ACM DL 2000

Snowball: Extracting Relations from Large Plain-Text Collections

Eugene Agichtein

Luis Gravano

Department of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027-7003, USA
{eugene, gravano}@s. col unbi a. edu

ABSTRACT

Text documents often contain valuable structured data that
is hidden in regular English sentences. This data is best ex-
ploited if available as a relational table that we could use for
answering precise queries or for running data mining tasks.
We explore a technique for extracting such tables from doc-
ument collections that requires only a handful of training ex-
amples from users. These examples are used to generate
extraction patterns, that in turn result in new tuples being
extracted from the document collection. We build on this
idea and present our Snowball system. Snowball introduces
novel strategies for generating patterns and extracting tuples
from plain-text documents. At each iteration of the extrac-
tion process, Snowball evaluates the quality of these patterns
and tuples without human intervention, and keeps only the
most reliable ones for the next iteration. In this paper we
also develop a scalable evaluation methodology and metrics
for our task, and present a thorough experimental evaluation
of Snowball and comparable techniques over a collection of
more than 300,000 newspaper documents.

1 INTRODUCTION

Text documents often hide valuable structured data. For
example, a collection of newspaper articles might contain
information on the location of the headquarters of a num-
ber of organizations. If we need to find the location of the
headquarters of, say, Microsoft, we could try and use tradi-
tional information-retrieval techniques for finding documents
that contain the answer to our query [13]. Alternatively, we
could answer such a query more precisely if we somehow
had available a table listing all the organization-location pairs
that are mentioned in our document collection. A tuple <o,/>
in such table would indicate that the headquarters of orga-
nization o are in location ¢, and that this information was
present in a document in our collection. Tuple <Microsoft,
Redmond> in our table would then provide the answer to our

query. The web contains millions of pages whose text hides
data that would be best exploited in structured form. In this
paper we develop the Snowball system for extracting struc-
tured data from plain-text documents with minimal human
participation. Our techniques build on the idea of DIPRE
introduced by Brin [3].

DIPRE: Dual lterative Pattern Expansion DIPRE was pro-

posed as an approach for extracting a structured relation (or

table) from a collection of HTML documents. The method

works bestin an environment like the World-Wide Web, where
the table tuples to be extracted will tend to appear in uniform

contexts repeatedly in the collection documents (i.e., in the

available HTML pages). DIPRE exploits this redundancy

and inherent structure in the collection to extract the target

relation with minimal training from a user.

As in the rest of the paper, we focus the presentation on the
organization-location scenario defined above. In this context
DIPRE’s goal is to extract a table with all the organization-
location tuples that appear in a given document collection.
Initially, we provide DIPRE with a handful of instances of
valid organization-location pairs. For example, we may indi-
cate that <Microsoft, Redmond> is a valid pair, meaning that
Microsoft is an organization whose headquarters are located
in Redmond. Similarly, we provide DIPRE with a few other
examples, as Table 1 shows. In addition, the user provides a
general regular expression that the entities must match. This
is all the training that DIPRE requires from the user.

Organization | Location of Headquarters
MICROSOFT | REDMOND

EXXON IRVING

IBM ARMONK

BOEING SEATTLE

INTEL SANTA CLARA

Table 1: User-provided example tuples for DIPRE.

After this initial training phase, DIPRE looks for instances
of the example organizations and locations in the text doc-
uments. Then, DIPRE examines the text that surrounds the
initial tuples. For example, DIPRE inspects the context sur-
rounding Microsoft and Redmond in “computer servers at
Microsoft’s headquarters in Redmond” to construct a pat-
tern “<STRING1>’s headquarters in <STRING2>." Other

possible patterns are listed in Figure 1.

A DIPRE pattern consists of a five tuple <order, urlprefix,
left, middle, right> and is generated by grouping together oc-
currences of seed tuples that have equal strings separating the
entities (middle) and then setting the left and right strings to
the longest common substrings of the context on the left and
on the right of the entities, respectively. The order reflects
the order in which the entities appear, and urlprefix is set to
the longest common substring of the source URL’s where the
seed tuples were discovered. After generating a number of
patterns from the initial seed tuples, DIPRE scans the avail-
able documents in search of segments of text that match the
patterns. As a result of this process, DIPRE generates new
tuples and uses them as the new “seed.” DIPRE starts the
process all over again by searching for these new tuples in
the documents to identify new promising patterns.

<STRI NGLl>' s headquarters in <STRI N&>
<STRI NG2>- based <STRI NGL>
<STRI NG1l>, <STRI N&>

Figure 1: Initial DIPRE patterns. <STRI NG1L> and
<STRI N&2> are regular expressions that would
match an organization and a location, respectively.

Related Work Brin’s DIPRE method and our Snowball sys-
tem that we introduce in this paper both address issues that
have long been the subject of information extraction research.
Our task, though, is different in that we do not attempt to ex-
tract all the relevant information from each document, which
has been the goal of traditional information extraction sys-
tems [10]. One of the major challenges in information ex-
traction is the necessary amount of manual labor involved in
training the system for each new task. This challenge has
been addressed in different ways. One approach is to build
a powerful and intuitive graphical user interface for training
the system, so that domain experts can quickly adopt the sys-
tem for each new task [14]. Nevertheless, these systems still
require substantial expert manual labor to port the system to
each new domain. In contrast, Snowball and DIPRE require
only a handful of example tuples for each new scenario.

