-idf+SVM 56.42 - - 54.74 - - 57.59 - - 65.1 - -
BOW+SVM 55.98 - - 52.30 - - 56.47 - - 62.29 - -

train a variety of classifiers to predict the final label. To formulate a segment of speech sample, we
have the sequence of uttered words in language modality L(i) = [l

(i)
1 , l

(i)
2 , . . . , l

(i)
tli
] accompanying

by the sequence of audio frames in acoustic modality A(i) = [a
(i)
1 , a

(i)
2 , . . . , a

(i)
tai

] where i denotes
the span of the ith segment. To model the temporal sequences of textual and audio information
coming from each modality and compute the joint embeddings, we use an LSTM networks. LSTMs
have been successfully used in modeling temporal data in both natural language processing (NLP)
and acoustic signal processing Hughes & Mierle (2013). We apply two LSTMs separately for each
modality:

hl
(i) = LSTMl(L

(i)), ha
(i) = LSTMa(A

(i)) (1)

where hl(i) and ha(i) refer to the final states of the language and acoustic LSTMs that we call
document-level feature representation (or LSTM embedding) of text and audio modalities. We then
combine these two LSTM embeddings using an attention gating mechanism to model the relative
importance of every segment in each modality.

wl
(i) = σ(Whl[hl

(i)] + bl), wa
(i) = σ(Wha[ha

(i)] + ba) (2)

where wl
(i) and wa

(i) are the language and acoustic gates, respectively. Whl and Wha are weight
vectors for the language and acoustic gates and bl and ba are scalar biases.The sigmoid function
σ(x) is defined as σ(x) = 1

1+e−x , x ∈ R. Then, we calculate the bimodal fusion layer by fusing the
language and acoustic embeddings multiplied by their corresponding gates.

hla
(i) = wl

(i).(Wlhl
(i)) + wa

(i).(Waha
(i)) + bla

(i) (3)

where Wl and Wa are weight matrices for the language and acoustic embeddings and bla is the bias.

4.3.2 Segment-level Fusion

In segment-level fusion, we first combine the feature representations of text and audio modalities for
each segment and then train one mutual LSTM network over this sequence of multimodal feature
embedding.

h(i) = LSTM([L(i);A(i)]) (4)

where [; ] denotes the operation of vector concatenation and h(i) refers to the final state of the LSTM.
Then, we apply an attention gate on top of the LSTM embedding. The attention layer learns to assign
greater weights to more discriminative segments and hence improves our prediction accuracy.

w(i) = σ(Wh[h
(i)] + b), hla

(i) = w(i).(Wh(i)) + bla
(i) (5)

where Wh is the weight vector for the attention gate, b is a scalar bias, w(i) is the attention gate, Wh
is a weight matrix for the bimodal segment embeddings, and bla is the bias vector.

5 Experiments

In this section, we present and analyze the results of our unimodal and multimodal mental disorder
recognition systems. We have trained and validated the models using 5-fold cross-validation. Very
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Figure 5: ROC plots for (a) Depression (b) Bipolar (c) Schizophrenia

often in the data we have different recordings from the same parent talking about their different
children. Moreover, there are cases where we have recordings from both parents from the same
family speaking about the same child. It has been shown that family history is strongly correlated
with the development of several mental disorders Laursen et al. (2007). Therefore, we take this
information into account while splitting the data into different folds. More specifically, we group all
the speakers with the same family ID together and use that data either in train or test portion for the
folds. This helps us to keep the correlated data points together and makes our training and test sets as
independent as possible.

Additionally, our data has imbalance distribution in different categories of mental disorders (Control:
129, Depression: 149, Bipolar: 66, Schizophrenia: 19). To address this problem, we use random
oversampling Candy & Temes (1992) technique and duplicate the randomly selected samples from
our two minority classes (i.e. Bipolar and Schizophrenia) and augment them into our data set. Figure
3 illustrates sentiment and mood changes during a five-minute interview for a randomly selected
subject with bipolar disorder. The colored vertical bars shows the ground-truth emotion labels in
the dataset and the colored text segments above the figure show our model’s predicted emotions
that match the true emotions. Since there are more than 50 segments in the audio file, we randomly
sampled 2 segments from each emotion for the sake of readability of the figure. Figure 4 shows
a sample speech from the depression group. Each line represents a segment and the segments are
colored based on the attention weights learned in our multimodal attention-based RNN. As we can
see from the figure, the segments where the parent talks about the anxiety level of their kids and their
communication problems have higher weights showing that the network is paying more attention to
those segments.

Table 2 shows the correct classification rate or accuracy of recognition for different mental disorders.
The control columns in the table are the accuracies of predicting control group against any other
disorder. As we can see from the table, the proposed multimodal architecture has better accuracy
than the unimodal systems in most cases. We have achieved an accuracy of 74.35% on average for
predicting different mental disorders. As we expected the contextualized word features from the
XLNet and BERT language models are more reliable than traditional feature extraction methods such
as bag-of-words (BOW). Figure 5 illustrates the Receiver Operating Characteristic (ROC) diagrams
of unimodal and multimodal systems for Depression, Bipolar, and Schizophrenia classes. As we can
see from the figure, the multimodal architecture has better ROC curve and consequently higher Area
Under the Curve (AUC). The AUC score of 0.751 for Schizophrenia which was the most imbalanced
class with only 13 positive samples shows the ability of our model in handling imbalanced data.

6 Conclusions & Future Works

Automated classification with multimodal deep learning adds scalability to the use of speech in
the prediction of mental health outcomes. In this research, we propose a multimodal deep learning
framework for automatic mental disorders prediction. Our results show that mental disorders can
be predicted automatically through multimodal analysis of speech samples and language contents
extracted from clinical interviews. Using weighted feature concatenation fusion algorithm has
achieved the average accuracy of 74.35% (RF trained on learned document representations of two-
level LSTMs). The average AUC of 70.5% for RF, over 5-fold cross-validation, indicates that our
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model could have successfully handled the imbalance dataset. Future steps include investigating
offspring’s recorded audio samples alongside their parents’ speech samples since family history has a
great impact on most of the major mental disorders occurrences. Moreover, we would like to improve
our mental mood prediction analysis by incorporating clinical narrative summary for every subject.
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