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22
DIALOGUE AND
CONVERSATIONAL
AGENTS

C: I want you to tell me the names of the fellows on the St.
Louis team.

A: I’m telling you. Who’s on first, What’s on second, I
Don’t Know is on third.

C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?
A: Yes.
C: I mean the fellow’s name on first.
A: Who.
C: The guy on first base.
A: Who is on first.
C: Well what are you askin’mefor?
A: I’m not asking you – I’m telling you. Who is on first.

Who’s on First– Bud Abbott and Lou Costello’s version
of an old burlesque standard.

The literature of the fantastic abounds in inanimate objects magically endowed
with sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary
Shelley’s Frankenstein, Cao Xue Qin’s Divine Luminescent Stone-in-Waiting to Snow
White’s mirror, there is something deeply touching about creating something and then
having a chat with it. Legend has it that after finishing his sculpture ofMoses, Michelan-
gelo thought it so lifelike that he tapped it on the knee and commanded it to speak.
Perhaps this shouldn’t be surprising. Language itself has always been the mark of hu-
manity and sentience, andconversationor dialogue is the most fundamental and spe-CONVERSATION

DIALOGUE cially privileged arena of language. It is certainly the first kind of language we learn
as children, and for most of us, it is the kind of language we most commonly indulge
in, whether we are ordering curry for lunch or buying postagestamps, participating in
business meetings or talking with our families, booking airline flights or complaining
about the weather.

This chapter introduces the fundamental structures and algorithms inconversa-
tional agents, also known asspoken dialogue systems, or spoken language systems.
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These are programs which communicate with users in spoken natural language in order
to make travel arrangements, answer questions about weather or sports, route telephone
calls, act as a general telephone assistant, or perform evenmore sophisticated tasks.

Many of these tasks involve telephony, and also involve mobile situations where
a large screen and keyboard may not be available (Cohen and Oviatt, 1994). Appli-
cations relating to the domain of travel are thus very common. Indeed travel planning
and management has been a key concern of dialogue systems since the early influential
GUS system for planning airline travel (Bobrow et al., 1977). More recently, a number
of spoken language systems for booking airline flights were built under the Air Traffic
Information System (ATIS) (Hemphill et al., 1990) and Communicator (Walker, 2001)
programs. We will use this travel domain as an example throughout the chapter (as
we used it to discuss grammar rules for parsing ATIS sentences in Ch. 11). Fig. 22.1
shows a sample dialogue from a Communicator system, taken from Xu and Rudnicky
(2000).

S1: Hello. You’ve reached the [Communicator]. Tell me your full name
U2: hi i’d like to fly to seattle tuesday morning
S3: Traveling to Seattle on Tuesday, August eleventh in the morning. Your full name?
U4: [John Doe]
S5: Hello, [John], I’m glad to hear from you again. You can nowask me for help.
S6: OK. Let’s see I have a United flight departing Pittsburgh at ten forty five a.m. arriving

into Seattle at one fifty seven p.m. Is that OK?
U7: Yes
S8: Will you return to Pittsburgh from Seattle?
U9: no i will go to Los Angeles
S10: Traveling to Los Angeles. on what date
U11: Sorry can we go back to talk about the previous leg again
S12: For the first leg, you are on a United flight 1446 departingPittsburgh at ten forty five

A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Do you want to take that?
U13: actually i want to leave on wednesday
S14: a flight on wednesday.
S15: I have a flight departing Pittsburgh at ten forty five a.m., arrives Seattle at one fifty

seven p.m. Is that OK?
U16: Yes

Figure 22.1 The travel domain: a fragment from a successful conversation between a
user (U) and the Communicator system (S) of Xu and Rudnicky (2000).

Another promising domain is automatic call routing. A call routing system di-
rects incoming calls in a telephone call center, transferring the call to the appropriate
human. Call routing dialogue systems generally begin by asking the user open-ended
questions likeHow may I help you?(Gorin et al., 1997), orHow may I direct your
call? (Chu-Carroll and Carpenter, 1999). Fig. 22.2 shows sample conversations from
the AT&T How May I Help You (HMIHY) system (Gorin et al., 1997).

A somewhat different domain, which is very far from the telephony area, is auto-
matic tutoring systems. Fig. 22.3 shows part of a dialogue from the ITSPOKE dialogue
system (Litman and Silliman, 2004), which uses the Why2-Atlas text-based tutoring
system as its tutoring backend (?).
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S: How may I help you?
U: can you tell me how much it is to tokyo?
S: You want to know the cost of a call?
U: yes that’s right
S: Please hold on for rate information.
S: How may I help you?
U: what’s the area code for chicago?
S: You want an area code.
U: (silence)
S: The area code for Chicago is 312.

Figure 22.2 The call routing domain: two conversations between a user (U) and the
AT&T How May I Help You (HMIHY) system (S) (Gorin et al., 1997).

S: I didn’t understand. What force acts on all objects withinclose proximity to earth?
U: uh the force of gravity
S: Fine. Besides the Earth’s gravitational force, are thereany other forces acting on the

person, keys, and elevator after the release?
U: no
S: Yep. Thus, keep in mind that after the release, the only force on the person, keys, and

elevator is the force of gravity. If gravity is the only forceacting on an object, will it
be moving or staying still?

U: it will be moving
S: Fine. Not only are the person, keys, and elevator moving, they have only gravitational

forces on them. When an object is falling and has only gravitational force on it, it is
said to be in what?

U: freefall

Figure 22.3 The tutoring domain: part of an conversation between a student user (U)
and the ITSPOKE system (S) of Litman and Silliman (2004).

Sec. 22.1 starts out with a summary of facts about human conversation, includ-
ing the idea of turns and utterances, speech acts, grounding, dialogue structure, and
conversational implicature. Sec. 22.2 then introduces simple spoken language systems,
introducing in detail each of the components of a typical frame-based dialogue system,
followed by an overview in Sec. 22.3 of the VoiceXML languagefor implementing
these systems. We then turn Sec. 22.4.2 to the problem of evaluating system perfor-
mance. Sec. 22.5 then introduces the more sophisticated information-state model of
conversation. Sec. 22.6 shows how Markov Decision Processes can provided a mo-
tivated probabilistic foundation for conversational action. Finally we discuss some
advanced topics, including the BDI (belief-desire-intention) paradigm for dialogue un-
derstanding, and a brief mention of issues involved in processing human-human dia-
logue.
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22.1 PROPERTIES OFHUMAN CONVERSATIONS

Conversation between humans is an intricate and complex joint activity. Because of the
limitations of our current technologies, conversations between humans and machines
are vastly simpler and more constrained than these human conversations. Nonethe-
less, before we attempt to design a conversational agent to converse with humans, it is
crucial to understand something about how humans converse with each other.

In this section we discuss some properties of human-human conversation that
distinguish it from the kinds of (text-based) discourses wehave seen so far. The main
difference is that conversation is a kind ofjoint activity between two (or more) in-
terlocutors. This basic fact has a number of ramifications; conversations are built up
out of consecutiveturns, each turn consists ofjoint action of the speaker and hearer,
and the hearer make special inferences calledconversational implicaturesabout the
speaker’s intended meaning.

22.1.1 Turns and Turn-Taking

Dialogue is characterized byturn-taking ; Speaker A says something, then speaker B,TURN­TAKING

then speaker A, and so on. If having a turn (or “taking the floor”) is a resource to be
allocated, what is the process by which turns are allocated?How do speakers know
when it is the proper time to contribute their turn?

It turns out that conversation and language itself are structured in such a way as
to deal efficiently with this resource allocation problem. One source of evidence for
this is the timing of the utterances in normal human conversations. While speakers
can overlap each other while talking, it turns out that on average the total amount of
overlap is remarkably small; perhaps less than 5% (Levinson, 1983). If speakers aren’t
overlapping, do they figure out when to talk by waiting for a pause after the other
speaker finishes? This is also very rare. The amount of time between turns is quite
small, generally less than a few hundred milliseconds even in multi-party discourse.
Since it may take more than this few hundred milliseconds forthe next speaker to plan
the motor routines for producing their utterance, this means that speakers begin motor
planning for their next utterance before the previous speaker has finished. For this to
be possible, natural conversation must be set up in such a waythat (most of the time)
people can quickly figure outwho should talk next, and exactlywhen they should talk.
This kind of turn-taking behavior is generally studied in the field of Conversation
Analysis (CA). In a key conversation-analytic paper, Sacks et al. (1974)argued thatCONVERSATION

ANALYSIS

turn-taking behavior, at least in American English, is governed by a set of turn-taking
rules. These rules apply at atransition-relevance place, or TRP; places where the
structure of the language allows speaker shift to occur. Here is a version of the turn-
taking rules simplified from Sacks et al. (1974):

(22.1) Turn-taking Rule. At each TRP of each turn:

a. If during this turn the current speaker has selected A as the next speaker then A
must speak next.

b. If the current speaker does not select the next speaker, any other speaker may
take the next turn.
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c. If no one else takes the next turn, the current speaker may take the next turn.

There are a number of important implications of rule (22.1) for dialogue model-
ing. First, subrule (22.1a) implies that there are some utterances by which the speaker
specifically selects who the next speaker will be. The most obvious of these are ques-
tions, in which the speaker selects another speaker to answer the question. Two-part
structures likeQUESTION-ANSWER are calledadjacency pairs (Schegloff, 1968) orADJACENCY PAIRS

dialogic pair (Harris, 2005). Other adjacency pairs includeGREETING followed byDIALOGIC PAIR

GREETING, COMPLIMENT followed byDOWNPLAYER, REQUESTfollowed byGRANT.
We will see that these pairs and the dialogue expectations they set up will play an im-
portant role in dialogue modeling.

Subrule (22.1a) also has an implication for the interpretation of silence. While
silence can occur after any turn, silence in between the two parts of an adjacency pair
is significant silence. For example Levinson (1983) notes this example from AtkinsonSIGNIFICANT

SILENCE

and Drew (1979); pause lengths are marked in parentheses (inseconds):

(22.2) A: Is there something bothering you or not?
(1.0)

A: Yes or no?
(1.5)

A: Eh?
B: No.

Since A has just asked B a question, the silence is interpreted as a refusal to
respond, or perhaps adispreferred response (a response, like saying “no” to a request,DISPREFERRED

which is stigmatized). By contrast, silence in other places, for example a lapse after
a speaker finishes a turn, is not generally interpretable in this way. These facts are
relevant for user interface design in spoken dialogue systems; users are disturbed by
the pauses in dialogue systems caused by slow speech recognizers (Yankelovich et al.,
1995).

Another implication of (22.1) is that transitions between speakers don’t occur
just anywhere; thetransition-relevance placeswhere they tend to occur are generally
atutteranceboundaries. Recall from Ch. 11 that spoken utterances differ from writtenUTTERANCE

sentences in a number of ways. They tend to be shorter, are more likely to be single
clauses or even just single words, the subjects are usually pronouns rather than full
lexical noun phrases, and they include filled pauses and repairs. A hearer must take all
this (and other cues like prosody) into account to know whereto begin talking.

22.1.2 Language as Action: Speech Acts

The previous section showed that conversation consists of asequence of turns, each
of which consists of one or more utterance. A key insight intoconversation due to
Wittgenstein (1953) but worked out more fully by Austin (1962) is that an utterance in
a dialogue is a kind ofaction being performed by the speaker.

The idea that an utterance is a kind of action is particularlyclear inperformativePERFORMATIVE

sentences like the following:

(22.3) I name this ship theTitanic.
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(22.4) I second that motion.

(22.5) I bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (22.3) has the effect of changing
the state of the world (causing the ship to have the nameTitanic) just as any action can
change the state of the world. Verbs likenameor secondwhich perform this kind of
action are called performative verbs, and Austin called these kinds of actionsspeech
acts. What makes Austin’s work so far-reaching is that speech acts are not confinedSPEECH ACTS

to this small class of performative verbs. Austin’s claim isthat the utterance of any
sentence in a real speech situation constitutes three kindsof acts:

• locutionary act: the utterance of a sentence with a particular meaning.

• illocutionary act: the act of asking, answering, promising, etc., in uttering a
sentence.

• perlocutionary act: the (often intentional) production of certain effects upon
the feelings, thoughts, or actions of the addressee in uttering a sentence.

For example, Austin explains that the utterance of example (22.6) might have theillo-
cutionary force of protesting and the perlocutionary effect of stopping theaddresseeILLOCUTIONARYFORCE

from doing something, or annoying the addressee.

(22.6) You can’t do that.

The termspeech actis generally used to describe illocutionary acts rather than
either of the other two types of acts. Searle (1975b), in modifying a taxonomy of
Austin’s, suggests that all speech acts can be classified into one of five major classes:

• Assertives: committing the speaker to something’s being the case (suggesting,
putting forward, swearing, boasting, concluding).

• Directives: attempts by the speaker to get the addressee to do something (asking,
ordering, requesting, inviting, advising, begging).

• Commissives:committing the speaker to some future course of action (promis-
ing, planning, vowing, betting, opposing).

• Expressives:expressing the psychological state of the speaker about a state of
affairsthanking, apologizing, welcoming, deploring.

• Declarations: bringing about a different state of the world via the utterance
(including many of the performative examples above;I resign, You’re fired.)

22.1.3 Language as Joint Action: Grounding

The previous section suggested that each turn or utterance could be viewed as an ac-
tion by a speaker. But dialogue is not a series of unrelated independent acts. Instead,
dialogue is a collective act performed by the speaker and thehearer. One implication
of joint action is that, unlike in monologue, the speaker andhearer must constantly
establishcommon ground (Stalnaker, 1978), the set of things that are mutually be-COMMON GROUND

lieved by both speakers. The need to achieve common ground means that the hearer
mustground the speaker’s utterances, making it clear that the hearer has understoodGROUND

the speaker’s meaning and intention.
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As Clark (1996) points out, people need closure or groundingfor non-linguistic
actions as well. For example, why does a well-designed elevator button light up when
it’s pressed? Because this indicates to the would-be elevator traveler that she has suc-
cessfully called the elevator. Clark phrases this need for closure as follows (following
(Norman, 1988)):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in performing it.

