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Abstract

Relating the intonational characteristics of an utterance to features
inferable from its orthographic transcription is important both for
speech recognition and for speech synthesis. Results are presented for
predicting the location of intonational phrase boundaries in a corpus
of spontaneous (elicited) speech from syntactic, temporal and other
features inferred from simple text analysis of its transcription. Clas-
sification and Regression Tree (CART) techniques are employed to
model the relationship between hand-labeled boundary phenomena
and textual features. Results from an additional experiment using
these prediction trees to distinguish correct strings from those incor-
rectly recognized by a speech recognizer are also reported.!

1. Introduction

Relating the intonational phrasing of an utterance to other features
which can be inferred from its transcription is important for speech
synthesis and for speech recognition. For synthesis, more natural in-
tonational phrasing can be assigned if accurate text predictors of
phrase boundaries are known. For recognition, durations can be
calculated more accurately if likely phrase boundaries can be pre-
dicted from recognition hypotheses and hypotheses themselves can
be filtered by matching text-based boundary predictions with acous-
tic evidence. To date, however, most attempts to predict boundary
locations have failed to provide general, robust results.

Intuitively, intonational phrasing divides an utterance into mean~
ingful ‘chunks’ of information (Bolinger, 1989). Variation in phrasing
can change the meaning hearers assign to tokens of a given sentence.
For example, interpretation of a sentence like ‘Bill doesn’t drink be-
cause he’s unhappy.’ will vary, if it is uttered as one phrase (Bill does
indeed drink — but the cause of his drinking is not his unhappiness)
or as two (Bill does not drink — and the reason for his abstinence is
his unhappiness).

To characterize this phenomenon phonologically, we adopt Pierre-
humbert’s theory of intonational description for English (Pierrehum-
bert, 1980). In this theory, two levels of phrasing are significant in
English intonational structure. Both types are composed of sequences
of high and low tones in the FUNDAMENTAL FREQUENCY (f0) contour.
An INTERMEDIATE (or minor) PHRASE consists of one or more PITCH
ACCENTS (local f0 minima or maxima) plus a PHRASE ACCENT (a
simple high or low tone which controls the pitch from the last pitch
accent of one intermediate phrase to the beginning of the next in-
termediate phrase or the end of the utterance). INTONATIONAL {or
major) PHRASES consist of one or more intermediate phrases plus a
final BOUNDARY TONE, which may also be high or low, and which oc-
curs at the end of the phrase. Thus, an intonational phrase boundary

!Thanks to Chin-Hui Lee, Michael Riley, Dav;d Roe, David Talkin, and Jan
van Santen for helpful di i Code imp ting CART was written by
Michael Riley and Daryl Pregibon. David Talkin provxded alignment software
for labeling the ATIS June 1990 test set, which was done using Talkin’s WAVES
software by Jill Burstein and Nava Shaked. Part-of-speech tagging employed Ken
Church's tagger, and syntactic analysis used Don Hindle's parser, Fidditch. This
work is based on earlier work done jointly with Michelle Q. Wang.
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necessarily coincides with an intermediate phrase boundary, but not
vice versa.

While phrase boundaries are perceptual categories, they are gen-
erally associated with certain physical characteristics of the speech
signal. In addition to the tonal features described above, phrases
may be identified by one of more of the following features: pauses
(which may be filled or not), changes in amplitude, and lengthening
of the final syllable in the phrase (sometimes accompanied by glot-
talization or devoicing of that and perhaps preceding syllables). In
general, major phrase boundaries tend to be associated with longer
pauses, greater tonal changes, and more final lengthening than minor
boundaries.

Previous research on the location of intonational boundaries has
largely focussed on the relationship between these boundaries and
syntactic constituency. While current work acknowledges the role
that semantic and discourse-level information play in boundary as-
signment, most authors assume that syntactic configuration provides
the basis for prosodic ‘defaults’, which may be ‘overridden’ by se-
mantic or discourse considerations. While most interest in bound-
ary prediction has been focussed on synthesis (Gee and Grosjean,
1983; Bachenko and Fitzpatrick, 1990), currently there is consider-
able interest in predicting boundaries to aid recognition {Ostendorf
et al., 1990; Steedman, 1990).

