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ABSTRACT

This paper focusses on the effect of pronunciations for Out-of-
Vocabulary (OOV) query terms on the performance of a spoken term
detection (STD) task. OOV terms, typically proper names or foreign
language terms occur infrequently but are rich in information. The
STD task returns relevant segments of speech that contain one or
more of these OOV query terms. The STD system described in this
paper indexes word-level and subword level lattices produced by an
LVCSR system using Weighted Finite State Transducers (WFST).
Experiments comparing pronunciations using n-best variations from
letter-to-sound rules, morphing pronunciations using phone confu-
sions for the OOV terms and indexing one-best transcripts, lattices
and confusion networks are presented. The following observations
are worth mentioning: phone indexes generated from subwords rep-
resented OOVs well, too many variants for the OOV terms degrades
performance if pronunciations are not weighted.

Index Terms— Speech recognition, Speech indexing and re-
trieval, Weighted Finite State Transducers

1. INTRODUCTION

The rapidly increasing amount of spoken data calls for solutions to
index and search this data. Spoken term detection (STD) is a key in-
formation retrieval technology which aims open vocabulary search
over large collections of spoken documents. The major challenge
faced by STD is the lack of reliable transcriptions, an issue that
becomes even more pronounced with heterogeneous, multilingual
archives. Considering the fact that most STD queries consist of rare
named entities or foreign words, retrieval performance is highly de-
pendent on the recognition errors. In this context, lattice indexing
provides a means of reducing the effect of recognition errors by in-
corporating alternative transcriptions in a probabilistic framework.

The classical approach consists of converting the speech to
word transcripts using large vocabulary continuous speech recogni-
tion (LVCSR) tools and extending classical Information Retrieval
(IR) techniques to word transcripts. However, a significant draw-
back of such an approach is that search on queries containing
out-of-vocabulary (OOV) terms will not return any result. These
words are replaced in the output transcript by alternatives that are
probable, given the acoustic and language models of the ASR. It
has been experimentally observed that over 10% of user queries can
contain OOV terms [1], as queries often relate to named entities
that typically have a poor coverage in the ASR vocabulary. The
effects of OOV query terms in spoken data retrieval are discussed
in [2]. In many applications, the OOV rate may get worse over time
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unless the recognizer’s vocabulary is periodically updated. An ap-
proach for solving the OOV issue consists of converting the speech
to phonetic transcripts and representing the query as a sequence of
phones. Such transcripts can be generated by expanding the word
transcripts into phones using the pronunciation dictionary of the
ASR system. Another way would be to use subword (phones, syl-
lables, or word-fragments) based language models. The retrieval is
based on searching the sequence of subwords representing the query
in the subword transcripts. Some of these works were done in the
framework of the NIST TREC Spoken Document Retrieval tracks in
the 1990s and are described by [3]. Popular approaches are based on
search on subword decoding [4, 5, 6, 7, 8] or search on the subword
representation of word decoding enhanced with phone confusion
probabilities and approximate similarity measures for search [9].

Other research works have tackled the OOV issue by using the
IR technique of query expansion. In classical text IR, query expan-
sion is based on expanding the query by adding additional words us-
ing techniques like relevance feedback, finding synonyms of query
terms, finding all of the various morphological forms of the query
terms and fixing spelling errors. Phonetic query expansion has been
used by [Li00] for Chinese spoken document retrieval on syllable-
based transcripts using syllable-syllable confusions from the ASR.

The rest of the paper is organized as follows. In Section 2 we ex-
plain the methods used for spoken term detection. These include the
indexing and search framework based on WFSTs, formation of pho-
netic queries using letter to sound models, and expansion of queries
to reflect phonetic confusions. In Section 3 we describe our experi-
mental setup and present the results. Finally, in Section 4 we sum-
marize our contributions.