Another approach is to train the system over a large man-
ually tagged corpus, where the system can apply machine
learning techniques to generate extraction patterns [8]. The
difficulty with this approach is the need for a large tagged
corpus, which again involves a significant amount of man-
ual labor to create. To combat this problem, some methods
have been proposed to use an untagged corpus for training.
[11] describes generating extraction patterns automatically
by using a training corpus of documents that were manually
marked as either relevant or irrelevant for the topic. This
approach requires less manual labor than to tag the docu-
ments, but nevertheless the effort involved is substantial. [6]
describes machine learning techniques for creating a knowl-
edge base from the web, consisting of classes of entities and

relations, by exploiting the content of the documents, as well
as the link structure of the web. This method requires train-
ing over a large set of web pages, with relevant document
segments manually labeled, as well as a large training set of
page-to-page relations.

Finally, a number of systems use unlabeled examples for

training. This direction of research is closest to our work.

Specifically, the approach we are following falls into the broad
category of bootstrapping techniques. Bootstrapping has been
an attractive alternative in automatic text processing. [15]

demonstrates a bootstrapping technique for disambiguating

senses of ambiguous nouns. [5] uses bootstrapping to clas-

sify named entities in text exploiting two orthogonal fea-

tures, i.e., the spelling of the entity itself (e.g., having a suf-

fix “Corp.”), and the context in which the entity occurs. [12]

also presents a bootstrapping technique to extract patterns to

recognize and classify named entities in text. [16] describes

an extension of DIPRE to mining the Web for acronyms and

their expansions. [2] presents a methodology and theoretical

framework for combining unlabeled examples with labeled

examples to boost performance of a learning algorithm for

classifying web pages. While the underlying principle of us-

ing the systems’ output to generate the training input for the

next iteration is the same for all of these approaches, the tasks

are different enough to require specialized methodologies.

Our Contributions As we have discussed, [3] describes a
method for extracting relations from the web using bootstrap-
ping. Our Snowball system, which we present in this paper,
builds on this work. Our main contributions include:

e Techniques for generating patterns and extracting tu-
ples: We develop a new strategy for defining and represent-
ing patterns that is at the same time flexible, so that we cap-
ture most of the tuples that are hidden in the text in our collec-
tion, and selective, so that we do not generate invalid tuples
(Sections 2.1 and 2.2).

e Strategies for evaluating patterns and tuples: Since the
amount of training that Snowball requires is minimal, it is
crucial that the patterns and tuples that are generated during
the extraction process be evaluated. This way, Snowball will
be able to eliminate unreliable tuples and patterns from fur-
ther consideration. We develop strategies for estimating the
reliability of the extracted patterns and tuples (Section 2.3).
e Evaluation methodology and metrics: Evaluating sys-
tems like Snowball and DIPRE is challenging: these sys-
tems are designed to work over large document collections,
so manually inspecting all documents to build the “perfect”
table that should be extracted is just not feasible. We intro-
duce a scalable evaluation methodology and associated met-
rics (Section 3), which we use in Sections 4 and 5 for large-
scale experiments over collections of training and test doc-
uments. These collections have a total of over 300,000 real
documents.

2 THE SNOWBALL SYSTEM

In this section we present the Snowball system (Figure 2),
which develops key components of the basic DIPRE method.
More specifically, Snowball presents a novel technique to
generate patterns and extract tuples from text documents (Sec-
tions 2.1 and 2.2). Also, Snowball introduces a strategy for
evaluating the quality of the patterns and the tuples that are
generated in each iteration of the extraction process (Sec-
tion 2.3). Only those tuples and patterns that are regarded
as being “sufficiently reliable” will be kept by Snowball for
the following iterations of the system (Section 2.3). These
new strategies for generation and filtering of patterns and tu-
ples improve the quality of the extracted tables significantly,
as the experimental evaluation in Section 5 will show.

7 [Find Occurrences of Seed Tuples] \

[Generate New Seed Tupl%]

Augment Table <;\ [Generate Extraction Patterns J ’/

Figure 2: The main components of Snowball.

2.1 Generating Patterns

A crucial step in the table extraction process is the generation
of patterns to find new tuples in the documents. Ideally, we
would like patterns both to be selective, so that they do not
generate incorrect tuples, and to have high coverage, so that
they identify many new tuples. In this section, we introduce
a novel way of generating such patterns from a set of seed
tuples and a document collection.

Snowball is initially given a handful of example tuples. For
every such organization-location tuple < o,¢ >, Snowball
finds segments of text in the document collection where o
and ¢ occur close to each other, just as DIPRE does, and ana-
lyzes the text that “connects” o and ¢ to generate patterns. A
key improvement of Snowball from the basic DIPRE method
is that Snowball’s patterns include named-entity tags. An ex-
ample of such a pattern is <LOCATION>-based <ORGA-
NIZATION>. This pattern will not match any pair of strings
connected by “-based.” Instead, <LOCATION> will only
match a string identified by a tagger as an entity of type LO-
CATION. Similarly, <ORGANIZATION> will only match a
string identified by a tagger as an entity of type ORGANI-
ZATION. Figure 3 shows additional patterns that Snowball
might generate, with named-entity tags.

<ORGANI ZATI ON>' s headquarters in <LOCATI ON>
<LOCATI ON>- based <ORGANI ZATI ON\>
<ORGANI ZATI ON>, <LOCATI ON>

Figure 3: Patterns that exploit named-entity tags.

Tag Entities

A key step in generating and later matching patterns like the
one above is finding where <ORGANIZATION> and <LO-
CATION> entities occur in the text. For this, Snowball uses
a state-of-the-art named-entity tagger, The MITRE Corpora-
tion’s Alembic Workbench [7]. In addition to ORGANIZA-
TION and LOCATION entities, Alembic can identify PER-
SON entities, and can be trained to recognize other kinds of
entities. (See Section 6 for further discussion.) Once the en-
tities in the text documents are tagged, Snowball can ignore
unwanted entities (e.g., PERSONSs), focus on occurrences of
LOCATION and ORGANIZATION entities, and analyze the
context that surrounds each pair of such entities to check if
they are connected by the right words and hence match our
patterns.

