

A CORPUS-BASED APPROACH TO <AHEM/> EXPRESSIVE SPEECH
SYNTHESIS

 E. Eide, A. Aaron, R. Bakis, W. Hamza, M. Picheny, and J. Pitrelli

{eeide,asaaron,bakis,hamzaw,picheny,pitrelli}@us.ibm.com

IBM T.J. Watson Research Center

Yorktown Heights, NY 10598 USA

ABSTRACT

Human speech communication can be thought of as
comprising two channels – the words themselves, and the
style in which they are spoken. Each of these channels
carries information. Today's most-advanced text-to-speech
(TTS) systems such as [1],[2],[3],[4] fall far short of
human speech because they offer only a single, fixed style
of delivery, independent of the message. In this paper, we
describe the IBM Expressive TTS Engine, which is able
to add another channel by offering five speaking styles.
These are: neutral declarative, conveying good news,
conveying bad news, asking a question, and showing
contrastive emphasis. In addition to generating speech in
these five styles, our TTS system is also able to generate
paralinguistic events such as sighs, breaths, and filled
pauses which further enrich the style channel. We
describe our methods for generating and evaluating
expressive synthetic speech and paralinguistic effects. We
show significant perceptual differences between
expressive and neutral synthetic speech for each of our
speaking styles. In addition, we describe how users have
been empowered to easily communicate the desired
expression to the TTS engine through our extensions [5]
of the Speech Synthesis Markup Language (SSML) [6].

1. INTRODUCTION

Today’s most-advanced text-to-speech (TTS) systems use
a cost function to select segments from a recorded
database; the selected segments are then concatenated to
form the synthetic speech signal. In such systems, the
database of speech segments is typically collected by
recording a speaker reading a large script. The underlying
speaking style of the speaker from which the database is

recorded is reliably perceived in the output synthetic
speech [7]. Usually, when building these systems,
researchers strive for consistency, because pieces of
waveforms from one part of the database are expected to
join seamlessly with pieces of waveforms from other parts
of the database. In addition to consistency in low-level
parameters, such as loudness and distance from the
microphone, the speaker is asked to maintain consistency
in speaking style. Because a single style of speaking is
maintained during the recordings, and that style will be
largely preserved in the output speech, the target
recording style is necessarily chosen to be a compromise
which is expected to be appropriate in most applications.
A typical example is a style which is somewhat neutral
but with warm, friendly tendencies, such as that of a
weather reporter. Unfortunately, any single style,
including that of a friendly newscaster, cannot be
appropriate in every context. In the case of conveying bad
news, such as: “ That flight is sold out,” a subdued
approach would be much more appropriate.

A desirable quality of a TTS system is the ability to speak
expressively, dynamically adapting the style of voice
according to the message. Such a system would, for
example, speak in an upbeat manner when conveying
good news and in a more subdued tone when delivering
bad news. Other examples of expressions that a TTS

Expression Example
Good news I have successfully reset your PIN.
Bad news I am unable to verify your identity.
Confusion I did not understand your request.
Contrast This is a round-trip fare.
Apology I cannot find you in my records.
Question Do you confirm the sale of all shares?
Confidence Your account balance is $8,432.50.
Greeting Welcome to the IBM Help Desk.
Farewell Thanks for calling. Goodbye.

system might need include confusion, showing
contrastive emphasis, apology, asking a question, exuding
confidence, greeting, farewell, etc. Specific examples of
each of these expressions are shown in the table above.
Note that some expressions are overlapping, such as bad
news and apology. We may be able to use one system to
convey several expressions, as long as the output does not
sound inappropriate for the message; a key feature of an
expressive TTS system is its ability to communicate in a
manner that is appropriate for the message being
conveyed. Generally, an authoritative-sounding voice may
be best for an information-provision application such as a
travel-planning system, but in a case in which the system
does not understand the customer's request or cannot
comply with it, a less authoritative expression would be
more appropriate, to complement rather than conflict with
the words expressing either confusion about the request or
remorse about the system's inability to comply with the
request. In such a case, the appropriateness of the
expression is likely to contribute to the customer's
satisfaction with the quality of the system. Efficiency may
be an additional benefit here, as it may impose less
cognitive load on the listener if the expression coordinates
with the text of the message rather than detracts from it.