The most successful empirical studies in boundary location have
investigated how phrasing can disambiguate potentially syntactically
ambiguous utterances in read speech (Lehiste, 1973; Ostendorf et al.,
1990). Analysis based on corpora of natural speech (Altenberg, 1987)
have so far reported limited success — even when the availability
of syntactic, semantic, and discourse-level information well beyond
the capabilities of current NI systems is assumed to be available.?
This paper reports results of recent experiments on the automatic
prediction of intonational boundaries from transcriptions of spon-
taneous (elicited) speech; initial results were presented in (Wang
and Hirschberg, 1991a; Wang and Hirschberg, 1991b). Syntactic,
distance, and other variables obtained from simple text analysis of
utterance transcriptions were correlated with hand-labeled prosodic
information for the training set. Classification and Regression Tree
(CART) techniques were employed to model the relationship between
intonational boundary phenomena and features of the text. Success
rates of just over 90% in predicting presence or absence of boundary
were achieved, representing a major improvement over other attempts
at boundary prediction from unrestricted text. Resulting decision
trees have been used to assign intonational boundaries in synthetic
speech and to distinguish correct from incorrectly recognized strings
in a recognition experiment.

2Bachenko and Fitzpatrick (1990; 1991) classify 83.5-86.2% of boundary/null
boundary data points correctly for a test set of 35 citation-form sentences; Os-
tendorf et al (1990) report 80-83% correct prediction of boundaries only on an-
other test set of 35 citation-form sentences, and an average success rate of 87.4%
correct (averaging percent correct for boundaries and for null boundaries) on
a 23-sentence (386) word FM radio news story. (1987) developes rules based
on hand-labeled syntactic and semantic information which correctly classify an
average of 72% of boundaries (tone units) in 48 minutes of partly-read, partly
spontaneous speech from a single speaker. (These figures are derived from Al-
tenberg's report of 95% coverage, 93% success at the sentence level; 94% coverage,
70% success at the basic clause level; and 78% coverage, 80% success in expanded
phrases. Testing and training were done on the same utterances.)
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2. Corpus and Features Analyzed

The training corpus used in this analysis consisted of 298 utterances
(24 minutes of speech from 26 speakers) from the speech data col-
lected by Texas Instruments for the DARPA Air Travel Informa-
tion System (ATIS) Spoken Language System evaluation task. In a
Wizard-of-Oz simulation, subjects were asked to ‘make travel plans
for an assigned task, providing spoken input and receiving teletype
responses. The test set was the DARPA June 1990 test data, con-
sisting of 138 utterances from five subjects.

To prepare the data for analysis and testing, the speech was la-
beled by hand, for location and type of intonational boundary and
presence or absence of pitch accent. Labeling was done from both
the waveform and pitchtracks of each utterance. Although major and
minor boundaries were distinguished during labeling, in the analysis
presented below, these have been collapsed to a single category.

Data points included all potential boundary locations in an ut-
terance, defined as each pair of adjacent words in the utterance
< wi;w; >, where w; represents the word to the left of the po-
tential boundary site and w; represents the word to the right. There
are 3677 such potential boundary sites in the training corpus. Fea-
ture values obtainable via automatic text analysis were considered,
as well as phonological features (observed pitch accent and distance
from previous observed boundary, inter alia) currently available only
through hand labeling, to see whether performance improved when
the decision procedure was given richer data sets.

Variables considered in training included temporal variables, such
as utterance and phrase duration, and distance of the potential bound-
ary from beginning and end of utterance. These distances were mea-
sured in seconds, as well as words. Phrase length has also been pro-
posed (Gee and Grosjean, 1983; Bachenko and Fitzpatrick, 1990) as
a determiner of boundary location, such that prosodic phrases may
have roughly equal length. To capture this, elapsed distance from
the last (actual) boundary to the potential boundary site was calcu-
lated and divided by the length of the last phrase encountered (again,
measured in seconds as well as in words).