Snowball represents the context around the ORGANIZATION
and LOCATION entities in the patterns in a flexible way that
produces patterns that are selective, yet have high coverage.
As a result, minor variations such as an extra comma or a
determiner will not stop us from matching contexts that are
otherwise close to our patterns. More specifically, Snowball
represents the left, middle, and right “contexts” associated
with a pattern just like the vector-space model of informa-
tion retrieval represents documents and queries [13]. Thus,
the left, middle, and right contexts are three vectors associat-
ing weights (i.e., numbers between 0 and 1) with terms (i.e.,
arbitrary strings of non-space characters). These weights in-
dicate the importance of each term in the corresponding con-
text.

Definition 1 A Snowball pattern is a 5-tuple <left, tagl, mid-
dle, tag2, right>, where tagl and tag2 are named-entity tags,
and left, middle, and right are vectors associating weights
with terms.

An example of a Snowball pattern is a 5-tuple < {<the, 0.2>},
LOCATION, {<-, 0.5>, <based, 0.5>}, ORGANIZATION,

{}>. This pattern will match strings like “the Irving- based

Exxon Corporation,” where the word “the” (left context) pre-

cedes a location (Irving), which is in turn followed by the

strings “-” and “based” (middle context) and an organiza-

tion. Slight variations of the given string will also match the

pattern to a smaller extent. (We introduce a notion of “degree

of match” later in this section.)

To match text portions with our 5-tuple representation of pat-
terns, Snowball also associates an equivalent 5-tuple with
each document portion that contains two named entities with
the correct tag (i.e., LOCATION and ORGANIZATION in our
scenario). After identifying two such entities in a string .S,
Snowball creates three weight vectors g, rg, and mg from
S by analyzing the left, right, and middle contexts around
the named entities, respectively. Each vector has a hon-zero
weight for each term that appears in the respective context
where the Ig and rg are each limited to the w-term window
to the left and to the right of the entity pair. The weight of

a term in each vector is a function of the frequency of the
term in the corresponding context. These vectors are scaled
so their norm is one. Finally, they are multiplied by a scal-
ing factor to indicate each vector’s relative importance. From
our experiments with English-language documents, we have
found the middle context to be the most indicative of the re-
lationship between the elements of the tuple. Hence we will
typically assign the terms in the middle vector higher weights
than the left and right vectors. After extracting the 5-tuple
representation of string .S, Snowball matches it against the 5-
tuple pattern by taking the inner product of the corresponding
left, middle, and right vectors.

Definition 2 The degree of match Match(tp,ts) between
two 5-tuples tp =< Ip, t1, mp, to, rp > (With tags ¢; and
to) and tg =< lg, t}, mg, th, rs > (with tags ¢| and t}) is
defined as:

Match(tp, ts) =

lp-ls+mp-ms+rp-rs ifthetagsmatch
0 otherwise

In order to generate a pattern, Snowball groups occurrences
of known tuples in documents, if the contexts surrounding
the tuples are “similar enough.” More precisely, Snowball
generates a 5-tuple for each string where a seed tuple oc-
curs, and then clusters these 5-tuples using a simple single-
pass clustering algorithm [9], using the Maitch function de-
fined above to compute the similarity between the vectors
and some minimum similarity threshold 7;,,. The left vec-
tors in the 5-tuples of clusters are represented by a centroid
l,. Similarly, we collapse the middle and right vectors into
m and 77, respectively. These three centroids, together with
the original tags (which are the same for all the 5-tuples in
the cluster), form a Snowball pattern < I, t1, ms, ta, 7 >.

2.2 Generating Tuples

After generating patterns (Section 2.1), Snowball scans the
collection to discover new tuples. The basic algorithm is out-
lined in Figure 4.

Snowball first identifies sentences that include an organiza-
tion and a location, as determined by the named-entity tag-
ger. For a given text segment, with an associated organiza-
tion o and location ¢, Snowball generates the 5-tuple t =<
le,t1, me, to, . >. A candidate tuple < o, ¢ > is generated
if there is a pattern ¢,, such that Match(t,t,) > Teim, Where
Tsim 1S the clustering similarity threshold of Section 2.1.

Each candidate tuple will then have a number of patterns that
helped generate it, each with an associated degree of match.
Snowball uses this information, together with information
about the selectivity of the patterns, to decide what candidate
tuples to actually add to the table that it is constructing.

2.3 Evaluating Patterns and Tuples
Generating good patterns is challenging. For example, we
may generate a pattern <{}, ORGANIZATION, <*“”, 1>, LO-

sub Generat eTupl es(Patterns)
foreach text_segnent in corpus
(1) {<o0,l><ls t1,ms,ta,rs >} =
= CreateQccurrence(text segnment);
Tc = <o,¢>;
SimBest = O:
foreach p in Patterns
(2) sim = Match(< ls,t1,ms,t2,7s >, p);
if (sitm > Tsim)
(3) Updat ePatternSel ectivity(p, Tc¢);
i f(sim > Simpest)
Simpest = sim,
PBest :P,
if (SimBest > Tsim)
Candi dat eTupl es[T¢]. Patt er ns[Ppgest] =
= SimBest;
return Candi dat eTupl es;

Figure 4: Algorithm for extracting new tuples using
a set of patterns.