Grounding is also important when the hearer needs to indicate that the speaker
hasnotsucceeded in performing an action. If the hearer has problems in understanding,
she must indicate these problems to the speaker, again so that mutual understanding can
eventually be achieved.

How is closure achieved? Clark and Schaefer (1989) introduce the idea that each
joint linguistic act orcontribution has two phases, calledpresentation andaccep-CONTRIBUTION

tance. In the first phase, a speaker presents the hearer with an utterance, performing
a sort of speech act. In the acceptance phase, the hearer has to ground the utterance,
indicating to the speaker whether understanding was achieved.

What methods can the hearer (call her B) use to ground the speaker A’s utterance?
Clark and Schaefer (1989) discuss five main types of methods,ordered from weakest
to strongest:

1. Continued attention: B shows she is continuing to attend and therefore remains
satisfied with A’s presentation.

2. Relevant next contribution: B starts in on the next relevant contribution.
3. Acknowledgement:B nods or says a continuer likeuh-huh, yeah, or the like, or

anassessmentlike that’s great.
4. Demonstration: B demonstrates all or part of what she has understood A to

mean, for example byreformulating (paraphrasing) A’s utterance, or bycollab-REFORMULATING

orative completionof A’s utterance.COLLABORATIVE
COMPLETION

5. Display: B displays verbatim all or part of A’s presentation.

Let’s look for examples of these in a human-human dialogue example. We’ll be
returning to this example throughout the chapter; in order to design a more sophisti-
cated machine dialogue agent, it helps to look at how a human agent performs similar
tasks. Fig. 22.4 shows part of a dialogue between a human travel agent and a human
client.

Utterance A1, in which the agent repeatsin May, repeated below in boldface,
shows the strongest form of grounding, in which the hearer displays their understanding
by repeating verbatim part of the speakers words:

C1: . . . I need to travelin May .
A1: And, what dayin May did you want to travel?

This particular fragment doesn’t have an example of anacknowledgement, but
there’s an example in another fragment:

C: He wants to fly from Boston
A: Mm hmm
C: to Baltimore Washington International
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C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,U.S. Air flight

115.
C7: OK.

Figure 22.4 Part of a conversation between a travel agent (A) and client (C).

The wordmm-hmmhere is acontinuer, also often called abackchannel orCONTINUER

BACKCHANNEL an acknowledgement token. A continuer is a (short) optional utterance which ac-
knowledges the content of the utterance of the other, and which doesn’t require an
acknowledgement by the other (Yngve, 1970; Jefferson, 1984; Schegloff, 1982; Ward
and Tsukahara, 2000).

In Clark and Schaefer’s third method, the speaker starts in on their relevant next
contribution. We see a number of examples of this in the sample dialogue above, for
example where the speaker asks a question and the hearer answers it. We mentioned
theseadjacency pairsabove; other examples includePROPOSALfollowed byACCEP-
TANCE or REJECTION, APOLOGY followed byACCEPTANCE/REJECTION, SUMMONS

followed byANSWER, and so on.
In a more subtle but very important kind of grounding act, thespeaker can com-

bine this method with the previous one. For example notice that whenever the client
answers a question, the agent begins the next question withAnd. TheAnd indicates to
the client that the agent has successfully understood the answer to the last question:

And, what day in May did you want to travel?
...
And you’re flying into what city?
...
And what time would you like to leave Pittsburgh?

As we will see in Sec. 22.5, the notions of grounding and contributions can
be combined with speech acts to give a more sophisticated model of joint action in
conversation; these more sophisticated models are calleddialogue acts.

Grounding is just as crucial in human-machine conversationas it is in human
conversation. The examples below, from Cohen et al. (2004),suggest how unnatural
it sounds when a machine doesn’t ground properly. The use ofOkaymakes (22.7) a
much more natural response than (22.8) to ground a user’s rejection:
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(22.7) System: Did you want to review some more of your personal profile?
Caller: No.
System:Okay,what’s next?

(22.8) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Indeed, this kind of lack of grounding can cause errors. Stifelman et al. (1993)
and Yankelovich et al. (1995) found that humans get confusedwhen a conversational
system system doesn’t give explicit acknowledgements.

22.1.4 Conversational Structure

We have already seen how conversation is structured by adjacency pairs and contribu-
tions. Here we’ll briefly discuss one aspect of theoverall organization of a conversa-
tion: conversational openings. The openings of telephone conversations, for example,
tend to have a 4-part structure (Clark, 1994; ?):

Stage 1:Enter a conversation, with summons-response adjacency pair

Stage 2:Identification

Stage 3:Establish joint willingness to converse

Stage 4:The first topic is raised, usually by the caller.

These four stages appear in the opening of this short task-oriented conversation
from Clark (1994).

Stage Speaker & Utterance
1 A1: (rings B’s telephone)
1,2 B1: Benjamin Holloway
2 A1: this is Professor Dwight’s secretary, from Polymania College
2,3 B1: ooh yes –
4 A1: uh:m . about the: lexicology *seminar*
4 B1: *yes*

It is common for the person who answers the phone to speak first(since the
caller’s ring functions as the first part of the adjacency pair) but for the caller to bring
up the first topic, as the caller did above concerning the “lexicology seminar”. This
fact that the caller usually brings up the first topic causes confusion when the answerer
brings up the first topic instead; here’s an example of this from the British directory
enquiry service from Clark (1994):

Customer: (rings)
Operator: Directory Enquiries, for which town please?
Customer: Could you give me the phone number of um: Mrs. um: Smithson?
Operator: Yes, which town is this at please?
Customer: Huddleston.
Operator: Yes. And the name again?
Customer: Mrs. Smithson.
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In the conversation above, the operator brings up the topic (for which town
please?) in her first sentence, confusing the caller, who ignores this topic and brings up
her own. This fact that callers expect to bring up the topic explains why conversational
agents for call routing or directory information generallyuse very open prompts like
How may I help you?or How may I direct your call?rather than a directive prompt
like For which town please?. Open prompts allow the caller to state their own topic,
reducing recognition errors caused by customer confusion.

Conversation has many other kinds of structure, including the intricate nature of
conversational closings and the wide use of presequences. We will discuss structure
based oncoherencein Sec. 22.7.

22.1.5 Conversational Implicature

We have seen that conversation is a kind of joint activity, inwhich speakers produce
turns according to a systematic framework, and that the contributions made by these
turns include a presentation phase of performing a kind of action, and an acceptance
phase of grounding the previous actions of the interlocutor. So far we have only talked
about what might be called the ‘infrastructure’ of conversation. But we have so far said
nothing about the actual information that gets communicated from speaker to hearer in
dialogue.

While Ch. 16 showed how we can compute meanings from sentences, it turns out
that in conversation, the meaning of a contribution is oftenquite a bit extended from the
compositional meaning that might be assigned from the wordsalone. This is because
inference plays a crucial role in conversation. The interpretation of an utterance relies
on more than just the literal meaning of the sentences. Consider the client’s response
C2 from the sample conversation in Fig. 22.4, repeated here:

A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the question. The client merely
states that he has a meeting at a certain time. The semantics for this sentence produced
by a semantic interpreter will simply mention this meeting.What is it that licenses the
agent to infer that the client is mentioning this meeting so as to inform the agent of the
travel dates?

Now consider another utterance from the sample conversation, this one by the
agent:

A4: . . . There’s three non-stops today.

Now this statement would still be true if there were seven non-stops today, since
if there are seven of something, there are by definition also three. But what the agent
means here is that there are threeand not more than threenon-stops today. How is
the client to infer that the agent meansonly three non-stops?

These two cases have something in common; in both cases the speaker seems
to expect the hearer to draw certain inferences; in other words, the speaker is com-
municating more information than seems to be present in the uttered words. These
kind of examples were pointed out by Grice (1975, 1978) as part of his theory ofcon-
versational implicature. Implicature means a particular class of licensed inferences.IMPLICATURE
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Grice proposed that what enables hearers to draw these inferences is that conversa-
tion is guided by a set ofmaxims, general heuristics which play a guiding role in theMAXIMS

interpretation of conversational utterances. He proposedthe following four maxims:

• Maxim of Quantity: Be exactly as informative as is required:QUANTITY

1. Make your contribution as informative as is required (forthe current pur-
poses of the exchange).

2. Do not make your contribution more informative than is required.

• Maxim of Quality: Try to make your contribution one that is true:QUALITY

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

• Maxim of Relevance:Be relevant.RELEVANCE

• Maxim of Manner: Be perspicuous:MANNER

1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

It is the Maxim of Quantity (specifically Quantity 1) that allows the hearer to
know thatthree non-stopsdid not meanseven non-stops. This is because the hearer
assumes the speaker is following the maxims, and thus if the speaker meant seven
non-stops she would have said seven non-stops (“as informative as is required”). The
Maxim of Relevance is what allows the agent to know that the client wants to travel by
the 12th. The agent assumes the client is following the maxims, and hence would only
have mentioned the meeting if it was relevant at this point inthe dialogue. The most
natural inference that would make the meeting relevant is the inference that the client
meant the agent to understand that his departure time was before the meeting time.

22.2 BASIC DIALOGUE SYSTEMS

We’ve now seen a bit about how human dialogue works, althoughas we’ll see, not ev-
ery aspect of human-human conversation is modeled in human-machine conversation.
Let’s therefore turn now to the spoken dialogue systems usedin commercial applica-
tions today.

Fig. 22.5 shows a typical architecture for a dialogue system. It has six compo-
nents. The speech recognition and understanding components extract meaning from
the input, while the generation and TTS components map from meaning to speech.
The dialogue manager controls the whole process, along witha task manager which
has knowledge about the task domain (such as air travel). We’ll go through each of
these components in the next sections. Then we’ll explore more sophisticated research
systems in following sections.
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Figure 22.5 Simplified architecture of the components of a conversational agent.

22.2.1 ASR component

The ASR (automatic speech recognition) component takes audio input, generally from
the telephone, and returns a transcribed string of words, asdiscussed in chapter Ch. 9.

Various aspects of the ASR system may be optimized specifically for use in con-
versational agents. For example, the large vocabulary speech recognizers we discussed
in Ch. 9 for dictation or transcription focused on transcribing any sentence on any topic
using any English word. But for domain-dependent dialogue systems it is of little use
to be able to transcribe such a wide variety of sentences. Thesentences that the speech
recognizer needs to be able to transcribe need are just thosethat can be understood by
the natural language understanding component. For this reason commercial dialogue
systems generally use non-probabilistic language models based on finite-state gram-
mars. These grammars are generally hand-written, and specify all possible responses
that the system understands. We’ll see an example of such a hand-written grammar
for a VoiceXML system in Sec. 22.3. Such grammars-based language models can also
be compiled automatically from, e.g., unification grammarsused for natural language
understanding (Rayner et al., 2006).

Because what the user says to the system is related to what thesystem has
just said, language models in conversational agent are usually dialogue-state depen-
dent. For example, if the system has just asked the user “What cityare you departing
from?”, the ASR language model can be constrained to only consist of city names, or
perhaps sentences of the form ‘I want to (leave|depart) from [CITYNAME]’. These
dialogue-state-specific language models often consist of hand-written finite-state (or
even context-free) grammars as discussed above, one for each dialogue state.

In some systems, the understanding component is more powerful, and the set of
sentences the system can understand is larger. In such cases, instead of a finite-state
grammar, we can use anN-gram language model whose probabilities are similarly
conditioned on the dialogue state.

Whether we use a finite-state, context-free, or anN-gram language model, we
call such a dialogue-state dependent language model arestrictive grammar . when theRESTRICTIVE

GRAMMAR

system wants to constrain the user to respond to the system’slast utterance, it can use
a restrictive grammar. When the system wants to allow the user more options, it might
mix this state-specific language model with a more general language model. As we
will see, the choice between these strategies can be tuned based on how muchinitiative
the user is allowed.



DRAFT

Section 22.2. Basic Dialogue Systems 13

Speech recognition in dialogue, as well as in many other applications like dicta-
tion, has the advantage that the identity of the speaker remains constant across many ut-
terances. This means that speaker adaptation techniques like MLLR and VTLN (Ch. 9)
can be applied to improve recognition as the system hears more and more speech from
the user.

22.2.2 NLU component

The NLU (natural language understanding) component of dialogue systems must pro-
duce a semantic representation which is appropriate for thedialogue task. Many speech-
based dialogue systems, since as far back as the GUS system (Bobrow et al., 1977), are
based on the frame-and-slot semantics discussed in Chapter15. A travel system, for
example, which has the goal of helping a user find an appropriate flight, would have a
frame with slots for information about the flight; thus a sentence likeShow me morn-
ing flights from Boston to San Francisco on Tuesdaymight correspond to the following
filled-out frame (from Miller et al. (1994)):

SHOW:

FLIGHTS:

ORIGIN:

CITY: Boston

DATE:

DAY-OF-WEEK: Tuesday

TIME:

PART-OF-DAY: morning

DEST:

CITY: San Francisco

How does the NLU component generate this semantics? In principle any of the
methods for semantic analysis discussed in Ch. 17 could be employed.

For example, some dialogue systems use general-purpose unification grammars
with semantic attachments, such as the Core Language Engineintroduced in Ch. 13. A
parser produces a sentence meaning, from which the slot-fillers are extracted (Lewin
et al., 1999).