Syntactic structural variables were also considered, including sim-
ple part-of-speech information as well as higher-level syntactic con-
stituency. The latter in particular, as noted above, has generally been
considered a good predictor of prosodic phrasing (Gee and Grosjean,
1983; Selkirk; 1984; Marcus and Hindle, 1985; Steedman, 1990). It
has been proposed that some constituents may be more likely than
others to be internally separated by intonational boundaries, and that
some syntactic constituent boundaries may be more or less likely to
coincide with intonational boundaries. To test the former hypothesis,
the class of the lowest node in the parse tree to dominate both w; and
wj, was determined, using Hindle’s parser, Fidditch (1989). To test
the latter, the class of the highest node in the parse tree to dominate
w;, but not w;, and the class of the highest node in the tree to dom-
inate w; but not w; were identified. Word class has also been used
often to predict boundary location, particularly in text-to-speech sys-
tems. The belief that phrase boundaries rarely occur after function
words forms the basis for most algorithms used to assign intona-
tional phrasing for text-to-speech. These possibilities were tested by
examining part-cf-speech in a window of four words surrounding each
potential phrase break, using Church’s part-of-speech tagger (1988).

Recall that each intermediate phrase is composed of one or more
pitch accents plus a phrase accent, and each intonational phrase is
composed of one or more intermediate phrases plus a boundary tone.
Informal observation suggests that phrase boundaries are more likely
to occur in some accent contexts than in others. For example, phrase
boundaries seem to occur more often between accented words than
between deaccented words. To test the correlation between accent
and phrasing, observed pitch accent values of w; and w; for each
< w;, wj > were examined. In some experiments, predicted pitch ac-
cent values (obtained via procedures described in (Hirschberg, 1990))
were substituted for observed values, to see if performance degraded.
Classification and Regression Tree (CART) techniques were then used
to generate decision trees automatically from resulting feature vectors
of values for these variables.
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3. Classification and Regression Trees

CART (Brieman et al., 1984) techniques can be used to generate deci-
sion trees from sets of continuous and discrete variables by using sets
of splitting rules, stopping rules, and prediction rules. These rules
affect the internal nodes, subtree height, and terminal nodes, respec-
tively. At each internal node, CART determines which factor should
govern the forking of two paths from that node. Furthermore, CART
must decide which values of the factor to associate with each path.
Ideally, the splitting rules should choose the factor and value split
which minimizes the prediction error rate. The splitting rules in the
implementation employed for this study (Riley, 1989) approximate
optimality by choosing at each node the split which minimizes the
prediction error rate on the training data. In this implementation, all
these decisions are binary, based upon consideration of each possible
binary partition of values of categorical variables and consideration
of different cut-points for values of continuous variables.

Stopping rules terminate the splitting process at each internal
node. To determine the best tree, this implementation uses two sets
of stopping rules. The first set is extremely conservative, resulting
in an overly large tree, which usually lacks the generality necessary
to account for data outside of the training set. To compensate, the
second rule set forms a sequence of subtrees. Each tree is grown on
a sizable fraction of the training data and tested on the remaining
portion. This step is repeated until the tree has been grown and
tested on all of the data. The stopping rules thus have access to
cross-validated error rates for each subtree. The subtree with the
lowest rate then defines the stopping point for each path in the full
tree. Trees described below all represent cross-validated data.

The prediction rules work in a straightforward manner to add the
necessary labels to the terminal nodes. For continuous variables, the
rules calculate the mean of the data points classified together at that
node. For categorical variables, the rules choose the class that occurs
most frequently among the data points. The success of these rules can
be measured through estimates of deviation. In this implementation,
the deviation for continuous variables is the sum of the squared error
for the observations. The deviation for categorical variables is simply
the number of misclassified observations..

4. Results of Analysis

(Wang and Hirschberg, 1991a; Wang and Hirschberg, 1991b) reported
results of initial boundary classification experiments on the ATIS
sample. Approximately 96% of the training data was modeled by the
best prediction trees. Cross-validated classification rates of just over
90% were achieved for trees grown using hand-labeled information,
such as observed pitch accent values and distance from prior bound-
ary. And the same cross-validated success rate was achieved when
only automatically obtainable feature values were employed, indicat-
ing that variables inferrable from text performed just as well without
the additional acoustic information - an encouraging result. We also
found that the same level of performance could be obtained even
without the automatically available but more resource-intensive syn-
tactic constituency information available from the parser employed
(Hindle, 1989).

The generalizability of these results was further tested by man-
ually separating the data into training and test sets, training new
decision trees on the training data and testing on the reserved data.
Results were then compared to the cross-validated results for the
original trees with corresponding feature sets. In no case was the
difference between success rates for the hand-separated data and the
cross-validated results greater than two percentage points. So it ap-
pears that the cross-validated predictions are reliable.