CATION, {}> from text occurrences like “Intel, Santa Clara,
announced...” This pattern will be matched by any string that
includes an organization followed by a comma, followed by
a location. Estimating the confidence of the patterns, so that
we do not trust patterns that tend to generate wrong tuples, is
one of the problems that we address in this section. We can
weigh the Snowball patterns based on their selectivity, and
trust the tuples that they generate accordingly. Thus, a pat-
tern that is not selective will have a low weight. The tuples
generated by such a pattern will be discarded, unless they are
supported by selective patterns.

The case for tuples is analogous. “Bad” seed tuples may
generate extraneous patterns that in turn might result in even
more wrong tuples in the next Snowball iteration. To prevent
this, we only keep tuples with high confidence. The con-
fidence of the tuple is a function of the selectivity and the
number of the patterns that generated it. Intuitively, the con-
fidence of a tuple will be high if it is generated by several
highly selective patterns.

The pattern and tuple evaluation is the key part of our sys-
tem, and is responsible for most of the improvement over the
DIPRE scheme. As an initial filter, we eliminate all patterns
supported by fewer than 7., seed tuples. We then update
the confidence of each pattern in Step (3) of the algorithm
in Figure 4, which checks each candidate tuple t = <o, />
generated by the pattern in question. If there is a high confi-
dence tuple t’ = <o, ¢'> generated during an earlier iteration
of the system for the same organization o as in ¢, then this
function compares locations ¢ and ¢’. If the two locations
are the same, then the tuple ¢ is considered a positive match
for the pattern. Otherwise, the match is negative. Intuitively,
the candidate tuple that a pattern generates for the “known”
organizations should match the locations of these organiza-
tions. Otherwise, the confidence in this pattern will be low.
Note that this confidence computation assumes that organi-

zation is a key for the relation that we are extracting (i.e.,
two different tuples in a valid instance of the relation cannot
agree on the organization attribute). Estimating the confi-
dence of the Snowball patterns for relations without such a
single-attribute key is part of our future work (Section 6).

Definition 3 The confidence of a pattern P is:

Conf(P) = P.positive

(P.positive + P.negative)

where P.positive is the number of positive matches for P and
P.negative is the number of negative matches.

As an example, consider the pattern P = <{}, ORGANIZA-
TION, <, 1>, LOCATION, {}> referred to above. Assume
that this pattern only matches the three lines of text below:

“Exxon, Irving, said”
“Intel, SantaClara, cut prices”
“invest in Microsoft, New York-based analyst Jane Smith said”

The first two lines generate candidate tuples <Exxon, Irving>
and <Intel, Santa Clara >, which we already knew from pre-
vious iterations of the system. The third line generates tuple
<Microsoft, New York>. The location in this tuple conflicts
with the location in tuple <Microsoft, Redmond>, hence this
last line is considered a negative example. Then, pattern P

has confidence Conf(P) = 537 = 0.67.

Our definition of confidence of a pattern above is only one
among many possibilities. An alternative is to account for a
pattern’s coverage in addition to its selectivity. For this, we
adopt a metric originally proposed by Riloff [11] to evaluate
extraction patterns generated by the Autoslog-TS informa-
tion extraction system, and define Conf ;.- (P) of pattern
P as follows.

Definition 4 The RlogF confidence of pattern P is:
Conf piogr (P) = Conf (P) - logy(P.positive)

Pattern confidences are defined to have values between 0 and
1. Therefore, we normalize the Conf gy, Values by divid-
ing them by the largest confidence value of any pattern.

Having scored the patterns, we are now able to evaluate the
new candidate tuples. Recall that for each tuple we store the
set of patterns that produced it, together with the measure of
similarity between the context in which the tuple occurred,
and the matching pattern. Consider a candidate tuple 7" and
the set of patterns P = {P;} that were used to generate 7.
Let us assume for the moment that we know the probability
Prob(P;) with which each pattern P; generates valid tuples.
If these probabilities are independent of each other, then the
probability that 7" is valid, Prob(T'), can be calculated as:

|P|
Prob(T) = 1- H (1 — Prob(F;))
i=0

Our confidence metric Conf (P;) was designed to be a rough
estimate of Prob(P;), the probability of pattern P, generat-
ing a valid tuple. We also account for the cases where 7" has
occurred in contexts that did not match our patterns perfectly.
Intuitively, the lower the degree of match between a pattern
and a context, the higher is the chance of producing an in-
valid tuple. For this, we scale each Conf(P;) term by the
degree of match of the corresponding pattern and context:

Definition 5 The confidence of a candidate tuple 7" is:

|P|
Conf(T)=1-]] (1 = (Conf(P) - Match(C;, P})))

=0

where P = {P;} is the set of patterns that generated 7" and
C; is the context associated with an occurrence of T' that
matched P; with degree of match Match(C;, P;).

Note that when we described the calculation of the pattern
confidence, we ignored any confidence values from previous
iterations of Snowball. To control the learning rate of the
system, we set the new confidence of the pattern as:

CO’ﬂf(P) = Confnew (P)'Wupdt+confold (P)'(l_Wupdt)

If parameter W, < 0.5 then the system in effect trusts
new examples less on each iteration, which will lead to more
conservative patterns and have a damping effect. For our ex-
periments we set W4 = 0.5. We also adjust the confidence
of already-seen tuples in an analogous way.

After determining the confidence of the candidate tuples us-
ing the definition above, Snowball discards all tuples with
low confidence. These tuples could add noise into the pat-
tern generation process, which would in turn introduce more
invalid tuples, degrading the performance of the system. The
set of tuples to use as the seed in the next Snowball itera-
tion is then Seed = {T'|Conf(T) > 7}, where 7, is some
prespecified threshold.