Other dialogue systems rely on simpler domain-specific semantic analyzers, such
as thesemantic grammarsalso discussed in Ch. 17. In a semantic grammar, the
actual node names in the parse tree correspond to the semantic entities which are being
expressed, as in the following grammar fragments:

SHOW → show me| i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR|

morning| afternoon| evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston| San Francisco| Denver| Washington

These grammars take the form of context-free grammars or recursive transition
networks (Issar and Ward, 1993; Ward and Issar, 1994), and hence can be parsed by
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any standard CFG parsing algorithm, such as the CKY or Earleyalgorithms introduced
in Ch. 12. The result of the CFG or RTN parse is a hierarchical labeling of the input
string with semantic node labels:

SHOW FLIGHTS ORIGIN DESTINATION DEPART_DATE DEPART_TIME
to CITY

Show me flights from boston to san francisco on tuesday morni ng

Since semantic grammar nodes like ORIGIN correspond to the slots in the frame,
the slot-fillers can be read almost directly off the resulting parse above. It remains only
to put the fillers into some sort of canonical form (for example dates can benormalizedNORMALIZED

into a DD:MM:YY form, times can be put into 24-hour time, etc).
The semantic grammar approach is very widely used, but is unable to deal with

ambiguity, and requires hand-written grammars that are expensive and slow to create.

Figure 22.6 A parse of a sentence in the TINA semantic grammar (from (Seneff,
1995)). PLACEHOLDER FIGURE.

Ambiguity can be addressed by adding probabilities to the grammar; one such
probabilistic semantic grammar system is the TINA system (Seneff, 1995) shown in
Fig. 22.6; note the mix of syntactic and semantic node names.The grammar rules in
TINA are written by hand, but parse tree node probabilities are trained by a modified
version of the SCFG method described in Ch. 14.

An alternative to semantic grammars that is probabilistic and also avoids hand-
coding of grammars is the semantic HMM model of Pieraccini etal. (1991). The
hidden states of this HMM are semantic slot labels, while theobserved words are the
fillers of the slots. Fig. 22.7 shows how a sequence of hidden states, corresponding to
slot names, could be decoded from (or could generate) a sequence of observed words.
Note that the model includes a hidden state called DUMMY which is used to generate
words which do not fill any slots in the frame.

The goal of the HMM model is to compute the labeling of semantic rolesC =
c1,c2, ...,ci (C for ‘cases’ or ‘concepts’) that has the highest probability P(C|W) given
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Figure 22.7 The Pieraccini et al. (1991) HMM model of semantics for filling slots in
frame-based dialogue systems.

some wordsW = w1,w2, ...,wn. As usual, we use Bayes Rule as follows:

argmax
C

P(C|W) = argmax
C

P(W|C)P(C)

P(W

= argmax
C

P(W|C)P(C)(22.9)

=
N∏

i=2

P(wi |wi−1...w1,C)P(w1|C)
M∏

i=2

P(ci |ci−1...c1)(22.10)

The Pieraccini et al. (1991) model makes a simplification that the concepts (the
hidden states) are generated by a Markov process (a conceptM-gram model), and that
the observation probabilities for each state are generatedby a state-dependent (concept-
dependent) wordN-gram word model:

P(wi |wi−1, ...,w1,C) = P(wi |wi−1, ...,wi−N+1,ci)(22.11)

P(ci |ci−1, ...,c1) = P(ci |ci−1, ...,ci−M+1)(22.12)

Based on this simplifying assumption, the final equations used in the HMM
model are as follows:

argmax
C

P(C|W) =
N∏

i=2

P(wi |wi−1...wi−N+1,ci)
M∏

i=2

P(ci |ci−1...ci−M+1)(22.13)

These probabilities can be trained on a labeled training corpus, in which each
sentence is hand-labeled with the concepts/slot-names associated with each string of
words. The best sequence of concepts for a sentence, and the alignment of concepts to
word sequences, can be computed by the standard Viterbi decoding algorithm.

In summary, the resulting HMM model is a generative model with two compo-
nents. TheP(C) component represents the choice of what meaning to express;it as-
signs a prior over sequences of semantic slots, computed by aconceptN-gram.P(W|C)
represents the choice of what words to use to express that meaning; the likelihood of
a particular string of words being generated from a given slot. It is computed by a
wordN-gram conditioned on the semantic slot. This model is very similar to the HMM
model fornamed entity detection we saw in Ch. 17. Technically, HMM models like
this, in which each hidden state correspond to multiple output observations, are called
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semi-HMMs. In a classic HMM, by contrast, each hidden state corresponds to a singleSEMI­HMMS

output observation.
Many other kinds of statistical models have been proposed for the semantic un-

derstanding component of dialogue systems. These include the Hidden Understanding
Model (HUM), which adds hierarchical structure to the HMM tocombine the advan-
tages of the semantic grammar and semantic HMM approaches (Miller et al., 1994,
1996, 2000), or the decision-list method of Rayner and Hockey (2003).

22.2.3 Generation and TTS components

The generation component of a conversational agent choosesthe concepts to express to
the user, plans out how to express these concepts in words, and assigns any necessary
prosody to the words. The TTS component then takes these words and their prosodic
annotations and synthesizes a waveform, as described in Ch.8.

The generation task can be separated into two tasks:what to say, andhow to
say it. The content planner module addresses the first task, decides what content
to express to the user, whether to ask a question, present an answer, and so on. The
content planning component of dialogue systems is generally merged with the dialogue
manager, and we will return to it below.

The language generationmodule addresses the second task, choosing the syn-
tactic structures and words needed to express the meaning. Language generation mod-
ules are implemented in one of two ways. In the simplest and most common method,
all or most of the words in the sentence to be uttered to the user are prespecified by the
dialogue designer. This method is known as template-based generation, and the sen-
tences created by these templates are often calledprompts. While most of the wordsPROMPTS

in the template are fixed, templates can include some variables which are filled in by
the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

A second method for language generation relies on techniques from the field
natural language generation. Here the dialogue manager builds a representation of
the meaning of the utterance to be expressed, and passes thismeaning representation
to a full generator. Such generators generally have three components, a sentence plan-
ner, surface realizer, and prosody assigner. A sketch of this architecture is shown in
Fig. 22.8. See Reiter and Dale (2000) for further information on natural language gen-
eration systems and their use in dialogue.

In the hand-designed prompts that are common in current systems, there are
a number of important conversational and discourse constraints that must be imple-
mented.

Like any discourse, a conversation needs to be coherent (Ch.20). For example,
as Cohen et al. (2004) show, the use of discourse markers and pronouns in the hand-
built system prompts makes the dialogue in (22.15) more natural than the dialogue in
(22.14):

(22.14) Please say the data.
...
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Figure 22.8 Architecture of a natural language generation system for a dialogue system,
after Walker and Rambow (2002).

Please say the start time.
...
Please say the duration.
...
Please say the subject.

(22.15) First, tell me the date.
...
Next, I’ll need the time it starts.
...
Thanks.<pause> Now, how long is it supposed to last?
...
Last of all, I just need a brief description...

Another important case of discourse coherence occurs when particular prompts
may need to be said to the user repeatedly. In these cases, it is standard in dialogue sys-
tems to usetapered prompts, prompts which get incrementally shorter. The followingTAPERED PROMPTS

example from Cohen et al. (2004) shows a series of (hand-designed) tapered prompts:

(22.16) System: Now, what’s the first company to add to your watch list?
Caller: Cisco
System: What’s the next company name? (Or, you can say, “Finished.”)
Caller: IBM
System: Tell me the next company name, or say, “Finished.”
Caller: Intel
System: Next one?
Caller: America Online.
System: Next?
Caller: ...

Other constraints on generation are more specific to spoken dialogue, and refer
to facts about human memory and attentional processes. For example, when humans
are prompted to give a particular response, it taxes their memory less if the suggested
response is the last thing they hear. Thus as Cohen et al. (2004) point out, the prompt
“To hear the list again, say ‘Repeat list’” is easier for users than “Say ‘Repeat list’ to
hear the list again.”

Similarly, presentation of long lists of query results (e.g., potential flights, or
movies) can tax users. Thus most dialogue systems have content planning rules to
deal with this. In the Mercury system for travel planning described in (Seneff, 2002),
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for example, a content planning rule specifies that if there are more than three flights to
describe to the user, the system will just list the availableairlines and describe explicitly
only the earliest flight.

22.2.4 Dialogue Manager

The final component of a dialogue system is the dialogue manager, which controls the
architecture and structure of the dialogue. The dialogue manager takes input from the
ASR/NLU components, maintains some sort of state, interfaces with the task manager,
and passes output to the NLG/TTS modules.

We saw a very simple dialogue manager in Chapter 2’s ELIZA, whose architec-
ture was a simple read-substitute-print loop. The system read in a sentence, applied a
series of text transformations to the sentence, and then printed it out. No state was kept;
the transformation rules were only aware of the current input sentence. In addition to
its ability to interact with a task manager, a modern dialogue manager is very different
than ELIZA’s manager in both the amount of state that the manager keeps about the
conversation, and the ability of the manager to model structures of dialogue above the
level of a single response.

Four kinds of dialogue management architectures are most common. The sim-
plest and most commercially developed architectures, finite-state and frame-based, are
discussed in this section. Later sections discuss the more powerful information-state di-
alogue managers, including a probabilistic version of information-state managers based
on Markov Decision Processes, and finally the more classic plan-based architectures.

The simplest dialogue manager architecture is a finite-state manager. For exam-
ple, imagine a trivial airline travel system whose job was toask the user for a departure
city, a destination city, a time, and whether the trip was round-trip or not. Fig. 22.9
shows a sample dialogue manager for such a system. The statesof the FSA correspond
to questions that the dialogue manager asks the user, and thearcs correspond to ac-
tions to take depending on what the user responds. This system completely controls
the conversation with the user. It asks the user a series of questions, ignoring (or mis-
interpreting) anything the user says that is not a direct answer to the system’s question,
and then going on to the next question.

Systems that control the conversation in this way are calledsystem initiativeorSYSTEM INITIATIVE

single initiative systems. We say that the speaker that is in control of the conversationSINGLE INITIATIVE

has theinitiative ; in normal human-human dialogue, initiative shifts back and forth be-INITIATIVE

tween the participants (?).1 The limited single-initiative finite-state dialogue manager
architecture has the advantage that the system always knowswhat question the user is
answering. This means the system can prepare the speech recognition engine with a
specific language model tuned to answers for this question. Knowing what the user is
going to be talking about also makes the task of the natural language understanding
engine easier. Most finite-state systems also allow allowuniversal commands. Uni-UNIVERSAL

versals are commands that can be said anywhere in the dialogue; every dialogue state

1 Single initiative systems can also be controlled by the user, in which case they are calleduser initiative
systems. Pure user initiative systems are generally used for stateless database querying systems, where the
user asks single questions of the system, which the system converts into SQL database queries, and returns
the results from some database.
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Figure 22.9 A simple finite-state automaton architecture for a dialoguemanager.

recognizes the universal commands in addition to the answerto the question that the
system just asked. Common universals includehelp, which gives the user a (possi-
bly state-specific) help message,start over (or main menu), which returns the user
to some specified main start state, and some sort of command tocorrect the system’s
understanding of the users last statement (San-Segundo et al., 2001). System-initiative
finite-state dialogue managers with universals may be sufficient for very simple tasks
such as entering a credit card number, or a name and password,on the phone.

Pure system-initiative finite-state dialogue manager architectures are probably
too restricted, however, even for the relatively uncomplicated task of a spoken dialogue
travel agent system. The problem is that pure system-initiative systems require that the
user answer exactly the question that the system asked. But this can make a dialogue
awkward and annoying. Users often need to be able to say something that is not exactly
the answer to a single question from the system. For example,in a travel planning
situation, users often want to express their travel goals with complex sentences that
may answer more than one question at a time, as in Communicator example (22.17)
repeated from Fig. 22.1, or ATIS example (22.18).

(22.17) Hi I’d like to fly to Seattle Tuesday morning

(22.18) I want a flight from Milwaukee to Orlando one way leaving afterfive p.m. on
Wednesday.

A finite state dialogue system, as typically implemented, can’t handle these kinds
of utterances since it requires that the user answer each question as it is asked. Of
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course it is theoretically possible to create a finite state architecture which has a separate
state for each possible subset of questions that the user’s statement could be answering,
but this would require a vast explosion in the number of states, making this a difficult
architecture to conceptualize.

Therefore, most systems avoid the pure system-initiative finite-state approach
and use an architecture that allowsmixed initiative , in which conversational initiativeMIXED INITIATIVE

can shift between the system and user at various points in thedialogue.
One common mixed initiative dialogue architecture relies on the structure of

the frame itself to guide the dialogue. Theseframe-basedor form-based dialogueFRAME­BASED

FORM­BASED managers asks the user questions to fill slots in the frame, but allow the user to guide
the dialogue by giving information that fills other slots in the frame. Each slot may be
associated with a question to ask the user, of the following type:

Slot Question
ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

A frame-based dialogue manager thus needs to ask questions of the user, filling
any slot that the user specifies, until it has enough information to perform a data base
query, and then return the result to the user. If the user happens to answer two or
three questions at a time, the system has to fill in these slotsand then remember not
to ask the user the associated questions for the slots. Not every slot need have an
associated question, since the dialogue designer may not want the user deluged with
questions. Nonetheless, the system must be able to fill theseslots if the user happens
to specify them. This kind of form-filling dialogue manager thus does away with the
strict constraints that the finite-state manager imposes onthe order that the user can
specify information.