Many automated telephone systems support conversations
between callers and computers. The caller speaks to a
speech recognition system, and the computer responds
using text-to-speech software. One goal of the TTS
designer is to maximize the communicating efficiency of
the system -- both the quantity and accuracy of the
information it can carry in a given time. Unti l recently,
that mostly involved making the output speech more
intell igible. At this point the intell igibility problem has
largely been solved, so designers now seek other ways to
increase the quantity and quality of information that TTS
can communicate. As an example in which an expressive
voice is more efficient than a non-expressive voice,
consider the following interaction from a travel-planning
system:

Customer : I 'd like a flight from New York to Denver
tomor row morning.
System: I have a flight from New York to Denver tomor row
evening.

Without an ability to express the contrast between the
requested morning flight and the provided evening flight,
the customer is l ikely to attribute erroneously the
mismatch to the system misunderstanding his request, and
follow with a repeat request. If, instead, the system has an
ability to specify to the synthesis component that
“evening” be spoken in such a way as to express contrast,
the customer is more likely to understand that the system
has understood him and is providing the best alternative,

thereby sparing the diversion and avoiding a lengthier
interaction.

In this paper, we discuss enabling a concatenative text-to-
speech system to speak expressively. We focus on a
corpus-based approach. Concurrently we are exploring
another approach to generating expressive synthetic
speech, which relies on an intermediate prosodic
phonological representation such as ToBI [8],[9]. That
approach is described in detail in [10] for the generation
of questions and contrastive emphasis. We are currently
working on merging these two complementary
approaches, to arrive at a unified expressive TTS engine.
In Section 2 of this paper, we describe the corpora we use
in our expressive speech system. In Section 3 we describe
how we build statistical models of pitch and duration from
the expression-specific data. In Section 4 we describe how
we make use of the expressive data and expression-
specific prosody models to generate expressive speech. In
Section 5 we describe the addition of paralinguistic events
such as sighs and fil led pauses to the synthetic utterance.
In Section 6 we describe our extensions to SSML which
enable users to communicate desired expressions and
paralinguistic events to the synthesis engine. Finally, in
Section 7 we present results on the ability of our TTS
system to speak expressively, and we discuss those results
and future work in Section 8.

2. DATA COLLECTION

A viable method of generating expressive speech is to
collect separate speech corpora in each desired
expression, and synthesize using a system trained
exclusively from the data of a given expression in order to
produce speech in that style [7]. However, that approach
is expensive, slow, and inflexible. In this section we
discuss a variation of that approach which is much more
practical to deploy. Specifically, we collect a set of
databases, one in each of the desired expressions. The
expression-specific texts were read by the same
professional speaker who generated our neutral database.
However, for each expression we need collect only
enough data to train prosody models; we replace the
prosody models built from the neutral database with those
trained on data from a given expression.

The speaker read a small number of sentences for each
desired expression. Each set of sentences was written so
that the message of the text was consistent with the target
expression. We collected data for the following
expressions: conveying good news, conveying bad news,
and asking a question. From the data for a given

expression, we build expression-dependent prosody
models as described in the next section.

3. EXPRESSIVE PROSODY MODELS

To build a prosody model for each expressive state, an
end pitch and a delta pitch for each syllable are predicted
from a set of features gathered from the text. This
method, including the features, is the same as for our
neutral model; only the data from which the model is built
differ.
Features include:

• Lexical stress of the current syllable
• Phrase-level stress of the current word, as predicted by

the rule-based front-end processor
• Distance of the current word from the beginning of the

current phrase
• Distance of the current word from the end of the current

phrase
• Part of speech of the current word
• Type of the current phrase (yes/no question, ends-in-

comma, ends-in-period, etc.)
• Pitch at the end of the current syllable as predicted by

the rule-based front-end processor

In training the model to predict F0, for each syllable in a
given training utterance, the feature vector associated with
that syllable along with the feature vectors associated with
the two syllables to the left and to the right are
concatenated, and associated with an observation vector
consisting of log(p) and ∆p, where p is the pitch in Hertz
at the end of the syllable nucleus. From these feature
vectors and observations, a decision tree is built to
maximize the likelihood of the observations.

During synthesis, the same features are assembled and
dropped down the tree for each syllable in the sentence to
be synthesized. The mean pitch and mean delta pitch at
the resulting tree leaf are used to construct the target pitch
contour. The estimated end pitch and delta pitch of the
syllable are used to calculate a target pitch contour which,
after smoothing [1], is used to evaluate the pitch target
component of the cost function for each database segment
under consideration for selection.