For illustration purposes, Table 2 lists three representative
patterns that Snowball extracted from the document collec-
tion that we describe in Section 4.1.

Conf middle right
1 <based, 0.53> < , 0.01>
<in, 0.53>

<, 0.42> <s, 0.42>
0.69 | < headquarters, 0.42>
<in, 0.12>

0.61 <(, 0.93> <), 0.12>

Table 2: Actual patterns discovered by Snowball.
(For each pattern the left vector is empty, tagl =
ORGANIZATION, and tag2 = LOCATION.)

3 EVALUATION METHODOLOGY AND METRICS

The goal of Snowball is to extract as many valid tuples as
possible from the text collection and to combine them into
one table. As we have discussed, we do not attempt to cap-
ture every instance of such tuples. Instead, we exploit the
fact that these tuples will tend to appear multiple times in the
types of collections that we consider. As long as we capture
one instance of such a tuple, we will consider our system to
be successful for that tuple. This is different from the goal
of traditional information extraction [1]. Traditional infor-
mation extraction systems aim at extracting all the relevant
information from each document as completely as possible,
while our system extracts tuples from all of the documents in
the collection and combines them into one table. To evalu-
ate this task, we adapt the recall and precision metrics from
information retrieval to quantify how accurate and compre-
hensive our combined table of tuples is. Our metric for eval-
uating the performance of an extraction system over a collec-
tion of documents D is based on determining Ideal, the set
of all the tuples that appear in the collection D (Section 3.1).
After identifying Ideal, we compare it against the tuples pro-
duced by the system, Extracted, using the adapted precision
and recall metrics (Section 3.2).

3.1 Methodology for Creating the ldeal Set

For small text collections, we could inspect all documents
manually and compile the Ideal table by hand. Unfortu-
nately, this evaluation approach does not scale, and becomes
infeasible for the kind of large collections over which Snow-
ball is designed to operate. To address this problem, we start
by considering a large, publicly available directory of 13,000
organizations provided on the “Hoover’s Online” web site’.
From this well structured directory, we generate a table of
organization-location pairs. Unfortunately, we cannot use
this table as is, since some of the organizations in it might
not occur at all in our collection.

To determine the target set of tuples Ideal from the Hoover’s-
compiled table above, we need to keep only the tuples that
have the organization mentioned together with their location
in a document. To find all such instances, we identify all the
variations of each organization name in the Hoover’s table as
they may appear in the collection, and then check if the head-
quarters of the test organization are mentioned nearby. We
used Whirl [4], a research tool developed at AT&T Research
Laboratories for integrating similar textual information, to
match each organization name, as it occurs in the collection,
to the organization in the Hoover’s table.

3.2 The Ideal Metric

Now that we have created the Ideal table, we can use it to
evaluate the quality of the Snowball output, the Extracted ta-
ble. If the initial directory of organizations from Hoover’s
contained all possible organizations, then we could just mea-
sure what fraction of the tuples in Extracted are in Ideal (pre-

Ihtt p: / / www. hoovers. com

cision) and what fraction of the tuples in Ideal are in Ex-
tracted (recall). Unfortunately, a large collection will con-
tain many more tuples that are contained in any single manu-
ally compiled directory. (In our estimate, our training collec-
tion contains more then 80,000 valid organization-location
tuples.) If we just calculated precision as above, all the valid
tuples extracted by Snowball, which are not contained in our
Ideal set, will unfairly lower the reported value of precision
for the system.

To address this problem we create a new table, Join, as the
join of tables Ideal and Extracted on a unique key (i.e., orga-
nization). For each tuple T' =< o, £ > in the Ideal table, we
find a matching tuple 7" =< o/, ¢’ > in the Extracted table
(ifany), such that o ~ o’. (We describe how to deal with vari-
ations in the organization names in Section 3.3.) Using these
values, we now create a new tuple < o, ¢, ¢’ > and include it
in the Join table.

Given the table Ideal and the Join table that we have just
created, we can define recall and precision more formally.
We define Recall as:

Soinl 1, = 0]

Recall =
ced | Tdeal|

-100% 1)

where [¢; = ¢/] is equal to 1 if the test value ¢; matches
the extracted value ¢}, and 0 otherwise. Thus, the sum in the
numerator is the number of correct tuples of the Ideal set that
we extracted, which we divide by the size of the Ideal table
to obtain our recall. Similarly, we define Precision as:

[Join|) __ p

Precision = Join]

An alternative to using our Ideal metric to estimate preci-
sion could be to sample the extracted table, and check each
value in the sample tuples by hand. (Similarly, we could es-
timate the recall of the system by sampling documents in the
collection, and checking how many of the tuples mentioned
in those documents the system discovers.) By sampling the
extracted table we can detect invalid tuples whose organiza-
tion is not mentioned in the Hoover’s directory that we used
to determine Ideal, for example. Similarly, we can detect
invalid tuples that result from named-entity tagging errors.
Hence, we also report precision estimates using sampling in
Section 5.

3.3 Matching Location and Organization Names

A problem with calculating the Ideal metric above is intro-
duced by the proliferation of variants of organization names.
We combine all variations into one, by using a self-join of the
Extracted table with itself. We use Whirl to match the orga-
nization names to each other, to create the table Extracted’.
We pick an arbitrary variation of the organization name, o,
as the “standard,” and pick a location, £, .., from the set of

matching organization-location tuples, with the highest con-
fidence value. We then insert the tuple < oy, £,,4. > into the
Extracted’ table.