While some domains may be representable with a single frame,others, like the
travel domain, seem to require the ability to deal with multiple frames. In order to han-
dle possible user questions, we might need frames with general route information (for
questions likeWhich airlines fly from Boston to San Francisco?), information about
airfare practices (for questions likeDo I have to stay a specific number of days to get a
decent airfare?) or about car or hotel reservations. Since users may switch from frame
to frame, the system must be able to disambiguate which slot of which frame a given
input is supposed to fill, and then switch dialogue control tothat frame.

Because of this need to dynamically switch control, frame-based systems are of-
ten implemented asproduction rule systems. Different types of inputs cause different
productions to fire, each of which can flexibly fill in different frames. The production
rules can then switch control based on factors such as the user’s input and some simple
dialogue history like the last question that the system asked. The Mercury flight reser-
vation system (Seneff and Polifroni, 2000; Seneff, 2002) uses a large ‘dialogue control
table’ to store 200-350 rules, covering request for help, rules to determine if the user is
referring to a flight in a list (”I’ll take that nine a.m. flight”), and rules to decide which
flights to describe to the user first.

Now that we’ve seen the frame-based architecture, let’s return to our discussion
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of conversational initiative. It’s possible in the same agent to allow system-initiative,
user-initiative, and mixed-initiative interactions. We said earlier that initiative refers
to who has control of the conversation at any point. The phrase mixed initiative is
generally used in two ways. It can mean that the system or the user could arbitrarily
take or give up the initiative in various ways (?; Chu-Carroll and Brown, 1997). This
kind of mixed initiative is difficult to achieve in current dialogue systems. In form-
based dialogue system, the term mixed initiative is used fora more limited kind of
shift, operationalized based on a combination of prompt type (open versus directive)
and the type of grammar used in the ASR. Anopen prompt is one in which the systemOPEN PROMPT

gives the user very few constraints, allowing the user to respond however they please,
as in:

How may I help you?

A directive prompt is one which explicitly instructs the user how to respond:DIRECTIVE PROMPT

Sayyesif you accept the call; otherwise, sayno.

In Sec. 22.2.1 we defined arestrictive grammar as a language model which
strongly constrains the ASR system, only recognizing proper responses to a given
prompt.

Prompt Type
Grammar Open Directive
Restrictive Doesn’t make sense System Initiative
Non-Restrictive User Initiative Mixed Initiative

Figure 22.10 Operational definition of initiative, following Singh et al. (2002).

In Fig. 22.10 we then give the definition of initiative used inform-based dialogue
systems, following Singh et al. (2002) and others. Here a system initiative interaction
uses a directive prompt and a restrictive grammar; the user is told how to respond, and
the ASR system is constrained to only recognize the responses that are prompted for.
In user initiative, the user is given an open prompt, and the grammar must recognize
any kind of response, since the user could say anything. Finally, in a mixed initiative
interaction, the system gives the user a directive prompt with particular suggestions for
response, but the non-restrictive grammar allows the user to respond outside the scope
of the prompt.

Defining initiative as a property of the prompt and grammar type in this way
allows systems to dynamically change their initiative typefor different users and in-
teractions. Novice users, or users with high speech recognition error, might be better
served by more system initiative. Expert users, or those whohappen to speak more
recognizably, might do well with mixed or user initiative interactions. We will see in
Sec. 22.6 how machine learning techniques can be used to choose initiative.

22.3 VOICEXML

VoiceXML is the Voice Extensible Markup Language, an XML-based dialogue designVOICEXML
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language released by the W3C. The goal of VoiceXML (orvxml) is to create simpleVXML

audio dialogues of the type we have been describing, making use of ASR and TTS,
and dealing with very simple mixed-initiative in a frame-based architecture. While
VoiceXML is more common in the commercial rather than academic setting, it offers a
convenient summary of the dialogue system design issues we have discussed, and will
continue to discuss.

<form>
<field name="transporttype">

<prompt>
Please choose airline, hotel, or rental car.

</prompt>
<grammar type="application/x=nuance-gsl">

[airline hotel "rental car"]
</grammar>

</field>
<block>

<prompt>
You have chosen <value expr="transporttype">.

</prompt>
</block>

</form>

Figure 22.11 A minimal VoiceXML script for a form with a single field. User is
prompted, and the response is then repeated back.

A VoiceXML document contains a set of dialogues, each of which can be aform
or amenu. We will limit ourselves to introducing forms; see (?) for more information
on VoiceXML in general. The VoiceXML document in Fig. 22.11 defines a form with
a single field named ‘transporttype’. The field has an attached prompt,Please choose
airline, hotel, or rental car, which can be passed to the TTS system. It also has a
grammar (language model) which is passed to the speech recognition engine to specify
which words the recognizer is allowed to recognize. In the example in Fig. 22.11, the
grammar consists of a disjunction of the three wordsairline, hotel, andrental car.

A <form> generally consists of a sequence of<field> s, together with a
few other commands. Each field has a name (the name of the field in Fig. 22.11 is
transporttype ) which is also the name of the variable where the user’s response
will be stored. The prompt associated with the field is specified via the<prompt>
command. The grammar associated with the field is specified via the<grammar>
command. VoiceXML supports various ways of specifying a grammar, including XML
Speech Grammar, ABNF, and commercial standards, like Nuance GSL. We will be us-
ing the Nuance GSL format in the following examples.

The VoiceXML interpreter walks through a form in document order, repeatedly
selecting each item in the form. If there are multiple fields,the interpreter will visit
each one in order. The interpretation order can be changed invarious ways, as we will
see later. The example in Fig. 22.12 shows a form with three fields, for specifying the
origin, destination, and flight date of an airline flight.

The prologue of the example shows two global defaults for error handling. If
the user doesn’t answer after a prompt (i.e., silence exceeds a timeout threshold), the
VoiceXML interpreter will play the<noinput> prompt. If the user says something,
but it doesn’t match the grammar for that field, the VoiceXML interpreter will play
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the<nomatch> prompt. After any failure of this type, it is normal to re-askthe user
the question that failed to get a response. Since these routines can be called from any
field, and hence the exact prompt will be different every time, VoiceXML provides a
<reprompt\> command, which will repeat the prompt for whatever field caused the
error.

<noinput>
I’m sorry, I didn’t hear you. <reprompt/>
</noinput>

<nomatch>
I’m sorry, I didn’t understand that. <reprompt/>
</nomatch>

<form>
<block> Welcome to the air travel consultant. </block>
<field name="origin">

<prompt> Which city do you want to leave from? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) denver (new york) barcelona]
</grammar>
<filled>

<prompt> OK, from <value expr="origin"> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) denver (new york) barcelona]
</grammar>
<filled>

<prompt> OK, to <value expr="destination"> </prompt>
</filled>

</field>
<field name="departdate" type="date">

<prompt> And what date do you want to leave? </prompt>
<filled>

<prompt> OK, on <value expr="departdate"> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="orig in">
to <value expr="destination"> on <value expr="departdate ">

</prompt>
send the info to book a flight...

</block>
</form>

Figure 22.12 A VoiceXML script for a form with 3 fields, which confirms each field
and handles thenoinput andnomatch situations.

The three fields of this form show another feature of VoiceXML, the<filled>
tag. The<filled> tag for a field is executed by the interpreter as soon as the field
has been filled by the user. Here, this feature is used to give the user a confirmation of
their input.

The last field,departdate , shows another feature of VoiceXML, thetype at-
tribute. VoiceXML 2.0 specifies seven built-in grammar types,boolean , currency ,
date , digits , number , phone , andtime . Since the type of this field isdate ,
a data-specific language model (grammar) will be automatically passed to the speech
recognizer, so we don’t need to specify the grammar here explicitly.

Fig. 22.13 gives a final example which shows mixed initiative. In a mixed ini-
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<noinput> I’m sorry, I didn’t hear you. <reprompt/> </noinp ut>

<nomatch> I’m sorry, I didn’t understand that. <reprompt/> </nomatch>

<form>
<grammar type="application/x=nuance-gsl">

<![ CDATA[
Flight ( ?[

(i [wanna (want to)] [fly go])
(i’d like to [fly go])
([(i wanna)(i’d like a)] flight)

]
[

( [from leaving departing] City:x) {<origin $x>}
( [(?going to)(arriving in)] City:x) {<destination $x>}
( [from leaving departing] City:x

[(?going to)(arriving in)] City:y) {<origin $x> <destinat ion $y>}
]
?please

)
City [ [(san francisco) (s f o)] {return( "san francisco, cal ifornia")}

[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}

]
]]> </grammar>

<initial name="init">
<prompt> Welcome to the air travel consultant. What are your travel plans? </prompt>

</initial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>

<prompt> OK, from <value expr="origin"> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<filled>

<prompt> OK, to <value expr="destination"> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="orig in">
to <value expr="destination">. </prompt>

send the info to book a flight...
</block>

</form>

Figure 22.13 A mixed initiative VoiceXML dialogue. The grammar allows sentences
which specify the origin or destination cities or both. Usercan respond to the initial prompt
by specifying origin city, destination city, or both.

tiative dialogue, users can choose not to answer the question that was asked by the
system. For example, they might answer a different question, or use a long sentence to
fill in multiple slots at once. This means that the VoiceXML interpreter can no longer
just evaluate each field of the form in order; it needs to skip fields whose values are
set. This is done by aguard condition, a test that keeps a field from being visited. The
default guard condition for a field tests to see if the field’s form item variable has a
value, and if so the field is not interpreted.

Fig. 22.13 also shows a much more complex use of a grammar. This grammar is
a CFG grammar with two rewrite rules, namedFlight andCity . The Nuance GSL
grammar formalism uses parentheses () to mean concatenation and square brackets []
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to mean disjunction. Thus a rule like (22.19) means thatWantsentence can be ex-
panded asi want to fly or i want to go , andAirports can be expanded
assan francisco or denver .

(22.19) Wantsentence (i want to [fly go])
Airports [(san francisco) denver]

Grammar rules can refer to other grammar rules recursively,and so in the gram-
mar in Fig. 22.13 we see the grammar forFlight referring to the rule forCity .

VoiceXML grammars take the form of CFG grammars with optional seman-
tic attachments. The semantic attachments are generally either a text string (such as
"denver, colorado" ) or a slot and a filler. We can see an example of the former
in the semantic attachments for theCity rule (thereturn statements at the end of
each line), which pass up the city and state name. The semantic attachments for the
Flight rule shows the latter case, where the slot (<origin> or <destination>
or both) is filled with the value passed up in the variablex from theCity rule.

Because Fig. 22.13 is a mixed initiative grammar, the grammar has to be appli-
cable to any of the fields. This is done by making the expansionfor Flight a dis-
junction; note that it allows the user to specify only the origin city, only the destination
city, or both.

22.4 DIALOGUE SYSTEM DESIGN AND EVALUATION

22.4.1 Designing Dialogue Systems

How does a dialogue system developer choose dialogue strategies, architectures, prompts,
error messages, and so on? This process is often calledVUI (Voice User Interface)VUI

design. The three design principles of Gould and Lewis (1985) can be summarized
as:User-Centered Design:Study the user and task, Build simulations and prototypes,
and Iteratively test them on the user and fix the problems.

1. Early Focus on Users and Task:Understand the potential users and the
nature of the task, via interviews with users and investigation of similar systems, and
study of related human-human dialogues.

2. Build Prototypes: In Wizard-of-Oz systems(WOZ) or PNAMBIC (Pay NoWIZARD­OF­OZ

Attention to the Man BehInd the Curtain) systems, the users interact with what they
think is a software system, but is in fact a human operator (“wizard”) behind some
disguising interface software (e.g. Gould et al., 1983; Good et al., 1984; Fraser and
Gilbert, 1991). The name comes from the children’s bookThe Wizard of Oz(?), in
which the Wizard turned out to be just a simulation controlled by a man behind a
curtain. A WOZ system can be used to test out an architecture before implementation;
only the interface software and databases need to be in place. The wizard’s linguistic
output can be be disguised by a text-to-speech system, or viatext-only interactions. It
is difficult for the wizard to exactly simulate the errors, limitations, or time constraints
of a real system; results of WOZ studies are thus somewhat idealized, but still can
provide a useful first idea of the domain issues.
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TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 22.14 User satisfaction survey, adapted from Walker et al. (2001).

3. Iterative Design: An iterative design cycle with embedded user testing is
essential in system design (Nielsen, 1992; Cole et al., 1994, 1997; Yankelovich et al.,
1995; Landauer, 1995). For example Stifelman et al. (1993) built a system that origi-
nally required the user to press a key to interrupt the system. They found in user testing
that users instead tried to interrupt the system (barge-in), suggesting a redesign of theBARGE­IN

system to recognize overlapped speech. The iterative method is also very important
for designing prompts which cause the user to respond in understandable or normative
ways: Kamm (1994) and Cole et al. (1993) found thatdirective prompts (“Say yesifDIRECTIVE PROMPTS

you accept the call, otherwise, sayno”) or the use of constrained forms (Oviatt et al.,
1993) produced better results than open prompts like “Will you accept the call?”. Sim-
ulations can also be used at this stage; user simulations that interact with a dialogue
system can help test the interface for brittleness or errors(Chung, 2004).

See Cohen et al. (2004), Harris (2005) for more details on conversational inter-
face design.

22.4.2 Dialogue System Evaluation

As the previous section suggested, user testing and evaluation is crucial in dialogue
system design. Computing auser satisfaction ratingcan be done by having users
interact with a dialogue system to perform a task, and then having them complete
a questionnaire (Shriberg et al., 1992; Polifroni et al., 1992; Stifelman et al., 1993;
Yankelovich et al., 1995; Möller, 2002). For example Fig. 22.14 shows multiple-choice
questions adapted from Walker et al. (2001); responses are mapped into the range of 1
to 5, and then averaged over all questions to get a total user satisfaction rating.