2. METHODS

2.1. WFST-based Spoken Term Detection

General indexation of weighted automata provides an efficient
means of indexing speech utterances based on the within utter-
ance expected counts of substrings (factors) seen in the data [10, 6].
In the most basic form, mentioned algorithm leads to an index rep-
resented as a weighted finite state transducer (WFST) where each
substring (factor) leads to a successful path over the input labels
for each utterance that particular substring was observed. Output
labels of these paths carry the utterance ids, while path weights give
the within utterance expected counts. The index is optimized by
weighted transducer determinization and minimization [11] so that
the search complexity is linear in the sum of the query length and
the number of indices the query appears. Figure 1.a illustrates the
utterance index structure in the case of single-best transcriptions for
a simple database consisting of two strings: “a a” and “b a”. Ex-plained construction is ideal for the task of utterance retrieval where
the expected count of a query term within a particular utterance is
of primary importance. In the case of STD, this construction is still
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Fig. 1. Index structures

useful as the first step of a two stage retrieval mechanism [12] where
the retrieved utterances are further searched or aligned to determine
the exact locations of queries since the index provides the utterance
information only. One complication of this setup is that each time
a query term occurs within an utterance, it will contribute to the
expected count within that particular utterance and the contribution
of distinct instances will be lost. Here we should clarify what we
refer to by an occurrence and an instance. In the context of lattices
where arcs carry recognition unit labels, an occurrence corresponds
to any path comprising of the query labels, an instance corresponds
to all such paths with overlapping time-alignments. Since the index
provides neither the individual contribution of each instance to the
expected count nor the number of instances, both of these parameters
have to be estimated in the second stage which in turn compromises
the overall detection performance.

To overcome some of the drawbacks of the two-pass retrieval
strategy, a modified utterance index which carries the time-alignment
information of substrings in the output labels was created. Figure 1.b
illustrates the modified utterance index structure derived from the
time-aligned version of the same simple database: “a0−1 a1−2” and
“b0−1 a1−2”. In the new scheme, preprocessing of the time align-
ment information is crucial since every distinct alignment will lead
to another index entry which means substrings with slightly off time-
alignments will be separately indexed. Note that this is a concern
only if we are indexing lattices, consensus networks or single-best
transcriptions do not have such a problem by construction. Also note
that no preprocessing was required for the utterance index, even in
the case of lattices, since all occurrences in an utterance were iden-
tical from the indexing point of view (they were in the same utter-
ance). To alleviate the time-alignment issue, the new setup clusters
the occurrences of a substring within an utterance into distinct in-
stances prior to indexing. Desired behavior is achieved via assign-
ing the same time-alignment information to all occurrences of an
instance.

Main advantage of the modified index is that it distributes the to-
tal expected count among instances, thus the hits can now be ranked
based on their posterior probability scores. To be more precise, as-
sume we have a path in the modified index with a particular sub-
string on the input labels. Weight of this path corresponds to the
posterior probability of that substring given the lattice and the time
interval indicated by the path output labels. The modified utterance
index provides posterior probabilities compared to expected counts
provided by the utterance index. Furthermore, second stage of the
previous setup is no longer required since the new index already
provides all the information we need for an actual hit: the utterance
id, begin time and duration. Eliminating second stage significantly
improves the search time since time-alignment of utterances takes
much more time compared to retrieving them. On the other hand,
embedding time-alignment information leads to a much larger index
since common paths among different utterances are largely reduced

by the mismatch between time-alignments which in turn compro-
mises the effectiveness of the weighted automata optimization. To
smooth this effect out, time-alignments are quantized to a certain ex-
tent during preprocessing without altering the final performance of
the STD system.

Searching for a user query is a simple weighted transducer com-
position operation [11] where the query is represented as a finite
state acceptor and composed with the index from the input side. The
query automaton may include multiple paths allowing for a more
general search, i.e. searching for different pronunciations of a query
word. The WFST obtained after composition is projected to its out-
put labels and ranked by the shortest path algorithm to produce re-
sults [11]. In effect, we obtain results with decreasing posterior
scores.
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Fig. 2. Comparison of 1-pass & 2-pass strategies in terms of retrieval
performance and runtime

Figure 2 compares the proposed system with the 2-pass retrieval
system on the stddev06 data-set in a setup where dryrun06
query-set, word-level ASR lattices and word-level indexes are uti-
lized. As far as Detection Error Tradeoff (DET) curves are con-
cerned, there is no significant difference between the two methods.
However, proposed method has a much shorter search time, a natural
result of eliminating time-costly second pass.

