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Abstract
1 

A hypothesis in characterizing human depression is that 

change in the brain‟s basal ganglia results in a decline of 

motor coordination [6][8][14].  Such a neuro-physiological 

change may therefore affect laryngeal control and dynamics. 

Under this hypothesis, toward the goal of objective monitoring 

of depression severity, we investigate vocal-source biomarkers 

for depression; specifically, source features that may relate to 

precision in motor control, including vocal-fold shimmer and 

jitter, degree of aspiration, fundamental frequency dynamics, 

and frequency-dependence of variability and velocity of 

energy.  We use a 35-subject database collected by Mundt et 

al. [1] in which subjects were treated over a six-week period, 

and investigate correlation of our features with clinical 

(HAMD), as well as self-reported (QIDS) Total subject 

assessment scores. To explicitly address the motor aspect of 

depression, we compute correlations with the Psychomotor 

Retardation component of clinical and self-reported Total 

assessments. For our longitudinal database, most correlations 

point to statistical relationships of our vocal-source biomarkers 

with psychomotor activity, as well as with depression severity.  

 

Index Terms: major depressive disorder, motor coordination, 

laryngeal control, vocal biomarkers 

1.0 Introduction 

MAJOR DEPRESSIVE DISORDER (MDD) is the most widely 

affecting of the mood disorders; the lifetime risk has been 

observed to fall between 10-20% for women and 5-12% for 

men [2]. Accurate diagnosis of MDD requires intensive 

training and experience. Thus the growing global burden of 

depression suggests that an automatic means to monitor 

depression severity would be a beneficial tool for patients, 

clinicians, and healthcare providers. For example, such a tool 

would be useful in monitoring the effects of new treatments. 

Reliable classifiers could also be used as a tool to aid in the 

standardization of depression ratings.  One such approach 

relies on the extraction of biomarkers to provide reliable 

indicators of depression.  

    A class of biomarkers of growing interest is the group of 

vocal features observed to change with a patient‟s mental 

condition and emotional state, motivated by perception of 

monotony, hoarseness, breathiness, glottalization, and slur in 

the voice of a depressed subject. Vocal characteristics studied 

include  prosody (e.g., fundamental frequency and speaking 
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rate), spectral features, and glottal (vocal fold) excitation flow 

patterns, timing jitter, amplitude shimmer, and „spirantization,‟ 

a measure that reflects aspirated leakage at the vocal folds 

[1][3-7]. Although not always consistent across studies, vocal 

features have been shown to bear statistical relationships with 

the presence of depression, and in some cases have been 

applied towards developing automatic classifiers. 

Discrepancies across studies are due to differences in patient 

population (no two studies have used the same population), 

small data sets, different forms of depression (“agitated” and 

“slowed”), and differences in signal processing methods for 

vocal feature extraction [1][3-7].  

      A hypothesis in the voice quality study of this paper is that 

neuro-physiological change in depression generally affects 

motor coordination including laryngeal control and dynamics 

[6][8][14]. Under this hypothesis, source features are selected 

that may relate to precision in motor control in source 

generation, including shimmer and jitter of vocal-fold 

vibration, degree of aspiration, dynamics of the fundamental 

frequency (henceforth termed „pitch‟), and frequency-

dependence of variability and velocity of energy.  We use a 

35-subject database collected by Mundt et al. [1] of subjects 

treated for depression over a 6-week duration, and investigate 

correlation of our features with clinical HAMD, as well as 

self-reported QIDS Total subject assessment scores. To more 

explicitly address the motor aspect of depression, we also 

compute correlations with the Psychomotor Retardation [2] 

component of each Total assessment.  