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason it is often useful tohave performance evalua-
tion heuristics which correlate well with human satisfaction. A number of such factors
and heuristics have been studied. One method that has been used to classify these fac-
tors is based on the idea that an optimal dialogue system is one which allows a user to
accomplish their goals (maximizing task success) with the least problems (minimizing
costs). Then we can study metrics which correlate with thesetwo criteria.

Task Completion Success: Task success can be measured by evaluating the correct-
ness of the total solution. For a frame-based architecture,this might be the percentage
of slots that were filled with the correct values, or the percentage of subtasks that were
completed (Polifroni et al., 1992). Since different dialogue systems may be applied
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to different tasks, it is hard to compare them on this metric,so Walker et al. (1997)
suggested using the Kappa coefficient,κ, to compute a completion score which is nor-
malized for chance agreement and better enables cross-system comparison.

Efficiency Cost: Efficiency costs are measures of the system’s efficiency at helping
users. This can be measured via the total elapsed time for thedialogue in seconds,
the number of total turns or of system turns, or the total number of queries (Polifroni
et al., 1992). Other metrics include the number of system non-responses, and the “turn
correction ratio”: the number of system or user turns that were used solely to correct
errors, divided by the total number of turns (Danieli and Gerbino, 1995; Hirschman
and Pao, 1993).

Quality Cost: Quality cost measures other aspects of the interaction thataffect users’
perception of the system. One such measure is the number of times the ASR system
failed to return any sentence, or the number of ASR rejectionprompts (‘I’m sorry,
I didn’t understand that’). Similar metrics include the number of times the user had
to barge-in (interrupt the system), or the number of time-out prompts played whenBARGE­IN

the user didn’t respond quickly enough. Other quality metrics focus on how well the
system understood and responded to the user. This can include the inappropriateness
(verbose or ambiguous) of the system’s questions, answers,and error messages (Zue
et al., 1989), or the correctness of each question, answer, or error message (Zue et al.,
1989; Polifroni et al., 1992). A very important quality costis concept accuracyorCONCEPT

ACCURACY

concept error rate, which measures the percentage of semantic concepts that the NLU
component returns correctly. For frame-based architectures this can be measured by
counting the percentage of slots that are filled with the correct meaning. For example if
the sentence ‘I want to arrive in Austin at 5:00’ is misrecognized to have the semantics
”DEST-CITY: Boston, Time: 5:00” the concept accuracy wouldbe 50% (one of two
slots are wrong).

Figure 22.15 PARADISE’s structure of objectives for spoken dialogue performance.
After Walker et al. (2001).

How should these success and cost metrics be combined and weighted? One
approach is the PARADISE algorithm (Walker et al., 1997) (PARAdigm for DIalogue



DRAFT

28 Chapter 22. Dialogue and Conversational Agents

System Evaluation), which applies multiple regression to this problem. The algorithm
first assigns each dialogue a user satisfaction rating usingquestionnaires like the one
in Fig. 22.14. A set of cost and success factors like those above is then treated as a
set of independent factors; multiple regression is used to train a weight for each factor,
measuring its importance in accounting for user satisfaction. Fig. 22.15 shows the
particular model of performance that the PARADISE experiments have assumed. Each
box is related to a set of factors that we summarized on the previous page. The resulting
metric can be used to compare quite different dialogue strategies; evaluations using
methods like PARADISE have suggested that task completion and concept accuracy
are may be the most important predictors of user satisfaction Walker et al. (2001, 2002).

A wide variety of other evaluation metrics and taxonomies have been proposed
for describing the quality of spoken dialogue systems; see Fraser (1992), Möller (2002),
? (?, ?, inter alia).

22.5 INFORMATION-STATE & D IALOGUE ACTS

The basic frame-based dialogue systems we have introduced so far are only capable
of limited domain-specific conversations. This is because the semantic interpretation
and generation processes in frame-based dialogue systems are based only on what is
needed to fill slots. In order to be be usable for more than justform-filling applications,
a conversational agent needs to be able to do things like decide when the user has
asked a question, made a proposal, or rejected a suggestion,and needs to be able to
ground a users utterance, ask clarification questions, and suggest plans. This suggests
that a conversational agent needs sophisticated models of interpretation and generation
in terms of speech acts and grounding, and a more sophisticated representation of the
dialogue context than just a list of slots.

In this section we sketch a more advanced architecture for dialogue management
which allows for these more sophisticated components. Thismodel is generally called
the information-state architecture (Traum and Larsson, 2003), although we will useINFORMATION­STATE

the term loosely to include architectures such as Allen et al. (2001). A probabilis-
tic architecture which can be seen as an extension of the information-state approach,
theMarkov decision processmodel, will be described in the next section. The term
information-state architecture is really a cover term for a number of quite different
efforts toward more sophisticated agents; we’ll assume here a structure consisting of 5
components:

• the information state (the ‘discourse context’ or ‘mental model’)

• a dialogue act interpreter (or “interpretation engine”)

• a dialogue act generator (or “generation engine”)

• a set of update rules, which update the information state as dialogue acts are
interpreted, and which include rules to generate dialogue acts.

• a control structure to select which update rules to apply

The terminformation state is intended to be very abstract, and might include
things like the discourse context and the common ground of the two speakers, the
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beliefs or intentions of the speakers, user models, and so on. Crucially, information
state is intended to be a more complex notion than the static states in a finite-state
dialogue manager; the current state includes the values of many variables, the discourse
context, and other elements that are not easily modeled by a state-number in a finite
network.

Dialogue acts are an extension of speech acts which integrate ideas from ground-
ing theory, and will be defined more fully fully in the next subsection. The interpre-
tation engine takes speech as input and figures out sentential semantics and an ap-
propriate dialogue act. The dialogue act generator takes dialogue acts and sentential
semantics as input and produces text/speech as output.

Finally, the update rules modify the information state withthe information from
the dialogue acts. These update rules are a generalization of the production rules used
in frame-based dialogue systems described above (Seneff and Polifroni, 2000,inter
alia). A subset of update rules, calledselection rules, are used to generate dialogue
acts. For example, an update rule might say that when the interpretation engine recog-
nizes an assertion, that the information state should be updated with the information in
the assertion, and an obligation to perform a grounding act needs to be added to the in-
formation state. When a question is recognized, an update rule might specify the need
to answer the question. We can refer to the combination of theupdate rules and control
structure as theBehavioral Agent(Allen et al., 2001), as suggested in Fig. 22.16.

Figure 22.16 A version of the information-state approach to dialogue architecture.

While the intuition of the information-state model is quitesimple, the details can
be quite complex. The information state might involve rich discourse models such as
Discourse Representation Theory or sophisticated models of the user’s belief, desire,
and intention (which we will return to in Sec. 22.7). Insteadof describing a particular
implementation here, we will focus on the dialogue act interpretation and generation
engines. The next subsections will present a definition of dialogue acts, a model for
detecting them, and a model for generating them. The following section will then
show how to use Markov decision processes to implement a probabilistic version of
the information-state architecture.
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22.5.1 Dialogue Acts

As we implied above, the speech acts as originally defined by Austin don’t model key
features of conversation such as grounding, contributions, adjacency pairs and so on.
In order to capture these conversational phenomena, we use an extension of speech
acts calleddialogue acts(Bunt, 1994) (ordialogue movesor conversational movesDIALOGUE ACT

MOVES (Power, 1979; Carletta et al., 1997b). A dialogue act extends speech acts with internal
structure related specifically to these other conversational functions (Allen and Core,
1997; Bunt, 2000).

A wide variety of dialogue act tagsets have been proposed. Fig. 22.17 shows a
very domain-specific tagset for the Verbmobil two-party scheduling domain, in which
speakers were asked to plan a meeting at some future date. Notice that it has many very
domain-specific tags, such as SUGGEST, used for when someone proposes a particular
date to meet, and ACCEPTand REJECT, used to accept or reject a proposal for a date.
Thus it has elements both from the presentation and acceptance phases of the Clark
contributions discussed on page??.

Tag Example

THANK Thanks
GREET Hello Dan
INTRODUCE It’s me again
BYE Allright bye
REQUEST-COMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I’m booked all day
ACCEPT Saturday sounds fine,
REQUEST-SUGGEST What is a good day of the week for you?
INIT I wanted to make an appointment with you
GIVE REASON Because I have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

Figure 22.17 The 18 high-level dialogue acts used in Verbmobil-1, abstracted over a
total of 43 more specific dialogue acts. Examples are from Jekat et al. (1995).

By contrast, a more domain-independent dialogue act tagsetis the DAMSL (Dia-
logue Act Markup in Several Layers) architecture (Allen andCore, 1997; Walker et al.,
1996; Carletta et al., 1997a; Core et al., 1999). Drawing on the idea of contributions
(Clark and Schaefer, 1989) and the work of Allwood et al. (1992), Allwood (1995), the
DAMSL tag set allows each utterance to be tagged for two functions. Theforward
looking function of an utterance is an extension of the Searle/Austin speech act. The
backward looking function of DAMSL focuses on the relationship of an utterance to
previous utterances by the other speaker, such as groundingand answering questions.

Traum and Hinkelman (1992) proposed that the core speech acts and grounding
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Act type Sample Acts
turn-taking take-turn, keep-turn, release-turn, assign-turn
grounding acknowledge, repair, continue
core speech acts inform, wh-question, accept, request, offer
argumentation elaborate, summarize, question-answer, clarify

Figure 22.18 Conversation act types, from Traum and Hinkelman (1992).

acts that constitute dialogue acts could fit into an even richer hierarchy ofconversation
acts. Fig. 22.18 shows the four levels of act types they propose, with the two middleCONVERSATION

ACTS

levels corresponding to DAMSL dialogue acts (grounding andcore speech acts). The
two new levels include turn-taking acts andargumentationrelation, a conversational
version of the coherence relations of Ch. 20.

The acts form a hierarchy, in that performance of an act at a higher level (for
example a core speech act) entails performance of a lower level act (taking a turn). We
will see the use of conversational acts in generation later on in this section, and will
return to the question of coherence and dialogue structure in Sec. 22.7.

22.5.2 Interpreting Dialogue Acts

How can we do dialogue act interpretation, deciding whethera given input is a QUES-
TION, a STATEMENT, a SUGGEST (directive), or an ACKNOWLEDGEMENT? Per-
haps we can just rely on surface syntax? We saw in Ch. 11 that yes-no-questions in
English haveaux-inversion (the auxiliary verb precedes the subject) statements have
declarative syntax (no aux-inversion), and commands have no syntactic subject:

(22.20) YES-NO-QUESTION Will breakfast be served on USAir 1557?
STATEMENT I don’t care about lunch
COMMAND Show me flights from Milwaukee to Orlando.

Alas, as is clear from Abbott and Costello’s famousWho’s on Firstroutine at the
beginning of the chapter, the mapping from surface form to illocutionary act is com-
plex. For example, the following ATIS utterance looks like aYES-NO-QUESTION
meaning something likeAre you capable of giving me a list of. . . ?:

(22.21) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whether the system wascapa-
bleof giving a list; this utterance was a polite form of a REQUEST, meaning something
more likePlease give me a list of. . .. Thus what looks on the surface like a QUESTION
can really be a REQUEST.

Similarly, what looks on the surface like a STATEMENT can really be a QUES-
TION. The very common CHECK question (Carletta et al., 1997b; Labov and Fan-
shel, 1977), is used to ask an interlocutor to confirm something that she has privileged
knowledge about. CHECKS have declarative surface form:
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A OPEN-OPTION I was wanting to make some arrangements for a trip that I’m
going to be taking uh to LA uh beginning of the week after
next.

B HOLD OK uh let me pull up your profile and I’ll be right with you
here. [pause]

B CHECK And you said you wanted to travel next week?
A ACCEPT Uh yes.

Utterances which use a surface statement to ask a question, or a surface question
to issue a request, are calledindirect speech acts. How can a surface yes-no-questionINDIRECT SPEECH

ACTS

like Can you give me a list of the flights from Atlanta to Boston?be mapped into the
correct illocutionary act REQUEST?

Dialogue act interpretation can be modeled as a supervised classification task,
with dialogue act labels as hidden classes to be detected. Machine-learning classifiers
are trained on a corpus in which each utterance is hand-labeled for dialogue acts. The
features used in dialogue act interpretation derive from the conversational context and
from the act’smicrogrammar (Goodwin, 1996): lexical, collocation, and prosodicMICROGRAMMAR

features characteristic of the act. Stolcke et al. (2000a),for example, used three kinds
of features:

1. Words and Collocations: Pleaseor would youis a good cue for a REQUEST,
are youfor YES-NO-QUESTIONs.

2. Prosody: Rising pitch is a good cue for a YES-NO-QUESTION. Loudness or
stress can help distinguish theyeahthat is an AGREEMENT from theyeahthat
is a BACKCHANNEL.

3. Conversational Structure: A yeahfollowing a proposal is probably an AGREE-
MENT; a yeahafter an INFORM is likely a BACKCHANNEL.

We can integrate these cues into a dialogue act classifier by using an HMM, in
which the dialogue acts are the hidden events (Nagata and Morimoto, 1994; Woszczyna
and Waibel, 1994; Reithinger et al., 1996; Kita et al., 1996;Warnke et al., 1997; Chu-
Carroll, 1998; Stolcke et al., 1998; Taylor et al., 1998; Stolcke et al., 2000b). In the
HMM approach, given all available evidenceE about a conversation, the goal is to
find the dialogue act sequenceD = {d1,d2 . . . ,dN} that has the highest posterior prob-
ability P(D|E) given that evidence (as usual here we use capital letters forsequences).
Applying Bayes’ Rule we get

D∗ = argmax
D

P(D|E)

= argmax
D

P(D)P(E|D)

P(E)

= argmax
D

P(D)P(E|D)(22.22)

Assuming the three types of evidence (words, prosody, and conversational structure)
and making an (incorrect but) simplifying assumption that the prosody and the words
are independent, we can estimate the evidence likelihood for a sequence of dialogue
actsD as in (22.23):

P(E|D) = P(F |D)P(W|D)(22.23)
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D∗ = argmax
D

P(D)P(F|D)P(W|D)(22.24)

The resulting equation (22.24) thus has three components, one for each of the
kinds of cues discussed above. Let’s briefly discuss each of these three components.
The prior probability of a sequence of dialogue actsP(D) acts as a model of conversa-
tional structure. Drawing on the idea of adjacency pairs (Schegloff, 1968; Sacks et al.,
1974) introduced above, we can make the simplifying assumption that conversational
structure is modeled as a Markov sequence of dialogue acts.