4.1 Boundaries vs. Null Boundaries

Since approximately 80% of the data points represent actual ‘null
boundaries’, it was important to look at whether these data points
were being predicted more successfully than data points which rep-
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resented actual boundaries. That is, if 80% of data points are cor-

rectly classified as ‘null boundary’, then one can achieve 80% success

simply by classifying every data point as such.® The decision tree
most successful in classifying observed intonational boundaries does
so correctly in about 80% of cases (see Table 1); this tree classifies
‘null boundary‘ cases correctly in around 93% of cases. However, the
tree which performs best at classifying null boundaries, with 99.2%
successfully classified, classifies observed boundaries correctly only
62% of the time (see Table 2).

Table 1: Confusion Matrix for Best Boundary Classification
Boundary NoBoundary % Correct
Boundary 895 231 - 79.5%
NoBoundary 187 2364 92.7%

Table 2: Confusion Matrix for Best Null Boundary Classification
Boundary NoBoundary % Correct
Boundary - 435 267 62.0%
NoBoundary 25 2950 99.2%

So, to correct for the imbalance in the data — and in prediction
performance on boundaries vs. null boundaries — the average of
the two success rates was taken to represent the overall success of a
prediction tree. Thus, for the tree whose classification performance is
given in Table 1, this score would be 86.1%;? in fact, this represents
the best performance of the trees considered in the study under this
new metric. So, the tree which classifies boundary data points most
accurately also performs best overall. This tree uses some observed
acoustic features (in particular, observed pitch accents values rather
than predicted), as well as automatically inferrable feature values,
and also includes disfluencies as boundary data points;? thus this tree
was trained on more boundary data points than other trees. The best
overall performance from automatically inferrable information alone
is 81.7%, obtained when syntactic constituency is considered along
with other variables; however, similar performance (over 80% average
correct) can be obtained when constituency information is omitted
as well. In sum, while cross-validated results of around 90% were
obtained from the original analysis (Wang and Hirschberg, 1991a;
Wang and Hirschberg, 1991b), normalized scores of ten percent less
are probably more representative of the actual performance of the
predictor trees.

As an alternative correction for the skewedness of the original
training data, the null boundary data points were sampled to roughly
the same size as the boundary data, bringing the total sample size
to approximately 40% of the original. New trees were then trained
on this balanced sample, using nine of the feature sets previously
test, including sets with only automatically-inferrable features and
other sets with acoustic features as well. In every case, prediction
of observed boundaries improved while prediction of observed null

boundaries declined, when compared to predictions made with the
same set of features values on the full training corpus. The best

mean score obtained was 91.1% correct {Table 3); however, it should
be noted that the cross-validated score for this tree is only 82.2%.

Table 3: Confusion Matrix for Best Classification, Balanced Sample
Boundary NoBoundary % Correct
Boundary 621 81 88.5%
NoBoundary 46 697 93.8%

3The confusion matrices presented here and below over-estimate success rates
slightly. CART cross-validated error is averaged over multiple trees. These figures
are calculated from a tree whose cross-validated length is chosen on this basis.
The tree itself varies a few percentage points from the average. So, percentages
should be considered a best approximation.

4 Again, this is calculated on an actual subtree whose cross-validated length is
minimal in terms of classification error. The cross-validated average may vary by
a few percentage points.

51t is not clear whether disfluencies should be taken to represent true intona-
tional boundaries.
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4.2 Boundary Prediction in Recognition

To evaluate the potential usefulness of intonational boundary detec-
tion for speech recognition, an additional experiment was performed
on a test set, the ATIS JUNE 1990 test set. For this task, only trees
trained on the full 298-utterance sample from the ATIS TI training
set were employed. Essentially, the goal was to determine whether,
assuming that accurate acoustic information about boundary location
is obtainable,® candidate strings can be ranked with respect to how
closely boundary predictions made from a recognized or self-scoring
string correspond to boundaries predicted from acoustic evidence.

To this end, preliminary recognition results were obtained for 98
of the June 1990 test sentences, such that recognized strings dif-
fered from correct strings in each case.” Predictions for location of
prosodic phrasing were made for both the {mis)recognized string and
the correct string, again using decision trees grown only on the orig-
inal training data.