     Although our significant (p < 0.05) correlations reported 

are low in magnitude2, they point to statistical relationships of 

our vocal-source biomarkers with psychomotor activity, as 

well as with depression severity: With increasing depression 

severity and Psychomotor Retardation, there is tendency for an 

increase in shimmer, jitter, and aspiration, as well as for more 

variable pitch and energy dynamics. For pitch, we investigate 

its variance and average velocity. While for both full- and 

multi-band energy, we measure correlations of energy 

variance and velocity with depression assessments, and also 

explore their frequency-dependence with inverse-filtered 

speech to move closer to the source. In vocal-feature 

extraction, we use a variety of signal processing 

methodologies. For jitter, we rely on inter-pulse-intervals as 

estimated by Mehta et al [9]; while for shimmer we use an 

approach developed by Boersma and Weenink [10]. Our 

aspiration estimate is obtained from the Jackson/Shade 

harmonic/noise separator [11]; and pitch and its derivatives are 

estimated using a sinusoidal-based method [12]. 

    Our paper is organized as follows. In Section 2, we describe 

the 35-subject depression database collected by Mundt et al. 

[1]. In Section 3, we describe our signal-processing 
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methodologies for vocal-feature extraction: shimmer and jitter, 

aspiration, and pitch and energy dynamics. In Section 4, we 

give correlation results and finally in Section 5 provide 

conclusions and projections to future work. 

                  2.0 Depression Database 

2.1 Database 

The data used in this analysis was originally collected by 

Mundt et al. [1] for a depression-severity study, involving both 

in-clinic and telephone-response speech recordings. Thirty-

five physician-referred subjects (20 women and 15 men, mean 

age 41.8 years) participated in this study.  The subjects were 

predominately Caucasian (88.6%), with four subjects of other 

descent. The subjects had all recently started on 

pharmacotherapy and/or psychotherapy for depression and 

continued treatment over a 6-week assessment period.  Speech 

recordings (sampled at 8 kHz) were collected at weeks 0, 2, 4, 

and 6 during an interview and assessment process that 

involved clinical Hamilton rating (HAMD) and self-reported 

(QIDS) scoring. To avoid telephone-channel effects, only the 

samples of conversational (free-response) speech and distinct 

vowels (/a/, /e/, i/, /o/) recorded in the clinic are used in our 

follow-up work, the former for our prosodic (i.e., pitch and 

energy dynamics) and the later for our shimmer, jitter, and 

aspiration measurements. We used only data from subjects that 

completed the entire longitudinal study.  This resulted in 

approximately 3-6 minutes of speech per session (i.e., per 

day). 

    Within this database, the standard method of evaluating 

levels of MDD in patients was invoked using the clinical 17-

question HAMD assessment [1]. To determine the Total score, 

individual ratings are first determined for the 17-symptom 

sub-topics (such as Mood, Guilt, Psychomotor Retardation, 

Fatigue, Suicidal Tendency, etc.) with scores for component 

sub-topics having ranges of (0-2), (0-3), or (0-4).   The total 

score is then the aggregate of the ratings for all sub-topics. A 

similar assessment methodology is used for self-reported 

(QIDS) scoring. These scores are used as our truth markings in 

calculating correlations. Although the HAMD and QIDS 

assessments are standard depression evaluation methods, there 

is some concern about their reliability. Nevertheless, 

addressing this concern is outside our scope. 

 

2.2 Previous results  

A study by Mundt et al. [1] investigated correlations of 

variance of pitch and numerous parameters that relate to 

average speaking and pause rate with HAMD and QIDS Total 

assessments (no sub-symptom components).  While finding 

significant (p < 0.05) correlations (in the approximate range -

0.20 < r < 0.20) with average rate and pause parameters, 

Mundt et al. did not find significant correlations using 

variance of pitch. In a second related work using the Mundt et 

al. database [7], average measures of speaking rate were 

dissected into phone-specific characteristics and, in particular, 

combined phone-duration measures to uncover stronger 

relationships between speaking rate and depression severity 

than global measures previously reported for a speech-rate 

biomarker. In this work, other speech characteristics were not 

considered.   