P(D) =
M∏

i=2

P(di|di−1...di−M+1)(22.25)

Woszczyna and Waibel (1994) give the dialogue HMM shown in Fig. 22.19 for a
Verbmobil-like appointment scheduling task.

Figure 22.19 A dialogue act HMM (after Woszczyna and Waibel (1994))

The lexical component of the HMM likelihood, designed to capture the micro-
grammar of each dialogue act, is modeled by training a separate word-N-gram grammar
for each dialogue act, just as we saw with the concept HMM.

P(W|D) =

N∏

i=2

P(wi |wi−1...wi−N+1,di)(22.26)

Prosodic models of dialogue act microgrammar rely on accents, boundaries, or
their acoustic correlates like F0, duration, and energy. For example the pitch rise at the
end ofYES-NO-QUESTIONSis a useful cue (Sag and Liberman, 1975; Pierrehumbert,
1980; Waibel, 1988; Daly and Zue, 1992; Kompe et al., 1993; Taylor et al., 1998).
Declarative utterances (like STATEMENTS) havefinal lowering: a drop in F0 at theFINAL LOWERING

end of the utterance (Pierrehumbert, 1980).
Shriberg et al. (1998) trained CART-style decision trees onsimple acoustically-

based prosodic features such as the slope of F0 at the end of the utterance, the av-
erage energy at different places in the utterance, and various duration measures, nor-
malized in various ways. They found that these features wereuseful, for example,
in distinguishing the four dialogue actsSTATEMENT (S), YES-NO QUESTION (QY),
DECLARATIVE-QUESTIONSlike CHECKS(QD) andWH-QUESTIONS(QW). Fig. 22.20
shows the decision tree which gives the posterior probability P(d|F) of a dialogue act
d type given a sequence of acoustic featuresF. Note that the difference between S and
QY toward the right of the tree is based on the featurenorm f0 diff (normalized
difference between mean F0 of end and penultimate regions),while the difference be-
tween QW and QD at the bottom left is based onutt grad , which measures F0 slope
across the whole utterance.
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Decision trees produce a posterior probabilityP(d|F), and equation (22.24) re-
quires a likelihoodP(F|d). Therefore we need to massage the output of the decision
tree by Bayesian inversion (dividing by the priorP(di) to turn it into a likelihood); we
saw this same process with the use of SVMs and MLPs instead of Gaussian classi-
fiers in speech recognition in Sec.??. If we make the simplifying assumption that the
prosodic decisions for each sentence are independent of other sentences, we arrive at
the following final equation for HMM tagging of dialogue acts:

D∗ = argmax
D

P(D)P(F|D)P(W|D)

=

M∏

i=2

P(di |di−1...di−M+1)

N∏

i=1

P(di |F)

P(di)

N∏

i=2

P(wi |wi−1...wi−N+1,di)(22.27)

Standard HMM decoding techniques (like Viterbi) can then beused to search for
this most-probable sequence of dialogue acts given the sequence of input utterances
culminating in the user’s most recent utterance.

QD S QY QW 
  0.25 0.25 0.25 0.25

QW 
 0.2561 0.1642 0.2732 0.3065

cont_speech_frames < 196.5

S 
 0.2357 0.4508 0.1957 0.1178

cont_speech_frames >= 196.5

QW 
 0.2327 0.2018 0.1919 0.3735

end_grad < 32.345

QY 
 0.2978 0.09721 0.4181 0.1869

end_grad >= 32.345

S 
 0.276 0.2811 0.1747 0.2683

f0_mean_zcv < 0.76806

QW 
 0.1859 0.116 0.2106 0.4875

f0_mean_zcv >= 0.76806

QW 
 0.2935 0.1768 0.2017 0.328

cont_speech_frames_n < 98.388

S 
 0.2438 0.4729 0.125 0.1583

cont_speech_frames_n >= 98.388

QW 
 0.2044 0.1135 0.1362 0.5459

utt_grad < -36.113

QD 
 0.3316 0.2038 0.2297 0.2349

utt_grad >= -36.113

QW 
 0.3069 0.08995 0.1799 0.4233

stdev_enr_utt < 0.02903

S 
 0.2283 0.5668 0.1115 0.09339

stdev_enr_utt >= 0.02903

S 
 0.2581 0.2984 0.2796 0.164

cont_speech_frames_n < 98.334

S 
 0.2191 0.5637 0.1335 0.08367

cont_speech_frames_n >= 98.334

S 
 0.3089 0.3387 0.1419 0.2105

norm_f0_diff < 0.064562

QY 
 0.1857 0.241 0.4756 0.09772

norm_f0_diff >= 0.064562

S 
 0.3253 0.4315 0.1062 0.137

f0_mean_zcv < 0.76197

QW 
 0.2759 0.1517 0.2138 0.3586

f0_mean_zcv >= 0.76197

Figure 22.20 Decision tree for classifyingDECLARATIVE QUESTIONS(QD), STATEMENT (S),YES-NO QUES-
TIONS (QY), andWH-QUESTIONS(QW), after Shriberg et al. (1998). Each node in the tree shows four probabil-
ities, one for each of the four dialogue acts in the order QD, S, QY, QW; the most likely of the four is shown as
the label for the node. Note that questions are shorter than statements (contspeechframes), that QY’s rise at the
end (endgrad), and that QD’s rise throughout the utterance (uttgrad).

Many statistical classifiers besides HMMs have been used to interpret dialogue
acts, as well as the non-statistical BDI model, which interprets dialogue acts based on
plan-inference (see Sec. 22.7).
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22.5.3 Detecting Correction Acts

In addition to the general-purpose dialogue act interpretation algorithms just described,
we may want to build special-purpose detectors for particularly important acts. In this
section we briefly introduce the issues in designing one suchdetector, for the recog-
nition of usercorrection of system errors. If a dialogue system misrecognizes anCORRECTION

utterance (usually as a result of ASR errors) the user will generally correct the error by
repeating themselves, or rephrasing the utterance. Dialogue systems need to recognize
that users are doing a correction, and then figure out what theuser is trying to correct,
perhaps by interacting with the user further.

Unfortunately, corrections are actuallyharder to recognize than normal sen-
tences. Swerts et al. (2000) found that corrections in the TOOT dialogue system were
misrecognized about twice as often (in terms of WER) as non-corrections. One reason
for this is that speakers use a very different prosodic stylecalledhyperarticulationHYPERARTICULA­

TION

for corrections. In hyperarticulated speech, some part of the utterance has exaggerated
energy, duration, or F0 contours, such asI said BAL-TI-MORE, not Boston(?; Oviatt
et al., 1998; Levow, 1998; Hirschberg et al., 2001).

Speakers use various strategies to make corrections; Swerts et al. (2000) catego-
rize these as repetition (REP), paraphrase (PAR), adding content (ADD), and omitting
content (OMIT), as shown in Fig. 22.21. They found that most corrections were repe-
titions and omissions rather than paraphrases.

Turn Corr
Type

S On which day of the week do you want to leave?
S Sorry, I didn’t hear anything from you. Please tell me your departure date
U Um tomorrow NA
S You can say the departure date. For example, you can say ’today’ or ’tomorrow’.

Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...
U Tomorrow REP
S You can say the departure date. For example, you can say ’today’ or ’tomorrow’.

Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...
U Saturday PAR
S Do you want to leave on Saturday?
U Yes
S What time do you want to leave?
U Eight o’clock A M
S Do you want to leave around ten oclock p-m
U Eight o’clock OMIT
S Do you want to leave around ten oclock p-m
U No OMIT
S What time do you want to leave?
U Eight o’clock A M ADD

Figure 22.21 Dialogue fragment from the TOOT system labeled for correction type,
from Swerts et al. (2000).

Various machine learning classifiers have been applied to the problem of detect-
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Cue Turn-taking acts signaled
um KEEP-TURN, TAKE-TURN, RELEASE-TURN
<lipsmack>, <click>, so, uh KEEP-TURN, TAKE-TURN
you know, isn’t that so ASSIGN-TURN

Figure 22.22 Language used to perform turn-taking acts, from Stent (2002).

ing correction acts (Levow, 1998; Hirschberg et al., 2001; Bulyko et al., 2004). Useful
features include lexical information (words like “no”, “correction”, “I don’t”, swear
words), prosodic and hyperarticulation features (increases in F0 range, pause duration,
and word duration, generally normalized by the values for previous sentences), features
indicating utterance length, ASR features (confidence, language model probability),
and various dialogue features.

In addition to correction detection, a conversational agent also needs appropriate
control or update rules in the dialogue manager (Bulyko et al., 2004).

22.5.4 Generating Dialogue Acts: Confirmation and Rejection

Deciding which dialogue acts to generate has received much less attention than dia-
logue act interpretation. Stent (2002) is one recent model of dialogue act generation in
the TRIPS system (Allen et al., 2001), based on ConversationActs (page 31) and the
BDI model to be described in Sec. 22.7. Stent uses a set of update rules for content
planning. One such rule says that if a user has just released the turn, the system can
perform a TAKE-TURN act. Another rule says that if the systemhas a problem-solving
need to summarize some information for the user, then it should use the ASSERT con-
versation act with that information as the semantic content. The content is then mapped
into words using the standard techniques of natural language generation systems (see
e.g., Reiter and Dale (2000)) After an utterance is generated, the information state
(discourse context) is updated with its words, syntactic structure, semantic form, and
semantic and conversation act structure. We will sketch in Sec. 22.7 some of the issues
in modeling and planning that make generation a tough ongoing research effort.

Stent showed that a crucial issue in dialogue generation that doesn’t occur in
monologue text generation is turn-taking acts. Fig. 22.22 shows some example of the
turn-taking function of various linguistic forms, from herlabeling of conversation acts
in the Monroe corpus.

In the rest of this section, rather than trying to cover the entire field, we’ll focus
narrowly on one kind of dialogue act generation task that is probably the most explored
in this relatively new research area. This is the task of generatingconfirmation andre-
jection acts. Because this task is often solved by probabilistic methods, we’ll continue
this discussion in Sec. 22.6.

In a dialogue system, mishearings are a particularly important class of problems,
because speech recognition has such a high error rate. It is therefore important for
dialogue systems to make sure that they have achieved the correct interpretation of
the user’s input. This is generally done by confirmation withthe user. A system us-
ing theexplicit confirmation strategy asks the user a direct question to confirm theirEXPLICIT

CONFIRMATION

understanding. Here are two examples of explicit confirmations from travel planning
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systems. The (boldface) confirmation questions are both yes-no questions, one using a
single sentence, the other presenting a declarative sentence followed by a tag question
(a short question phrase like “right?” or “isn’t it?”):

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

A system using theimplicit confirmation strategy, rather than asking a directIMPLICIT
CONFIRMATION

question, uses thedemonstrationor displaygrounding strategies described above, con-
firming to the user by repeating back what the system understood the user to have said:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since the
user can just answer ‘no’ to the confirmation question (Danieli and Gerbino, 1995;
?). But explicit confirmation is awkward and increases the length of the conversation
(Danieli and Gerbino, 1995; Walker et al., 1998). The explicit confirmation dialogue
fragments above sound non-natural and definitely non-human; implicit confirmation is
much more conversationally natural.

While early dialogue systems tended to fix the choice of explicit or implicit con-
firmation, recent systems treat the question of how to confirmmore like a dialogue act
generation task, in which the confirmation strategy is adaptive, changing from sentence
to sentence.

Various factors can be used in making this decision. The mostimportant factor
is some measure of ASR performance. A number of systems, for example, use the
acoustic confidence that the ASR system assigns to an utterance, computed from the
acoustic log-likelihood of the utterance, to decide whether to make an explicit confir-
mation. Such systems explicitly confirm sentences for whichthe recognizer was not
confident of its output (?; San-Segundo et al., 2001; Litman et al., 1999; Litman and
Pan, 2002). Recent research has focused on more sophisticated measures of confi-
dence that go beyond acoustic log-likelihood, such as prosodic factors; for example
utterances with longer prior pauses, F0 excursions, and longer durations are likely to
be misrecognized, (Litman et al., 2000). Another importantfactor in deciding whether
to explicitly confirm is the cost of an error; obviously before actually booking a flight
or moving money in an account, explicit confirmation is important (Kamm, 1994; Co-
hen et al., 2004). All of these factors can thus be combined ina machine learning
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approach to predict whether explicit confirmation should beused. This can be done
with a simple classifier, or via more complex methods; what isrequired needed is that
the information-state include information about utterance prosody, ASR confidence.

22.5.5 Rejection

Confirmation is just one kind of conversational action that asystem has to express lack
of understanding. Another option isrejection. An ASR system rejects an utterance byREJECTION

giving the user a prompt likeI’m sorry, I didn’t understand that, as in the VoiceXML
nomatch prompts we saw in Sec. 22.3. Rejection might happen when the ASR confi-
dence is so low, or the best interpretation is so semantically ill-formed, that the system
can be relatively sure that the user’s input was not recognized at all. Systems thus
might have a three-tiered level of confidence; below a certain confidence threshold, an
utterance is rejected. Above the threshold, it is explicitly confirmed. If the confidence
is even higher, the utterance is implicitly confirmed.