Similarly, we need to decide when the location extracted for
an organization is correct. For example, our system might
conclude that California is the location of the headquarters of
Intel. This answer is correct, although not as specific as could
be. Our scoring system will in fact consider a tuple <Intel,
California> as correct. Specifically, we consider tuple

< o, ¢ > to be valid if (a) organization o is based in the U.S.
and ¢ is the city or state where o’s headquarters are based;
or (b) organization o is based outside of the U.S. and ¢ is the
city or country where o’s headquarters are based.

4 EXPERIMENTAL SETTING

We describe the training and text collections that we used
for experiments in Section 4.1. We also enumerate the dif-
ferent extraction methods that we compare experimentally
(Section 4.2).

4.1 Training and Test Collections

Our experiments use large collections of real newspapers from
the North American News Text Corpus, available from LDC 2.
This corpus includes articles from the Los Angeles Times,

The Wall Street Journal, and The New York Times for 1994

to 1997. We split the corpus into two collections: training

and test. The training collection consists of 178,000 doc-

uments, all from 1996. The test collection is composed of

142,000 documents, from 1995 and 1997.

Both Snowball and DIPRE rely on tuples appearing multiple
times in the document collection at hand. To analyze how
“redundant” the training and test collections are, we report
in Table 3 the number of tuples in the Ideal set for each fre-
quency level. For example, 5455 organizations in the Ideal
set are mentioned in the training collection, and 3787 of them
are mentioned in the same line of text with their location at
least once. So, if we wanted to evaluate how our system
performs on extracting tuples that occur at least once in the
training collection, the Ideal set that we will create for this
evaluation will contain 3787 tuples.

Organization-Location Pairs
Occurrences: | Training Collection | Test Collection
0 5455 4642
1 3787 3411
2 2774 2184
5 1321 909
10 593 389

Table 3: Occurrence statistics of the test tuples in
the experiment collections.

The first row of Table 3, corresponding to zero occurrences,
deserves further explanation. If we wanted to evaluate the

2htt p: // ww. | dc. upenn. edu

performance of our system on all the organizations that were

mentioned in the corpus, even if the appropriate location never
occurred near its organization name anywhere in the collec-

tion, we would include all these organizations in our Ideal

set. So, if the system attempts to “guess” the value of the

location for such an organization, any value that the system

extracts will automatically be considered wrong in our eval-

uation.

4.2 Evaluating Alternative Techniques

We compared Snowball with two other techniques, the Base-
line method and our implementation of the DIPRE method.
These two methods require minimal or no training input from
the user, and hence are comparable with Snowball in this re-
spect. In contrast, state-of-the-art information extraction sys-
tems require substantial manual labor to train the system, or
to create a hand-tagged training corpus.

The first method, Baseline, is based purely on the frequency
of co-occurrence of the organization and the location. Specif-
ically, Baseline reports the location that co-occurs in the same
line with each organization most often as the headquarters for
this organization.

The second method is DIPRE. We did not have access to
its original implementation, so we had to re-implement it
and adapt it to our collections. The original DIPRE imple-
mentation uses urlprefix to restrict pattern generation and ap-
plication. Since all of our documents came from just three
sources, DIPRE was not able to exploit this feature. The sec-
ond, more important modification had to do with the fact that
DIPRE was designed to extract tuples from HTML-marked
data. Without HTML tags, DIPRE could not find occur-
rences of the seed tuples in plain text that were surrounded
by exactly the same non-empty contexts. To solve this prob-
lem, we used the named-entity tagger to pre-tag the input to
DIPRE. This way, all the organizations and locations were
consistently surrounded by named-entity tags. DIPRE could
then generate patterns that take advantage of these tags. The
results we report are not for the original DIPRE implementa-
tion, but rather for our adaptation for tagged documents.

4.3 Snowball

We explored the best parameter values for Snowball by run-
ning the system on the training corpus. Parameters we exper-
imented with include:

e Use of Punctuation: We experimented with discarding
punctuation and other non-alphanumeric characters from the
contexts surrounding the entities. Our hypothesis was that
punctuation may just add noise and carry little content to help
extract tuples. We report results for Snowball and Snowball-
Plain, where Snowball uses punctuation, and Snowball-Plain
discards it.

e Choice of Pattern Scoring Strategies: We tried variations
on the basic framework for weighing patterns, as described
in Section 2, with or without using the RlogF metric of [11].

Parameter | Value | Description

Tsim 0.6 minimum degree of match (Section 2.1)

o 0.8 minimum tuple confidence (Section 2.3)

Tsup 2 minimum pattern support (Section 2.1)

Loz 3 number of iterations of Snowball

Woniddie 0.6 weight for the middle context (Section 2.1)

Wiert 0.2 weight for the left context (Section 2.1)

Whright 0.2 weight for the right context (Section 2.1)
Table 4: Parameter values used for evaluating

Snowball on the test collection.

e Choice of Pattern Similarity Threshold (7;,,): This pa-
rameter controls how flexible the patterns are, both during the
pattern generation stage (i.e., how similar the occurrences of
the example tuples have to be in order to be grouped into one
cluster), as well as during the tuple extraction stage, where
Teim cONtrols the minimum similarity between the context
surrounding the potential tuple and a pattern, determining
whether a tuple will be generated.

e Choice of Tuple Confidence Threshold (r): This thresh-
old determines the minimum confidence a tuple must have to
be included in the seed set to start the next iteration.