Analogously to the F0 contour generation, we use a
decision tree model to produce a duration target for each
phone to be synthesized. A set of features is derived from
the text for each phone, including:

• The phone identity, as well as that of the two phones to
the left and to the right of the current phone

• Voicing (voiced/unvoiced) of the current phone and of
the two phones to the left and to the right of the current
phone

• Broad class of the current phone (vowel, semi-vowel,
fricative, nasal, plosive) as well as of the two phones to
the left and to the right of the current phone

• Total number of syllables in the current word
• The number of syllables preceding the current phone’s

syllable in this word
• The number of syllables after the current phone’s

syllable in this word
• Lexical stress of the current syllable
• Phrase-level stress of the current word, as predicted by

the rule-based front-end
• Number of words between the current word and the

beginning of the phrase
• Number of words between the current word and the end

of the phrase
• Part of speech of the current word
• Type of the current phrase

These features are then paired with the observation log(d),
where d is the duration of the current phone. From the
feature vector and observation pairs, a decision tree is
constructed to maximize the likelihood of the
observations assuming a Gaussian distribution at each
node of the tree.

In synthesis, feature vectors are determined from the text
to be synthesized in the same manner as was used for
training the decision tree. The feature vectors are then
dropped down the tree; the mean of the duration of all
training vectors mapping to that leaf is then used as the
target duration for the phone to be synthesized.

4. SYNTHESIZING EXPRESSIVE SPEECH

In addition to building prosody models from each
expression, we include the small set of segments from
each of the expressions in the search, motivated by the
fact that prosody alone does not fully convey the desired
expression, as shown in [11]. In order to include the
expressive data in the search and bias the search towards
choosing segments from the appropriate expression, we
first tag each occurrence of each unit in the expressive
databases with the underlying expression with which that
database was collected. The expression-tagged units are
then pooled with the neutral data, which have been tagged
as “neutral.”

In addition to tagging the segments with the expression
from which they came, we currently construct an
expression-cost matrix, which specifies the cost of
choosing a segment from expression i in synthesizing
expression j, for all pairs of expressions i and j. We
construct this matrix by hand using trial-and-error to tune
the costs. With the prosody models trained as described in

Section 3, the databases tagged, and the cost matrix in
place, we are ready to generate expressive speech.

In synthesis, the desired expression’s prosody models are
used. All segments from all expressions are considered,
with the penalties for using a segment from expression i to
synthesize expression j comprising an additional
component in the cost function compared to the single-
expression synthesis system. Should we increase the size
of the expressive databases, we would expect the cost of
substituting one expression for another would need to be
increased. However, in the current embodiment, the
expressive databases are small, and the quality of the
synthesis is improved by allowing neutral segments, as
well as segments from other expressions, in the search.
We trade-off the degree to which the desired expression is
conveyed by the spectral qualities of the segments chosen
to comprise the synthetic utterance against the
smoothness and overall quality of the synthesis.

The above discussion assumes that the desired expression
is known; determination of which expression to use when
is beyond the scope of this study. In our system, we have
extended SSML to include our set of target expressions;
here we assume the user provides the system with
marked-up text which specifies the desired expression.
This markup will be described more fully in Section 6.

5. PARALINGUISTIC EVENTS

When humans converse, in addition to speech they
produce non-speech sounds which can be cues that impart
additional information beyond that which is carried by the
words alone. Breaths, coughs, sighs, chuckles, and hums
all modify the message being conveyed and subtly add
information. For example, a sigh is a sign of distress or
unhappiness, whereas a chuckle indicates light-
heartedness. In a TTS system, such paralinguistic events
efficiently provide cues as to the state of a transaction,
such as a sigh succinctly signaling that no flight at the
requested price could be found, or that a compromise may
be necessary. Such paralinguistic events also make the
synthetic speech sound more natural.

In order to augment the synthetic speech signal with these
paralinguistic events, we first listed all of the events we
were interested in being able to generate. We then
composed a script which would be easy for the speaker to
understand, such as “mmm, that bread smells wonderful,”
and, “Excuse me, throat clear, I have something to say.”
We recorded each event in its carrier sentence and then
excised these events by hand. The excised events form the
portfolio of events we are able to generate.

In synthesis, we insert these events, when desired, into the
synthetic speech stream. Having multiple tokens of many
of these events enables us to choose randomly among
several examples. Doing so improves the naturalness of
the speech when more than one occurrence of a given
event is required, because repeating the same recording of
a phenomenon such as a breath several times is easily
recognized by a listener as being artificial.

A user of the TTS system is able to include a
paralinguistic event in the audio stream by marking up the
text through using an extension of SSML, as explained in
the next section.