Sometimes utterances are rejected multiple times. This might mean that the
user is using language that the system is unable to follow. Thus when an utterance
is rejected, systems often follow a strategy ofprogressive prompting or escalatingPROGRESSIVE

PROMPTING

detail (Yankelovich et al., 1995; ?) as in this example from Cohen etal. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series

game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day

you’d like to leave.
Caller: I wanna go on October fifteenth.

In this example, instead of just repeating ‘When would you like to leave?’, the
rejection prompt gives the caller more guidance about how toformulate an utterance
the system will understand. Theseyou-can-sayhelp messages are important in help-
ing improve systems understanding performance Bohus and Rudnicky (2005). If the
caller’s utterance gets rejected yet again, the prompt can reflect this (‘Istill didn’t get
that’), and give the caller even more guidance.

An alternative strategy for error handling israpid reprompting , in which theRAPID
REPROMPTING

system rejects an utterance just by saying “I’m sorry?” or “What was that?”. Only if the
caller’s utterance is rejected a second time does the systemstart applying progressive
prompting. Cohen et al. (2004) summarizes experiments showing that users greatly
prefer rapid reprompting as a first-level error prompt.

Instead of rejecting or confirming entire utterances, it would be nice to be able
to clarify only the parts of the utterance that the system didn’t understand. If a system
can assign confidence at a more fine-grained level than the utterance, it can clarify such
individual elements viaclarification subdialogues.CLARIFICATION

SUBDIALOGUES
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22.6 MARKOV DECISION PROCESSARCHITECTURE

One of the fundamental insights of the information-state approach to dialogue architec-
ture is that the choice of conversational actions is dynamically dependent on the current
information state. The previous section discussed how dialogue systems could change
confirmation and rejection strategies based on context. Forexample if the ASR or NLU
confidence is low, we might choose to do explicit confirmation. If confidence is high,
we might chose implicit confirmation, or even decide not to confirm at all. Using a
dynamic strategy lets us choose the action which maximizes dialogue success, while
minimizing costs. This idea of changing the actions of a dialogue system based on
optimizing some kinds of rewards or costs is the fundamentalintuition behind model-
ing dialogue as aMarkov decision process. This model extends the information-stateMARKOV DECISION

PROCESS

model by adding a probabilistic way of deciding on the properactions given the current
state.

A Markov decision process orMDP is characterized by a set ofstatesSan agentMDP

can be in, a set ofactions A the agent can take, and areward r(a,s) that the agent
receives for taking an action in a state. Given these factors, we can compute apolicy π
which specifies which actiona the agent should take when in a given states, so as to
receive the best reward. To understand each of these components, we’ll need to look
at a tutorial example in which the state space is extremely reduced. Thus we’ll return
to the simple frame-and-slot world, looking at a pedagogical MDP implementation
taken from Levin et al. (2000). Their tutorial example is a “Day-and-Month” dialogue
system, whose goal is to get correct values of day and month for a two-slot frame via
the shortest possible interaction with the user.

In principle, a state of an MDP could include any possible information about the
dialogue, such as the complete dialogue history so far. Using such a rich model of
state would make the number of possible states extraordinarily large. So a model of
state is usually chosen which encodes a much more limited setof information, such as
the values of the slots in the current frame, the most recent question asked to the user,
the users most recent answer, the ASR confidence, and so on. For the Day-and-Month
example let’s represent the state of the system as the valuesof the two slotsdayand
month. If we assume a special initial statesi and final statesf , there are a total of 411
states (366 states with a day and month (counting leap year),12 states with a month but
no day (d=0, m= 1,2,...12), and 31 states with a day but no month (m=0, d=1,2,...31)).

Actions of a MDP dialogue system might include generating particular speech
acts, or performing a database query to find out information.For the Day-and-Month
example, Levin et al. (2000) propose the following actions:

• ad: a question asking for the day
• am: a question asking for the month
• adm: a question asking for both the day and the month
• af : a final action submitting the form and terminating the dialogue

Since the goal of the system is to get the correct answer with the shortest inter-
action, one possible reward function for the system would integrate three terms:

R= −(wini +wene+wf nf )(22.28)
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The termni is the number of interactions with the user,ne is the number of errors,
nf is the number of slots which are filled (0, 1, or 2), and thews are weights.

Finally, a dialogue policyπ specifies which actions to apply in which state. Con-
sider two possible policies: (1) asking for day and month separately, and (2) asking for
them together. These might generate the two dialogues shownin Fig. 22.23.

Figure 22.23 REDRAW FIG 2 WITH JUST 2 POLICIES, IN REVERSE ORDER,
after Levin et al. (2000).PLACEHOLDER FIGURE.

In policy 1, the action specified for the no-date/no-month state is to ask for a
day, while the action specified for any of the 31 states where we have a day but not
a month is to ask for a month. In policy 2, the action specified for the no-date/no-
month state is to ask an open-ended question (Which date) to get both a day and a
month. The two policies have different advantages; an open prompt can leads to shorter
dialogues but is likely to cause more errors, while a directive prompt is slower but
less error-prone. Thus the optimal policy depends on the values of the weightsw,
and also on the error rates of the ASR component. Let’s callpd the probability of
the recognizer making an error interpreting a month or a day value after a directive
prompt. The (presumably higher) probability of error interpreting a month or day value
after an open prompt we’ll callpo. The reward for the first dialogue in Fig. 22.23
is thus−3×wi + 2× pd ×we. The reward for the second dialogue in Fig. 22.23 is
−2×wi +2× pd×we. The directive prompt policy, policy 2, is thus better than policy
1 when the improved error rate justifies the longer interaction, i.e., whenpo− pd >

wi
2we

.
In the example we’ve seen so far, there were only two possibleactions, and hence

only a tiny number of possible policies. In general, the number of possible actions,
states, and policies is quite large, and so the problem of finding the optimal policyπ∗

is much harder.
Markov decision theory together with classical reinforcement learning gives us

a way to think about this problem. First, generalizing from Fig. 22.23, we can think of
any particular dialogue as a trajectory in state space:

s1 →a1,r1 s2 →a2,r2 s3 →a3,r3 · · ·(22.29)
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The best policyπ∗ is the one with the greatest expected reward over all trajec-
tories. What is the expected reward for a given state sequence? The most common
way to assign utilities or rewards to sequences is to usediscounted rewards. Here weDISCOUNTED

REWARDS

compute the expected cumulative rewardQ of a sequence as a discounted sum of the
utilities of the individual states:

Q([s0,a0,s1,a1,s2,a2 · · ·]) = R(s0,a0)+ γR(s1,a1)+ γ2R(s2,a2)+ · · · ,(22.30)

The discount factorγ is a number between 0 and 1. This makes the agent care
more about current rewards than future rewards; the more future a reward, the more
discounted its value.

Given this model, it is possible to show that the expected cumulative reward
Q(s,a) for taking a particular action from a particular state is thefollowing recursive
equation called theBellman equation:BELLMAN EQUATION

Q(s,a) = R(s,a)+ γ
∑

s′

P(s′|s,a)max
a′

Q(s′,a′)(22.31)

What the Bellman equation says is that the expected cumulative reward for a
given state/action pair is the immediate reward for the current state plus the expected
discounted utility of all possible next statess′, weighted by the probability of moving
to that states′, and assuming once there we take the optimal actiona.

Equation (22.31) makes use of two parameters. We need a modelof how likely
a given state/action pair(s,a) is to lead to a new states′. And we also need a good
estimate ofR(s,a). If we had lots of labeled training data, we could simply compute
both of these from labeled counts. For example, with labeleddialogues, we could
simply count how many times we were in a given states, and out of that how many
times we took actiona to get to states′, to estimateP(s′|s,a). Similarly, if we had a
hand-labeled reward for each dialogue, we could build a model of R(s,a).

Given these parameters, it turns out that there is an iterative algorithm for solving
the Bellman equation and determining proper Q values, thevalue iteration algorithmVALUE ITERATION

(?). We won’t present this here, but see Chapter 17 of Russelland Norvig (2002) for the
details of the algorithm as well as further information on Markov Decision Processes.

How do we get enough labeled training data to set these parameters? This is
especially worrisome in any real problem, where the number of statess is extremely
large. Two methods have been applied in the past. The first is to carefully hand-tune
the states and policies so that there are a very small number of states and policies that
need to be set automatically. In this case we can build a dialogue system which explore
the state space by generating random conversations. Probabilities can then be set from
this corpus of conversations. The second is to build a simulated user. The user interacts
with the system millions of times, and the system learns the state transition and reward
probabilities from this corpus.

The first approach, using real users to set parameters in a small state space, was
taken by Singh et al. (2002). They used reinforcement learning to make a small set of
optimal policy decisions. Their NJFun system learned to choose actions which varied
the initiative (system, user, or mixed) and the confirmationstrategy (explicit or none).
The state of the system was specified by values of 7 features including which slot in
the frame is being worked on (1-4), the ASR confidence value (0-5), how many times
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a current slot question had been asked, whether a restrictive or non-restrictive gram-
mar was used, and so on. The result of using only 7 features with a small number of
attributes resulted in a small state space (62 states). Eachstate had only 2 possible
actions (system versus user initiative when asking questions, explicit versus no con-
firmation when receiving answers). They ran the system with real users, creating 311
conversations. Each conversation had a very simple binary reward function; 1 if the
user completed the task (finding specified museums, theater,winetasting in the New
Jersey area), 0 if the user did not. The system successful learned a good dialogue pol-
icy (roughly, start with user initiative, then back of to either mixed or system initiative
when reasking for an attribute; confirm only at lower confidence values; both initiative
and confirmation policies, however, are different for different attributes). They showed
that their policy actually was more successful based on various objective measures than
many hand-designed policies reported in the literature.

The simulated user strategy was taken by Levin et al. (2000),in their MDP model
with reinforcement learning in the ATIS task. Their simulated user was a generative
stochastic model that given the system’s current state and actions, produces a frame-slot
representation of a user response. The parameters of the simulated user were estimated
from a corpus of ATIS dialogues. The simulated user was then used to interact with the
system for tens of thousands of conversations, leading to anoptimal dialogue policy.

While the MDP architecture offers a powerful new way of modeling dialogue
behavior, it relies on the problematic assumption that the system actually knows what
state it is in. This is of course not true in a number of ways; the system never knows
the true internal state of the user, and even the state in the dialogue may be obscured
by speech recognition errors. Recent attempts to relax thisassumption have relied on
Partially Observable Markov Decision Processes, or POMDPs(sometimes pronounced
‘pom-deepeez’). In a POMPDB, we model the user output as an observed signal gen-
erated from yet another hidden variable. See Roy et al. (2000), Young (2002), and
Russell and Norvig (2002).

22.7 ADVANCED: PLAN -BASED DIALOGUE AGENTS

One of the earliest models of conversational agent behavior, and also one of the most
sophisticated, is based on the use of AI planning techniques. For example, the Rochester
TRIPS agent (Allen et al., 2001) simulates helping with emergency management, plan-
ning where and how to supply ambulances or personnel in a simulated emergency sit-
uation. The same planning algorithms that reason how to get an ambulance from point
A to point B can be applied to conversation as well. Since communication and conver-
sation are just special cases of rational action in the world, these actions can be planned
like any other. So an agent seeking to find out some information can come up with the
plan of asking the interlocutor for the information. An agent hearing an utterance can
interpret a speech act by running the planner ‘in reverse’, using inference rules to infer
what plan the interlocutor might have had to cause them to saywhat they said.

Using plans to generate and interpret sentences in this way require that the plan-
ner have good models of itsbeliefs, desires, andintentions (BDI), as well as those of
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the interlocutor. Plan-based models of dialogue are thus often referred to asBDI mod-BDI

els. BDI models of dialogue were first introduced by Allen, Cohen, Perrault, and their
colleagues and students in a number of influential papers showing how speech acts
could be generated (Cohen and Perrault, 1979), and interpreted (Perrault and Allen,
1980; Allen and Perrault, 1980). At the same time, Wilensky (1983) introduced plan-
based models of understanding as part of the task of interpreting stories. In another
related line of research, Grosz and her colleagues and students showed how using sim-
ilar notions of intention and plans allowed ideas of discourse structure and coherence
to be applied to dialogue.

22.7.1 Plan-Inferential Interpretation and Production

Let’s first sketch out the ideas of plan-based comprehensionand production. How
might a plan-based agent act as the human travel agent to understand sentence C2 in
the dialogue repeated below?

C1: I need to travel in May.

A1: And, what day in May did you want to travel?

C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

The Gricean principle of Relevance can be used to infer that the client’s meeting
is relevant to the flight booking. The system may know that oneprecondition for having
a meeting (at least before web conferencing) is being at the place where the meeting is
in. One way of being at a place is flying there, and booking a flight is a precondition for
flying there. The system can follow this chain of inference, abducing that user wants
to fly on a date before the 12th.

Next, consider how our plan-based agent could act as the human travel agent to
produce sentence A1 in the dialogue above. The planning agent would reason that in
order to help a client book a flight it must know enough information about the flight to
book it. It reasons that knowing the month (May) is insufficient information to specify
a departure or return date. The simplest way to find out the needed date information is
to ask the client.

In the rest of this section, we’ll flesh out the sketchy outlines of planning for un-
derstanding and generation using Perrault and Allen’s formal definitions of belief and
desire in the predicate calculus. Reasoning about belief isdone with a number of axiom
schemas inspired by Hintikka (1969). We’ll represent “S believes the propositionP”
as the two-place predicateB(S,P), with axiom schemas such asB(A,P)∧B(A,Q) ⇒
B(A,P∧Q). Knowledge is defined as “true belief”;S knows that Pwill be represented
asKNOW(S,P), defined as KNOW(S,P) ≡ P∧B(S,P).