Several trees were tested, all of which made use only of automat-
ically obtained feature values. Temporal location of each boundary
for the predicted locations was determined from the word durations
of the recognition stage for the recognized string and the self-scoring
stage for the correct string; i.e., if a boundary was predicted from the
string to lie between word w; and w;, the temporal location of that
boundary was determined from the durations of words w;-wi. These
sequences of temporal boundary locations were then compared to se-
quences of observed boundary locations from the hand-labeled utter-
ances in two ways. First, the actual number of boundaries observed
was compared to the number of boundaries predicted for recognized
vs. correct string, under the assumption that the string for which
number of predicted boundaries was closest to number of observed
boundaries should be preferred. Second, the location of predicted vs.
recognized boundaries was compared to observed boundaries so that
in each case cumulative temporal distance of observed from predicted
boundary was minimized for each string. The assumption here was
that strings for which predicted boundaries appeared temporally close
to observed boundaries should be preferred. These two measures —
minimal difference in number of boundaries predicted vs. number of
boundaries observed and minimal cumulative distance of predicted
boundaries from observed boundaries — were then employed tc se-
lect between the two candidate strings (recognized and correct) in
each of the 98 cases.

Results for this experiment were quite encouraging: The first met-
ric tested, minimal difference in number of predicted vs. number of
observed boundaries, preferred the correct over the incorrect string in
64-92% of the comparisons, depending upon which of the prediction
trees were employed. However, the second metric, smallest cumu-
lative distance of predicted from observed boundaries, preferred the
correct over the (mis)recognized string in all of the 98 cases — for
each of the prediction trees tested.

5. Discussion

Initial results on the prediction of boundary locations on a 298-
utterance sample from the ATIS TI corpus indicated that the pres-
ence or absence of intonational boundaries can be predicted with over
90% accuracy using only feature values obtainable automatically from
text analysis. In this paper, the problem of null boundary/boundary
distinction has been examined and a scoring mechanism proposed to
accommodate it. Mean percent correct scores represent a simple al-
ternative to traditional boundary location metrics, which commonly
ignore insertions, and to standard insertion/deletion measures used,
for example, in speech recognition. Under this metric the best trees
grown on the full data set score 86.1% (using some observed as well

SAn earlier experiment in locating boundaries from recognizer output alone
on a different data set was successful in 92% of cases, using word durations and
pausal duration. Other results reported in the literature are equally encouraging
(Ostendorf et al., 1990).

"For this output, the recognizer (Lee et al., 1990) used 47 context indepen-
dent models, the LL/BBN bigram model used for the DARPA February 1991
evaluation, and a 1065 word lexicon also used in the February 1991 evaluation.
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as automatically inferrable data) and 81.7% correct (using only au-
tomatically inferrable data).

An alternative to this approach was also tested — downsampling
the data set to balance occurrence of boundary and null boundary
data points. As expected, trees grown on the balanced sample per-
formed better at balancing boundary with null boundary predictions.
The most successful of the nine trees trained on the balanced sam-
ple scored 91.1 mean percent correct, predicting 88.5% of boundary
data points and 93.8% of null boundary sites correctly. This tree
was grown using only automatically available information, including
syntactic constituency. While general boundary/null boundary lo-
cation is not improved by the availability of syntactic constituency
information (Wang and Hirschberg, 1991b), boundary location may
indeed be. Future analysis of the full ATIS TT training set will test
this hypothesis.

Finally, potential applicability of prediction of intonational bound-
aries from text analysis for recognition, in ranking candidate sen-
tences given acoustic information and N-best strings, was tested on
the ATIS June 1990 test set. Results of two simple distance met-
rics used with recognition results for the June 1990 test set were
extremely encouraging: in particular, minimal cumulative distance
of predicted boundaries from boundaries observed from acoustic in-
formation served to distinguish correct from (mis)recognized string
in all the 98 cases tested. Considering that the trees used in this
experiment had not performed remarkably well at direct boundary
prediction for the same utterances in the previous experiment, these
results are even more surprising. Apparently even relatively poor
predictive performance can still be useful in distinguishing incorrect
from correct strings -~ assuming, of course, that good acoustic in-
formation concerning boundary location is obtainable. One suspects,
however, that the more difficult task of ranking a set of hypotheses
will require improved accuracy of boundary/ null boundary location.
Next steps in this work thus include training the decision trees on
the remainder of the ATIS TI utterances, which is currently being
labeled, and testing acoustic indicators of boundary location on the
ATIS database.
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