6. EXPRESSIVE M ARKUP

In our TTS system, we rely on markup as the means for a
user to specify the desired expression for each utterance.
The markup is interpreted by the TTS engine and dictates
the choice of prosody models, as well as the cost of each
segment in the search, as was described in Section 4.

In order to facilitate this interface between the user of the
TTS system and the expressive TTS engine, we extended
SSML according to the guidelines we proposed in [5].

The use of markup as an interface between the user and
the engine enables our expressive TTS engine to be easily
integrated into a dialog system. In that case, knowledge of
the internal natural-language-generation state implies an
appropriate expression, whose specification is then passed
to the TTS system by augmenting the automatically-
generated text prompt with markup specifying an
appropriate expression for the text.

Independent of the approach taken by a synthesizer to
generate expressive speech, conveying the desired
expression to the synthesizer is necessary for efficient and
appropriate speech-based interactions between human and
machine. In a unit-selection-based synthesizer, one could
collect databases spoken in different expressive states in
order to generate synthetic speech with an expressive
content, as in this paper, or one could use signal
processing to adapt neutral speech to achieve a desired
expression. Either way, though, the desired expression
needs to be specified to the synthesis system through
markup. Ideally, that markup should be hierarchical, so
that users with different areas of expertise can interface
with the engine at different levels of abstraction, in the
manner which is most natural and convenient for them.
For example, film directors can specify emotions, while

speech scientists can interface with the system by
specifying pitch and duration contours.
As an example of the benefits of the hierarchical view of
the extended SSML language, consider the case of
contrastive emphasis. In our prosodic phonological
approach to expressive speech described in [10], we use
our hierarchical extensions of SSML to specify emphasis.
The emphasis tag is translated into a series of ToBI
symbols which typically correspond to emphasized
speech. Those symbols, which sit in a lower level of the
hierarchy than does “emphasis,” are then passed to the
TTS engine.

The multilayered framework for specifying expressiveness
creates a rich, annotated text to be used by the synthesizer.
The expressive speech synthesizer deals with tags or tag
layers using one of the following three alternatives:

1. Use the tags directly in the speech synthesis
process.

2. Translate tags from one layer to tags in a lower-
level layer using tag translators, which are the set
of rules or systems that map tags in one layer to
corresponding tags in another.

3. Ignore tags not supported.

Option 1 allows the synthesizer to use various layers of
tags to provide better quality speech output. In the case of
a concatenative synthesizer having a set of expressive
databases available, say, one for each of a set of desired
expressions to be synthesizable, the high-level tag is
passed directly to the synthesizer.

Option 2 enables the design of new tag-layers along with
their interfaces and using them with legacy synthesizers
by developing appropriate translators to translate new tags
to tags belonging to layers understood by the synthesizer.
In the case where expressive speech is achieved via signal
processing on a neutral database, abstract specifications
would be transformed into physical ones. Option 3 allows
extension to the repertoire of styles possible by a TTS
engine while preserving backward compatibility with a
legacy synthesizer.

In order to reinforce the expression being conveyed by a
given text, a developer or client application may desire a
particular paralinguistic event to occur at a particular
point in the audio stream. This ability is enabled through
the use of markup, in a manner very similar to the
specification of the desired expression itself. For example,
a developer could specify:

<prosody style="bad news"> Well <sigh/> the cheapest
flight is more than your allowed maximum. </prosody>

which would indicate to the TTS engine that a sigh
appropriate in a bad news context should be placed
between the words “well” and “the” in the audio. Markup
specifying these events is a convenient way for a
developer to achieve these types of events in the audio
coming from the TTS engine.

7. RESULTS

In order to verify that the method of generating expressive
speech described in this section was effective, we
performed a separate listening test for each expression.
Each test was administered to 32 native English speakers,
16 male and 16 female. Each l istener heard 30 pairs of
sentences, where one member of the pair was synthesized
from our single-expression system, and the second
member of the pair was the same text synthesized from
the expressive TTS engine. The order of the systems
heard by the listener was randomized, so that half of the
time the listener heard the default system followed by the
expressive system, and half of the time the listener heard
the expressive system followed by the default system.

In order to test the ability of the expressive TTS engine to
speak good news, we composed a test set of 30 utterances
which were conveying good news, such as
“Congratulations, you have the winning ticket.” Each of
these sentences was synthesized by the default and by the
good-news system. Listeners were asked to specify which
member of the pair of stimuli for each sentence sounded
more like good news.