2.2. Query Forming and Expansion for Phonetic Search

When using a phonetic index, the textual representation of a query
needs to be converted into a phone sequence or more generally
a WFST representing the pronunciation of the query. For OOV
queries, this conversion is achieved using a letter-to-sound (L2S)
system. In this study, we use n-gram models over (letter, phone)
pairs as the L2S system, where the pairs are obtained after an align-
ment step. Instead of simply taking the most likely output of the L2S
system, we investigate using multiple pronunciations for each query.
Assume we are searching for a letter string l with the corresponding
phone-strings set Πn(l) : n-best L2S pronunciations. Then the pos-
terior probability of finding l in lattice L within time interval T can
be written as

P (l|L, T ) =
∑

p∈Πn(l)

P̃ (l|p)P (p|L, T )



where P (p|L, T ) is the posterior score supplied by the modified ut-
terance index and P̃ (l|p) is the posterior probability derived from
L2S scores.

Composing an OOV query term with the L2S model returns a
huge number of pronunciations of which unlikely ones are removed
prior to search to prevent them from boosting the false alarm rates.
To obtain the conditional probabilities P̃ (l|p), we perform a nor-
malization operation on the retained pronunciations which can be
expressed as

P̃ (l|p) =
Pα(l, p)∑

π∈Πn(l) P
α(l, π)

where P (l, p) is the joint score supplied by the L2S model and α is
a scaling parameter. Most of the time, retained pronunciations are
such that a few dominate the rest in terms of likelihood scores, a
situation which becomes even more pronounced as the query length
increases. Thus, selecting α = 1 to use raw L2S scores leads to
problems since most of the time best pronunciation takes almost all
of the posterior probability leaving the rest out of the picture. The
quick and dirty solution is to remove pronunciation scores instead
of scaling them. This corresponds to selecting α = 0 which as-
signs the same posterior probability P̃ (l|p) to all pronunciations:
P̃ (l|p) = 1/|Πn(l)|, for each p ∈ Πn(l). Although simple, this
method is likely to boost false alarm rates since it does not make
any distinction among pronunciations. The challenge is to find a
good query-adaptive scaling parameter which will dampen the large
scale difference among L2S scores. In our experiments we selected
α = 1/|l| which scales the log likelihood scores by dividing them
with the “length of the letter string”. This way, pronunciations for
longer queries are effected more than those for shorter ones. An-
other possibility is to select α = 1/|p|, which does the same with
the “length of the phone string”. Section 3.2.2 presents a comparison
between removing pronunciation scores and scaling them with our
method.

Similar to obtaining multiple pronunciations from the L2S sys-
tem, the queries can be extended to similar sounding ones by taking
phone confusion statistics into account. In this approach, the output
of the L2S system is mapped to confusable phone sequences using
a sound-to-sound (S2S) WFST. The S2S WFST is built using the
same technique which was used for generating the L2S WFST. For
the case of the S2S transducer both the input and output alphabet
are phones and the parameters of the phone-phone pair model were
trained using alignments between the reference and decoded output
of the RT-04 Eval set.

3. EXPERIMENTS

3.1. Experimental Setup

Our goal was to address pronunciation validation using speech for
OOVs in a variety of applications (recognition, retrieval, synthe-
sis) for a variety of types of OOVs (names, places, rare/foreign
words). To this end we selected speech from English broadcast
news (BN) and 1290 OOVs. The OOVs were selected with a min-
imum of 5 of acoustic instances per word, and common English
words were filtered out to obtain meaningful OOVs (e.g. NA-
TALIE, PUTIN, QAEDA, HOLLOWAY), excluding short (less than
4 phones) queries. Once selected, these were removed from the
recognizer’s vocabulary and all speech utterances containing these
words were removed from training.