 

               3.0 Signal-processing Methodologies 

 
3.1 Shimmer, jitter, and aspiration 

Jitter is the period-to-period variation in glottal pulse timing 

during voicing. To estimate this quantity, we first extract 

approximate glottal pulse times for voiced regions using the 

To-Pitch function, followed by the To-PointProcess function, 

both from the speech-signal processing tool Praat [10].  Jitter 

values are found by calculating the average absolute difference 

between consecutive intervals, dividing by the average length, 

and multiplying by 100 to yield a percent value. 

 
Figure 1.   A vowel /i/ example illustrating a decrease in shimmer, 
jitter, and aspiration from the first (day 0) (upper panels) to the last 

(day 42) (lower panels) recording session for one subject from the 

Mundt et al. database [1]. 

         
Day Shimmer Jitter HNR (dB) 

0 16.8 1.2 13.5 

42 5.8 0.6 34.2 

         

Table 1.  Decrease in shimmer, jitter, and aspiration from the first 

(day 0) to the last (day 42) recording session for the vowel /i/ from a 
subject from the Mundt et al. database. HNR is harmonic-to-noise 

ratio derived from the Jackson/Shadle separation algorithm.  

 
    Shimmer measures the period-to-period variation in glottal 

pulse amplitude in voiced regions. To measure this quantity, 

we first extract approximate glottal pulse times for voiced 

regions using the Praat function described above. Amplitudes 

at the pulse times are then calculated using the absolute value 

of the output of the To-AmplitudeTier function. Shimmer 

values are found by calculating the average absolute difference 

between the amplitudes of consecutive periods, dividing by the 

average amplitude, and multiplying by 100 to yield a percent 

value. 

    To measure aspiration, we use a harmonic/noise 

decomposition technique referred to as pitch-scaled harmonic 

filtering (PSHF) [11]. The PSHF approach uses an analysis 

window duration equal to four pitch periods and relies on the 

property that harmonics of the fundamental frequency fall at 

specific frequency bins of the short-time Fourier transform. 

Spectral subtraction is subsequently performed to obtain the 

noise component spectrum. Pitch periods are estimated using 

the speech-signal processing tool Praat [10]. This 

decomposition technique approximately isolates the noise 

component in an aspirated utterance. To minimize leakage of 

harmonicity into the extracted noise component, our 

correlation analysis is restricted to the vowel recordings of the 

Mundt et al. database. The resulting voiced and aspiration 

components are then used to form a harmonics-to-noise ratio.   

    A vowel /i/ example is given in Table 1 and Figure 1 

illustrating a decrease in shimmer, jitter, and aspiration from 

the first (day 0) to the last (day 42) recording session for one 

subject from the Mundt et al. database [1]. The speech 

waveform and spectral slices show shimmer, jitter, and 

aspiration consistent with the values in the table.  
 

3.2 Fundamental frequency and energy dynamics 

Fundamental frequency: We investigate two different 

measures of pitch variability: Pitch variance and average pitch 

velocity. Pitch estimation is performed with a sinusoidal-based 

algorithm [12], and pitch measurements are made in voiced 

regions as derived from the same sinusoidal-based algorithm. 

For each utterance in our database, the pitch variance is 

estimated as the mean-squared pitch deviation from the mean, 

while the average pitch velocity is estimatd as the average 

magnitude of the first-central-pitch difference. 
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Energy: We investigate four different measures of energy 

variability: Energy variance and average energy velocity, as 

well as the same characteristics after inverse filtering. Energy 

is estimated as the mean-squared signal values, while its  

 
Figure 2.   Short-time energy measurements on speech and inversion. 
 

velocity estimate is the mean-squared central difference across 

10-ms frames with a 20-ms window.  Energy measurements 

were made in active speech frames, determined according to 

an energy-based speech activity detector. Inverse filtering was 

performed with the standard autocorrelation method of linear-

prediction with 10 poles [10][12]. We also perform a multi-

band energy measurement (Figure 2) where the speech signal 

is decomposed by 24 auditory-like Gammatone bandpass 

filters [12] and the energy variance and derivative of each 

filter output is computed.  