Similarly, in order to test the ability of the expressive TTS
engine to speak bad news, we composed a test set of 30
utterances which were conveying bad news, such as “ I’m
sorry, I cannot locate your order.” Each of these sentences
was synthesized by the default and by the bad-news
system. Listeners were asked to specify which member of
the pair of stimuli for each sentence sounded more like
bad news.

Finally, to test the ability of the TTS system to generate
questions, we composed a set of 30 yes/no questions, such
as “Do we have time to go to the park?” Listeners heard
each of these questions as synthesized by the default and
expressive TTS engines, and were asked which of the two
stimuli for each question sounded more like a question.

Results for each of the three expressive states tested are
shown in the table below. All of the results are statistically
significantly better than the chance result of 50%.

Expression Percent Correct
Bad news 70.2
Good news 80.3
Yes/no questions 84.6

As indicated in the table, we were able to effectively
synthesize all of the expressions under consideration
effectively, with the greatest success in Y/N questions.
Good news was somewhat more successfully synthesized
than bad news, although both of those expressions
performed significantly better than chance. Neither pitch
nor duration modification was performed to achieve the
prosodic targets in the output speech in generating any of
the above expressive states.

8. DISCUSSION

We have described the IBM Expressive TTS System,
which, in addition to the default, neutral style, is capable
of conveying good news, conveying bad news, and asking
a question appropriately.

In our current system, markup is generated by the user or
cl ient application and is used as the vehicle for conveying
the desired expression to the TTS engine. As no markup
language is sufficiently rich to facilitate the specification
of a desired expression, we extended SSML
hierarchically, to enable convenient specification of
expressive speech. In a more advanced system, rather than
relying entirely on the user or cl ient application to supply
the markup, an appropriate expression could be detected
automatically from the semantic content of the text; the
synthetic output could then be generated to reflect that
expressive state.

Similarly, given the user-specified or automatically-
inferred expression desired, paralinguistic events could be
automatically inserted into the synthetic audio to reinforce
the desired expression.

We plan to merge the corpus-based approach to
generating synthetic speech described in this paper with
our alternate, prosodic phonological approach soon. We
expect that the marriage of these two approaches will
yield even more resounding differences between the
default and expressive systems. We also intend to add
more expressions to our system.

9. REFERENCES

[1] Eide, E. et al. Recent Improvements to the IBM Trainable
Speech Synthesis System. Proc. ICASSP 2003, Hong Kong.
Volume 1, pages 708-711.
http://www.research.ibm.com/tts

[2] Black, A.W. and K. Lenzo. Building Voices in the Festival
Speech Synthesis System. http://www.festvox.org

[3] http://www.research.att.com/projects/tts/demo.html

[4] http://www.rhetorical.com/cgi-bin/demo.cgi

[5] Eide, E., et al. Multilayered Extensions to the Speech
Synthesis Markup Language for Describing Expressiveness.
Proc. Eurospeech 2003. Geneva, Switzerland.

[6] Speech Synthesis Markup Language Version 1.0. W3C
Working Draft. December, 2002.
http://www.w3.org/TR/speech-synthesis

[7] Eide, E. Preservation, Identification, and Use of Emotion in a
Text-to-speech System. IEEE Workshop on Speech Synthesis.
September, 2002. Santa Monica, CA, USA.

[8] Silverman, et al. ToBI: A Standard for Labeling English
Prosody. Proc. ICSLP, 1992, Banff, Alberta, Canada.

[9] ToBI online summary.
http://www.ling.ohio-state.edu/~tobi

[10] Pitrelli, J. F. and E. M. Eide. Expressive Speech Synthesis
Using American English ToBI: Questions and Contrastive
Emphasis. Proceedings ASRU. December 2003. St. Thomas, U.S.
Virgin Islands.

[11] Bulut, M., S. Narayanan, and A. Syrdal. Expressive Speech
Synthesis Using a Concatenative Synthesizer. Proc. ICSLP 2002,
Denver, CO, USA.

	footer01: 5th ISCA Speech Synthesis Workshop - Pittsburgh
	footer11: 5th ISCA Speech Synthesis Workshop - Pittsburgh
	footer21: 5th ISCA Speech Synthesis Workshop - Pittsburgh
	footer31: 5th ISCA Speech Synthesis Workshop - Pittsburgh
	footer41: 5th ISCA Speech Synthesis Workshop - Pittsburgh
	footer51: 5th ISCA Speech Synthesis Workshop - Pittsburgh
	page01: 79
	page11: 80
	page21: 81
	page31: 82
	page41: 83
	page51: 84