5 EXPERIMENTAL RESULTS

In this section, we experimentally compare the performance
of Snowball and the alternative techniques that we discussed
in Section 4.2. Our experiments use the training and test col-
lections of Section 4.1. We ran experiments on the training
collection to determine the optimal pattern scoring strategy,
optimal values for 7y, T¢, Tsup, and the optimal weight dis-
tribution Wiep, Winiddie, and Woigp, for the left, middle, and
right context vectors of each pattern.

As we discussed, the only input to the Snowball system dur-
ing the evaluation on the test collection were the five seed
tuples of Table 1. All the extraction patterns were learned
from scratch by running the Snowball system using the op-
erational parameters listed in Table 4, which worked best on
the training collection. The normalized RlogF metric was
used to score patterns for generating the set of seed tuples for
the next iteration. The results are reported in Figure 5. The
plot shows the performance of the systems as we attempt to
extract test tuples that are mentioned more times in the cor-
pus. As we can see, Snowball performs increasingly well
as the number of times that the test tuples are required to
be mentioned in the collection is increased. While DIPRE
has better precision than Snowball at the 0-occurrence level
(72% vs. 67% for Snowball), Snowball has at all occurrence
levels significantly higher recall than DIPRE and Baseline
do. We also observe that punctuation matters. The recall of
Snowball-Plain is significantly lower than that of Snowball.

Figure 6 shows that Snowball’s results are stable over subse-
quent iterations of the algorithm. In contrast, DIPRE quickly
diverges, since it has no way to prevent unreliable tuples from
being seed for its next iteration. We report data for only two

iterations for Snowball-Plain because it converged after the
second iteration (i.e., it did not produce any new seed tuples).

As discussed in Section 3.2, we complete our evaluation of
the precision of the extraction systems by manually examin-
ing a sample of their output. For this, we randomly selected
100 tuples from each of the extracted tables, and checked
whether each of these tuples was a valid organization-location
pair or not. We separate the errors into three categories: er-
rors due to mistagging a location and assigning it to a valid
organization (“Location” error), errors due to including a non-
existing organization (“Organization” error), and errors due
to deducing an incorrect relationship between a valid orga-
nization and location (“Relationship” error). These differ-
ent types of errors are significant because they highlight dif-
ferent “culprits”: the “Location” and “Organization” errors
could be prevented if we had a perfect named-entity tagger,
whereas the “Relationship” errors are wholly the extraction
system’s fault (Table 5).

The last column in Table 5 (Pj4.4;) is precision, calculated
by ignoring the “Organization” errors and computing the frac-
tion of valid organizations for which a correct location was
found. These values correspond to the values of precision we
would have calculated if our Ideal table included all the valid
organizations in the random samples. These figures, how-
ever, do not capture invalid tuples generated due to improper
tagging of a string as an organization. From our manual in-
spection of a random sample of 100 tuples from each ex-
tracted table, we observed that DIPRE’s sample contained 74
correct tuples and 26 incorrect ones. Snowball’s sample con-
tained 52 correct tuples and 48 incorrect tuples, while Base-
line has a majority of incorrect tuples (25 vs. 75). As we can
see from the breakup of the errors in the table, virtually all
of Snowball’s errors are tagging related (i.e., “Location” or
“Organization” errors). If we prune the Snowball’s final out-
put to only include those tuples ¢ with Conf (t) > 0.8 = 7,
then most of these spurious tuples disappear. In effect, from
a random sample of 100 tuples from this pruned table, 93 tu-
ples are valid and only 7 are invalid. Furthermore, none of
the invalid tuples are due to “Relationship” errors (third row
of Table 5).

So far, the results that we have reported for Snowball are
based on a table that contains all the “candidate” tuples gen-
erated during Snowball’s last iteration. As we saw in Table 5,
the precision of Snowball’s answer varies dramatically if we
prune this table using the tuple confidence threshold 7,. Of
course, this last-step pruning is likely to result in lower recall
values. In Figure 7 we explore the tradeoff between precision
and recall for different values of this last-step pruning thresh-
old. A user who is interested in high-precision tables might
want to use high values for this threshold, while a user who is
interested in high-recall tables might want to use lower val-
ues of the threshold. For example, by setting » = 0.4 and
filtering the Extracted table accordingly, we estimate the ab-
solute precision of Snowball’s output to be 76% and recall

ETD e Bazeline
g R T —a— DIFRE H
—le gnnﬁa:l‘lm B B e s o A Snowball-Plain |

—ip— Sniwb 3 -

EI:I T T T T T T T T T T 1 55 T T T T T T T 1Enql;¢lﬂ T 1
D 1.2 3 4 4686 T B B 10 P 1.2 3 4 6. 6B.T B B 1D

Occurrences of /deal tuples Occurrences of ideal tuples

(a) (b)

Figure 5: Recall (a) and precision (b) of Baseline, DIPRE, Snowball and Snowball-Plain (test collection).

100 5 100
Q) ¢+ == =M cccccccccccsc=========|
—.
i I FEFEEFEEEL. .- -rwr EEEEE T ol
]
M frrssssssnssssssssniquesssnsss |
@
& 80 == Baseline | -~ === =====%g===]
—a— DIFRE
50 4| —r—Snowball-Plain |- == ============
—— Snowball
1) ————— . .
0 | Herations < 3
(a) (b)

Figure 6: Recall (a) and precision (b) of Baseline, DIPRE, Snowball, and Snowball-Plain as a function of the number
of iterations (ldeal tuples with occurrence > 2; test collection).

Type of Error
Correct | Incorrect | Location | Organization | Relationship | Prgeq:
DIPRE 74 26 3 18 5 90%
Snowball (all tuples) 52 48 6 41 1 88%
Snowball (7; = 0.8) 93 7 3 4 0 96%
Baseline 25 75 8 62 5 66%

Table 5: Manually computed precision estimate, derived from a random sample of 100 tuples from each extracted
table.