 

4.0 Correlation Results 
Shimmer, jitter, and aspiration measurements tend to be most 

accurate during steady voicing. Consequently, for this data 

class, we work with only four vowels recorded in the Mundt 

database: /a/, /i/, /o/, /u/. Since there is little data with each 

alone, correlations are made with all four vowels as a group. 

For pitch and energy dynamics, however, we use speech 

recorded from conversation in the Mundt el al. database 

because this option better captures these measurements. 

Spearman was chosen over Pearson correlation due to the 

quantized ranking nature of the HAMD and QIDS depression 

scores and the possible non-linear relationship between score 

and speech features [13]. 

 
4.1 Shimmer and jitter 

Figure 3 gives Spearman correlations with our shimmer 

measurements for the clinical HAMD and self-reported QIDS 

Total assessments, as well as for the Phychomotor-Retardation 

sub-symptom component. All correlations in this case are 

significant, where significance is defined as the p value being 

less than a threshold of 0.05, i.e., p < 0.05. 

    With positive correlations, our interpretation is that 

shimmer is increasing with increasing overall depression 

severity, as well as with increasing Psychomotor Retardation 

as a sub-symptom.  For our jitter measurements (not shown in 

Figure 3), on the other hand, the only significant correlation 

occurs with the Total clinical HAMD assessment ( r~0.11 with 

p~0.03). This is perhaps due to the difficulty in measuring 

jitter in the presence of strong aspiration, typical of depressed 

subjects.  

           
Figure 3.  Spearman correlations with shimmer for the clinical 

HAMD and self-reported QIDS Total assessments, as well as for the 

Psychomotor Retardation sub-symptom component. Significance (the 

p value) is  given above each bar. 

4.2 Aspiration 

As described in Section 3, aspiration in the acoustic signal is 

measured using the Jackson/Shadle algorithm [11]. Figure 4 

gives Spearman correlations for the clinical  

          
Figure 4. Spearman correlations with harmonic-to-noise ratio 

(aspiration) for the clinical HAMD and self-reported QIDS Total, as 
well as for the Psychomotor Retardation assessment.  

 

HAMD and self-reported QIDS Total assessments, as well as 

for the Psychomotor-Retardation sub-symptom component. 

All correlations in this case are again significant. 

    With negative correlations, our interpretation is that 

harmonics-to-noise ratio is decreasing and thus aspiration is 

increasing with increasing overall depression severity, as well 

as with increasing Psychomotor Retardation as a sub-

symptom. This may be consistent with the presence of motor 

retardation in depression reducing laryngeal muscle tension 

thus resulting in a more open, turbulent glottis. 

 

4.3 Pitch and energy 

In this section, we investigate the correlation of pitch and 

energy dynamics with Total and Psychomotor Retardation 

assessments. Correlations with average pitch and energy are 

not included because they were not found significant for any 

condition. For energy, we also perform a multi-band 

decomposition of the speech and its inverse-filtered rendition, 

thus providing a more direct measurement of energy 

variability of the source.  

 

Pitch variability: Figure 5 shows correlations of pitch 

variance and average velocity with our selected assessments; 

three correlations do not show significance. Nevertheless, the 

general trend is a positive correlation of pitch dynamics with 

both assessments. 

 
Figure 5.  Correlations of pitch variance and average velocity; three 

correlations (with p values in red) do not show significance. 

 

Specifically, positive correlations indicate that pitch variance 

and average velocity are decreasing with decreasing 

depression severity. This is in contrast to previous work of 

another study with a different database (variance only for 

control vs depressed) that shows decreased pitch variability 

with depression [15], i.e., the depressed voice is more 

„monotonous‟ than the control. For the database of our study, 

Mundt et al. did not find significant correlation of pitch 

variance with Total assessments [1]; this discrepancy with our 

results may be due to the use of read speech in the Mundt et al. 

study, in contrast to our use of the conversational component. 
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Energy variability: Table 2 shows correlations of energy 

variance and average velocity with our selected assessments. 