The LVCSR system was built using the IBM Speech Recogni-
tion Toolkit [13] with acoustic models trained on 300 hours of HUB4

data with utterances containing OOV words excluded. The excluded
utterances (around 100 hours) were used as the test set for WER and
STD experiments. The language model for the LVCSR system was
trained on 400M words from various text sources. The LVCSR sys-
tem’s WER on a standard BN test set RT04 was 19.4%. This system
was also used for lattice generation for indexing for OOV queries in
the STD task.

3.2. Results

The baseline experiments were conducted using the reference pro-
nunciations for the query terms, which we refer to as reflex. The
L2S system was trained using the reference pronunciations of the
words in the vocabulary of the LVCSR system. This system was
then used to generate multiple pronunciations for the OOV query
words. Further variations on the query term pronunciations were
obtained by applying a phone confusion S2S transducer to the L2S
pronunciations.

3.2.1. Baseline - Reflex

For the baseline experiments, we used the reference pronunciations
to search for the queries in various indexes. The indexes were ob-
tained from word and subword (fragment) based LVCSR systems.
The output of the LVCSR systems were in the form of 1-best tran-
scripts, consensus networks, and lattices. The results are presented
in Table 1. Best performance is obtained using subword lattices con-
verted into a phonetic index.

Table 1. Reflex Results
Data P(FA) P(Miss) ATWV
Word 1-best .00001 .770 .215
Word Consensus Nets .00002 .687 .294
Word Lattices .00002 .657 .322
Fragment 1-best .00001 .680 .306
Fragment Consensus Nets .00003 .584 .390
Fragment Lattices .00003 .485 .484

3.2.2. L2S

For the L2S experiments, we investigated varying the number of pro-
nunciations for each query for two scenarios and different indexes.
The first scenario considered each pronunciation equally likely (un-
weighted queries) whereas the second made use of the L2S proba-
bilities properly normalized (weighted queries). The results are pre-
sented in Figure 3 and summarized in Table 2. For the unweighted
case the performance peaks at 3 pronunciations per query. Using
weighted queries improves the performance over the unweighted
case. Furthermore, adding more pronunciations does not degrade
the performance. Best results are comparable to the reflex results.

The DET plot for weighted L2S pronunciations using indexes
obtained from fragment lattices is presented in Figure 4. The single
dots indicate MTWV (using a single global threshold) and ATWV
(using term specific thresholds [14]) points.

3.2.3. S2S

For the S2S experiments, we investigated expanding the 1-best out-
put of the L2S system. In order to mimic common usage we used
indexes obtained from 1-best word and subword hypotheses con-
verted to phonetic transcripts. As shown in Table 3 a slight improve-
ment was obtained when using a trigram S2S system representing the
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Table 2. Best Performing N-best L2S Pronunciations

Data L2S Model # Best P(FA) P(Miss) ATWV
Word Baseline 1 .00001 .796 .190
1-best Weighted 6 .00004 .730 .233
Word Baseline 1 .00002 .698 .281

Lattices Unweighted 3 .00005 .625 .322
Weighted 6 .00005 .606 .346

Fragment Baseline 1 .00001 .757 .229
1-best Weighted 10 .00005 .662 .286

Fragment Baseline 1 .00003 .597 .372
Lattices Unweighted 3 .00006 .512 .425

Weighted 6 .00006 .487 .453
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Fig. 4. Combined DET plot for weighted L2S pronunciations

phonetic confusions. These results were obtained using unweighted
queries and using weighted queries may improve the results.

4. CONCLUSION

Phone indexes generated from subwords represent OOVs better than
phone indexes generated from words. Modeling phonetic confusions

Table 3. S2S N-best Pronunciations expanding L2S output
Lattices # Best P(FA) P(Miss) ATWV
Words 1 .00002 .795 .190

2 .00002 .785 .192
3 .00003 .778 .193
4 .00004 .775 .189
5 .00004 .771 .185

Fragments 1 .00002 .757 .228
2 .00002 .748 .230
3 .00003 .742 .229
4 .00004 .738 .227
5 .00004 .736 .221

yields slight improvements. Using multiple pronunciations obtained
from L2S system improves the performance, particularly when the
alternatives are properly weighted.
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