-

i

bl

4

Recall
EEEBEZEESE

"

P

-
L=]

4

EI.% 0.4
uple confidence T«

(a) (b)
Figure 7: Recall (a) and sample-based precision (b) as a function of the threshold 7; used for the last-step pruning
of the Snowball tables (Ideal tuples with occurrence > 1; test collection).

to be 45%, both of which are higher than the corresponding
metrics of DIPRE’s output.

In summary, both Snowball and DIPRE show significantly
higher precision than Baseline. In effect, Baseline tends to
generate many tuples, which results in high recall at the ex-
pense of low precision. Snowball’s recall is at least as high
as that of Baseline for most of the tests, with higher precision
values. Snowball’s recall is generally higher than DIPRE’s,
while the precision of both techniques is comparable.

6 CONCLUSIONS AND FUTURE WORK

This paper presents Snowball, a system for extracting rela-
tions from large collections of plain-text documents that re-
quires minimal training for each new scenario. We intro-
duced novel strategies for generating extraction patterns for
Snowball, as well as techniques for evaluating the quality of
the patterns and tuples generated at each step of the extrac-
tion process. Our large-scale experimental evaluation of our
system shows that the new techniques produce high-quality
tables, according to the scalable evaluation methodology that
we introduce in this paper. Our experiments involved over
300,000 newspaper articles.

We only evaluated our techniques on plain text documents,
and it would require future work to adopt our methodology
to HTML data. While HTML tags can be naturally incor-
porated into Snowball’s pattern representation, it is problem-
atic to extract named-entity tags from arbitrary HTML doc-
uments. State-of-the-art taggers rely on clues from the text
surrounding each entity, which may be absent in HTML doc-
uments that often rely on visual formatting to convey infor-
mation. On a related note, we have assumed throughout that
the attributes of the relation we extract (i.e., organization and
location) correspond to named entities that our tagger can
identify accurately. As we mentioned, named-entity taggers
like Alembic can be extended to recognize entities that are
distinct in a context-independent way (e.g., numbers, dates,
proper names). For some other attributes, we will need to
extend Snowball so that its pattern generation and matching
could be anchored around, say, a noun phrase as opposed to
a named entity as in this paper. In the future, we will also
generalize Snowball to relations of more than two attributes.
Finally, a crucial open problem is how to generalize our tuple
and pattern evaluation strategy of Section 2.3 so that it does
not rely on an attribute being a key for the relation.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 115-9733880. We also
thank Regina Barzilay, Ralph Grishman, and Vasilis Hatzi-
vassiloglou for their helpful comments, and Eleazar Eskin
for many fruitful discussions.

REFERENCES
1. Proceedings of the Sixth Message Understanding Conference.
Morgan Kaufman, 1995.

2. Avrim Blum and Tom Mitchell. Combining labeled and unla-

10.

11.

12.

13.

14.

15.

16.

beled data with co-training. In Proceedings of the 1998 Con-
ference on Computational Learning Theory, 1998.

Sergey Brin. Extracting patterns and relations from the World-
Wide Web. In Proceedings of the 1998 International Work-
shop on the Web and Databases (WebDB’98), March 1998.

William Cohen. Integration of heterogeneous databases with-
out common domains using queries based on textual similar-
ity. In Proceedings of the 1998 ACM International Conference
on Management of Data (SIGMOD’98), 1998.

Michael Collins and Yoram Singer. Unsupervised models for
named entity classification. In Proceedings of the Joint SIG-
DAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora, 1999.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to construct
knowledge bases from the World Wide Web. Artificial Intel-
ligence, 1999.

David Day, John Aberdeen, Lynette Hirschman, Robyn
Kozierok, Patricia Robinson, and Marc Vilain. Mixed-
initiative development of language processing systems. In
Proceedings of the Fifth ACL Conference on Applied Natural
Language Processing, April 1997.

D. Fisher, S. Soderland, J. McCarthy, F. Feng, and W. Lehnert.
Description of the UMass systems as used for MUC-6. In
Proceedings of the 6th Message Understanding Conference.
Columbia, MD, 1995.

William B. Frakes and Ricardo Baeza-Yates, editors. Infor-
mation Retrieval: Data Structures and Algorithms. Prentice-
Hall, 1992.

Ralph Grishman. Information extraction: Techniques and
challenges. In Information Extraction (International Summer
School SCIE-97). Springer-Verlag, 1997.

Ellen Riloff. Automatically generating extraction patterns
from untagged text. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 1044-1049, 1996.

Ellen Riloff and Rosie Jones. Learning dictionaries for infor-
mation extraction by multi-level bootstrapping. In Proceed-
ings of the Sixteenth National Conference on Artificial Intelli-
gence, 1999.

Gerard Salton. Automatic Text Processing: The transfor-
mation, analysis, and retrieval of information by computer.
Addison-Wesley, 1989.

Roman Yangarber and Ralph Grishman. NYU: Description of
the Proteus/PET system as used for MUC-7. In Proceedings
of the Seventh Message Understanding Conference (MUC-7).
Morgan Kaufman, 1998.

D. Yarowsky. Unsupervised word sense disambiguation ri-
valing supervised methods. In Proceedings of the 33rd An-
nual Meeting of the Association for Computational Linguis-
tics, pages 189-196. Cambridge, MA, 1995.

Jeonghee Yi and Neel Sundaresan. Mining the web for
acronyms using the duality of patterns and relations. In Pro-
ceedings of the 1999 Workshop on Web Information and Data
Management, 1999.