A number of observations can be made. First, the uniformly  

negative correlations of energy variance with both Total and 

 
 

Measure QIDS Total HAMD Total QIDS PR HAMD PR 

Variance (S) -0.07/0.16 -0.08/0.12 -0.06/0.27 -0.15/0.003 

Variance (I) -0.17/0.15 -0.10/0.05 -0.16/0.25 -0.15/0.005 

     

Velocity (S) 0.18/0.0006 0.17/0.0007 0.11/0.04 0.05/0.40 

Velocity (I)  0.18/0.005 0.18/0.006 0.18/0.04 0.19/0.001 

 

Table 2.  Correlations of energy variance and average velocity with 
Total and Psychomotor Retardation (PR) assessments for speech (S) 

and its inversion (I); correlations in blue are significant (p < 0.05). 

 
Psychomotor Retardation assessment indicate that the variance 

is decreasing with increasing depression severity. Though 

generally with p > 0.05, the trend is consistent with previous 

studies with different (control vs depressed) databases that 

show decreased energy variability with depression [15]. Next, 

the  uniformly  positive correlations of energy velocity with 

both Total and Psychomotor Retardation (primarily 

significant) indicate that the velocity is increasing with 

increasing depression severity, perhaps an indication that 

motor coordination improves in the less-depressed state.  

     We have also explored correlation properties associated 

with the multi-band (auditory-like) decomposition of speech 

(described in Section 3.2). As with full-band energy, we 

computed correlations with multi-band energy variance and 

average energy velocity in each band. We have also computed 

these same correlations with our inverse-filtered rendition of 

the signal, thus providing a closer look at frequency-

dependence of source energy. (The gain of the inverse filter 

was normalized to unity, thus assuming all gain is imparted by 

the source.) Generally, we have found that for each condition, 

significant correlations can differ in each band both in 

magnitude and sign. As examples, Figure 6 shows correlations 

for the average energy derivative with QIDS Total assessment 

using speech and its source estimate, and also correlations 

with the Psychomotor Retardation assessment using the source 

estimate. Uniformly positive high-frequency correlations with 

the source estimates imply decreased energy velocity in this 

region with subject improvement. 

          6.0 Conclusions and Future Work 

In this paper, we investigated vocal source features as 

biomarkers for depression severity. Specifically, source 

features were selected that may relate to precision in motor 

control, including shimmer and jitter of vocal-fold vibration, 

degree of aspiration, fundamental frequency dynamics, and 

frequency-dependence of variability and velocity of energy.  

Correlation of our features with clinical HAMD, as well as 

QIDS self-reported assessment were presented. To further 

address our hypothesis of the effect of neuro-physiological 

change, we also computed correlations with the Psychomotor 

Retardation component of each assessment. For data over a 

six-week therapy period, correlation results point to statistical 

relationships of our vocal-source biomarkers with 

psychomotor activity, as well as with depression severity. 

    Results of this paper stimulate a number of important areas 

of future research. Alternative vocal-source features, both 

existing (e.g., glottal flow characterization [5]) and novel (e.g., 

measures of extent and style of glottalization) should be 

explored for consistency and for statistical- and 

physiologically-based inter-relationships, along with further 

study of those presented in this paper. Clearly, establishing 

stronger significance in these relationships requires a larger 

database of subjects and, for therapeutic studies, separation 

 

 
Figure 6. Frequency-dependent correlations of average energy 
velocity with QIDS assessments. Top panel: Correlation with Total 

assessment (from speech); Middle panel: Correlation with Total 

assessment (from source estimate); Lower panel: Correlation with 

Psychomotor Retardation assessment (from source estimate). Regions 

with significance are depicted by blue-shaded (p < 0.05) and red-
shaded (p < 0.01) rectangles. 

 

of responders from non-responders to treatment, both useful 

toward our ultimate objective of designing predictors and 

classifiers of depression state. Finally, our correlations of 

laryngeal biomarkers with Psychomotor Retardation 

assessment motivate an important direction in the improved 

understanding of the neuro-physiologic basis for changes in 

voice quality with depression, as well with other central 

nervous system disorders that result in speech degradation. 
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