The theory of desire relies on the predicate WANT. If an agentSwantsP to be
true, we sayWANT(S,P), or W(S,P) for short. P can be a state or the execution of
some action. Thus if ACT is the name of an action,W(S,ACT(H)) means thatSwants
H to do ACT. The logic of WANT relies on its own set of axiom schemas just like the
logic of belief.

The BDI models also require an axiomatization of actions andplanning; the
simplest of these is based on a set ofaction schemas based on the simple AI planningACTION SCHEMA
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model STRIPS (Fikes and Nilsson, 1971). Each action schema has a set of parameters
with constraintsabout the type of each variable, and three parts:

• Preconditions:Conditions that must already be true to perform the action.
• Effects:Conditions that become true as a result of performing the action.
• Body:A set of partially ordered goal states that must be achieved in performing

the action.

In the travel domain, for example, the action of agentA booking flightF1 for clientC
might have the following simplified definition:

BOOK-FLIGHT(A,C,F) :
Constraints: Agent(A)∧ Flight(F)∧ Client(C)
Precondition: Know(A,depart-date(F)) ∧ Know(A,depart-time(F))

∧ Know(A,origin(F)) ∧ Know(A,flight-type(F))
∧ Know(A,destination(F)) ∧ Has-Seats(F) ∧
W(C,(BOOK(A,C,F)))∧ . . .

Effect: Flight-Booked(A,C,F)
Body: Make-Reservation(A,F,C)

This same kind of STRIPS action specification can be used for speech acts. IN-
FORM is the speech act of informing the hearer of some proposition, based on Grice’s
(1957) idea that a speaker informs the hearer of something merely by causing the hearer
to believe that the speaker wants them to know something:

INFORM(S,H,P):
Constraints: Speaker(S)∧ Hearer(H)∧ Proposition(P)
Precondition: Know(S,P)∧ W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

REQUEST is the directive speech act for requesting the hearer to perform some
action:

REQUEST(S,H,ACT):
Constraints: Speaker(S)∧ Hearer(H)∧ ACT(A) ∧ H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))

Let’s now see how a plan-based dialogue system might interpret the sentence:

C2: I need to be there for a meeting that’s from the 12th to the 15th.

We’ll assume the system has the BOOK-FLIGHT plan mentioned above. In
addition, we’ll need knowledge about meetings and getting to them, in the form of the
MEETING, FLY-TO, and TAKE-FLIGHT plans, sketched broadly below:

MEETING(P,L,T1,T2):
Constraints: Person(P)∧ Location (L)∧ Time (T1)∧ Time (T2)∧ Time (TA)
Precondition: At (P, L, TA)

Before (TA, T1)
Body: ...
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FLY-TO(P, L, T):
Constraints: Person(P)∧ Location (L)∧ Time (T)
Effect: At (P, L, T)
Body: TAKE-FLIGHT(P, L, T)

TAKE-FLIGHT(P, L, T):
Constraints: Person(P)∧ Location (L)∧ Time (T)∧ Flight (F)∧ Agent (A)
Precondition: BOOK-FLIGHT (A, P, F)

Destination-Time(F) = T
Destination-Location(F) = L

Body: ...

Now let’s assume that an NLU module returns a semantics for the client’s utter-
ance which (among other things) includes the following semantic content:

MEETING (P, ?L, T1, T2)
Constraints: P = Client∧ T1 = May 12∧ T2 = May 15

Our plan-based system now has two plans established, one MEETING plan from
this utterance, and one BOOK-FLIGHT plan from the previous utterance. The system
implicitly uses the Gricean Relevance intuition to try to connect them. Since BOOK-
FLIGHT is a precondition for TAKE-FLIGHT, the system may hypothesize (infer) that
the user is planning a TAKE-FLIGHT. Since TAKE-FLIGHT is in the body of FLY-
TO, the system further infers a FLY-TO plan. Finally, since the effect of FLY-TO is
a precondition of the MEETING, the system can unify each of the people, locations,
and times of all of these plans. The result will be that the system knows that the client
wants to arrive at the destination before May 12th.

Let’s turn to the details of our second example:

C1: I need to travel in May.

A1: And, what day in May did you want to travel?

How does a plan-based agent know to ask question A1? This knowledge comes
from the BOOK-FLIGHT plan, whose preconditions were that the agent know a variety
of flight parameters including the departure date and time, origin and destination cities,
and so forth. Utterance C1 contains the origin city and partial information about the
departure date; the agent has to request the rest. A plan-based agent would use an ac-
tion schema like REQUEST-INFO to represent a plan for askinginformation questions
(simplified from Cohen and Perrault (1979)):

REQUEST-INFO(A,C,I) :
Constraints: Agent(A)∧ Client(C)
Precondition: Know(C,I)
Effect: Know(A,I)
Body: B(C,W(A,Know(A,I)))

Because the effects of REQUEST-INFO match each precondition of BOOK-
FLIGHT, the agent can use REQUEST-INFO to achieve the missing information.
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22.7.2 The Intentional Structure of Dialogue

In Sec.??we introduced the idea that the segments of a discourse are related bycoher-
ence relationslike Explanation or Elaboration which describe theinformational re-
lation between discourse segments. The BDI approach to utterance interpretation gives
rise to another view of coherence which is particularly relevant for dialogue, theinten-
tional approach (Grosz and Sidner, 1986). According to this approach, what makes a
dialogue coherent is itsintentional structure , the plan-based intentions of the speakerINTENTIONAL

STRUCTURE

underlying each utterance.
These intentions are instantiated in the model by assuming that each discourse

has an underlying purpose held by the person who initiates it, called thediscourse pur-
pose(DP). Each discourse segment within the discourse has a corresponding purpose,DISCOURSE

PURPOSE

a discourse segment purpose(DSP), which has a role in achieving the overall DP.DISCOURSE
SEGMENT PURPOSE

Possible DPs/DSPs include intending that some agent intendto perform some physical
task, or that some agent believe some fact.

As opposed to the larger sets of coherence relations used in informational ac-
counts of coherence, Grosz and Sidner propose only two such relations:dominance
andsatisfaction-precedence. DSP1 dominates DSP2 if satisfying DSP2 is intended
to provide part of the satisfaction of DSP1. DSP1 satisfaction-precedes DSP2 if DSP1

must be satisfied before DSP2.

C1: I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,U.S. Air flight

115.
C7: OK.

Figure 22.24 A fragment from a telephone conversation between a client (C) and a
travel agent (A) (repeated from Fig. 22.4).

Consider the dialogue between a client (C) and a travel agent(A) that we saw
earlier, repeated here in Fig. 22.24. Collaboratively, thecaller and agent successfully
identify a flight that suits the caller’s needs. Achieving this joint goal requires that
a top-level discourse intention be satisfied, listed as I1 below, in addition to several
intermediate intentions that contributed to the satisfaction of I1, listed as I2-I5:

I1: (Intend C (Intend A (A find a flight for C)))
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I2: (Intend A (Intend C (Tell C A departure date)))

I3: (Intend A (Intend C (Tell C A destination city)))

I4: (Intend A (Intend C (Tell C A departure time)))

I5: (Intend C (Intend A (A find a nonstop flight for C)))

Intentions I2–I5 are all subordinate to intention I1, as they were all adopted to meet pre-
conditions for achieving intention I1. This is reflected in the dominance relationships
below:

I1 dominates I2∧ I1 dominates I3∧ I1 dominates I4∧ I1 dominates I5

Furthermore, intentions I2 and I3 needed to be satisfied before intention I5, since the
agent needed to know the departure date and destination in order to start listing nonstop
flights. This is reflected in the satisfaction-precedence relationships below:

I2 satisfaction-precedes I5∧ I3 satisfaction-precedes I5

The dominance relations give rise to the discourse structure depicted in Fig-
ure 22.25. Each discourse segment is numbered in correspondence with the intention
number that serves as its DP/DSP.

DS1

C1 DS2 DS3 DS4 DS5

A1–C2 A2–C3 A3 C4–C7

Figure 22.25 Discourse Structure of the Flight Reservation Dialogue

Intentions and their relationships give rise to a coherent discourse based on their
role in the overallplan that the caller is inferred to have. We assume that the caller
and agent have the plan BOOK-FLIGHT described on page 44. This plan requires that
the agent know the departure time and date and so on. As we discussed above, the
agent can use the REQUEST-INFO action scheme from page 45 to ask the user for this
information.

Subsidiary discourse segments are also calledsubdialogues; DS2 and DS3 inSUBDIALOGUES

particular areinformation-sharing (Chu-Carroll and Carberry, 1998)knowledge pre-
condition subdialogues (Lochbaum et al., 1990; Lochbaum, 1998), since they are ini-
tiated by the agent to help satisfy preconditions of a higher-level goal.

Algorithms for inferring intentional structure in dialogue work similarly to algo-
rithms for inferring dialogue acts, either employing the BDI model (e.g., Litman, 1985;
Grosz and Sidner, 1986; Litman and Allen, 1987; Carberry, 1990; Passonneau and Lit-
man, 1993; Chu-Carroll and Carberry, 1998), or machine learning architectures based
on cue phrases (Reichman, 1985; Grosz and Sidner, 1986; Hirschberg and Litman,
1993), prosody (Hirschberg and Pierrehumbert, 1986; Groszand Hirschberg, 1992;
Pierrehumbert and Hirschberg, 1990; Hirschberg and Nakatani, 1996), and other cues.
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22.8 ADVANCED: PROCESSINGHUMAN -HUMAN DIALOG

In addition to work on building conversational agents, computational dialogue work
also focuses on human-human dialogue. We need to process human-human dialogue
in order to automatically transcribe or summarize businessmeetings, to close-caption
TV shows, or to building personal telephone assistants thatcan take notes on telephone
conversations.

A key task in human-human conversation is utterance boundary segmentation,SEGMENTATION

the task of separating out utterances from each other. This is an important task since
many computational dialogue models are based on extractingan utterance as a prim-
itive unit. The segmentation problem is difficult because a single utterance may be
spread over several turns (as in (22.32)), or a single turn may include several utterances
(as in (22.33)).

(22.32) A: Yeah um let me see here we’ve got you on American flight nine thirty eight
C: Yep.
A: leaving on the twentieth of June out of Orange County John Wayne Airport at seven

thirty p.m.
C: Seven thirty.
A: and into uh San Francisco at eight fifty seven.

(22.33) A: Three two three and seven five one. OK and then does he know there is
a nonstop that goes from Dulles to San Francisco? Instead of connection
through St. Louis.

Segmentation algorithms use boundarycuessuch as:

• cue words: Cue words likewell, and, so, that tend to occur at beginnings andCUE WORDS

ends of utterances (Reichman, 1985; Hirschberg and Litman,1993).
• N-gram word or POS sequences:Specific word or POS sequences that often

indicate boundaries.N-gram grammars can be trained on a training set labeled
with special utterance-boundary tags. (Mast et al., 1996; Meteer and Iyer, 1996;
Stolcke and Shriberg, 1996; Heeman and Allen, 1999).

• prosody: Utterance-final prosodic features like boundary tones, phrase-final
lengthening and pause duration

• gaze:In face-to-face dialogue,gazeis an important cue.GAZE

A related task in human-human dialogue isdiarization : assigning each utteranceDIARIZATION

to the talker who produced it; this can be quite hard in multi-speaker meetings.

22.9 SUMMARY

Conversational agentsare a crucial speech and language processing application that
are already widely used commercially. Research on these agents relies crucially on an
understanding of human dialogue or conversational practices.

• Dialogue systems generally have 5 components: speech recognition, natural lan-
guage understanding, dialogue management, natural language generation, and
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speech synthesis. They may also have a task manager specific to the task do-
main.

• Dialogue architectures for conversational agents includefinite-state systems,frame-
basedproduction systems, and advanced systems such as information-state, Markov
Decision Processes, andBDI (belief-desire-intention) models.

• Turn-taking, grounding, conversational structure, implicature, and initiative are
crucial human dialogue phenomena that must also be dealt with in conversational
agents.

• Speaking in dialogue is a kind of action; these acts are referred to as speech acts
or dialogue acts. Models exist for generating and interpreting these acts.

• Human-human dialogue is another important area of dialogue, relevant espe-
cially for such computational tasks asautomatic meeting summarization.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Early work on speech and language processing had very littleemphasis on the study
of dialogue. The dialogue manager for the simulation of the paranoid agent PARRY
(Colby et al., 1971), was a little more complex. Like ELIZA, it was based on a pro-
duction system, but where ELIZA’s rules were based only on the words in the user’s
previous sentence, PARRY’s rules also rely on global variables indicating its emotional
state. Furthermore, PARRY’s output sometimes makes use of script-like sequences of
statements when the conversation turns to its delusions. For example, if PARRY’s
angervariable is high, he will choose from a set of “hostile” outputs. If the input men-
tions his delusion topic, he will increase the value of hisfear variable and then begin
to express the sequence of statements related to his delusion.

The appearance of more sophisticated dialogue managers awaited the better un-
derstanding of human-human dialogue. Studies of the properties of human-human
dialogue began to accumulate in the 1970’s and 1980’s. The Conversation Analy-
sis community (Sacks et al., 1974; Jefferson, 1984; Schegloff, 1982) began to study
the interactional properties of conversation. Grosz’s (1977) dissertation significantly
influenced the computational study of dialogue with its introduction of the study of
dialogue structure, with its finding that “task-oriented dialogues have a structure that
closely parallels the structure of the task being performed” (p. 27), which led to her
work on intentional and attentional structure with Sidner.Lochbaum et al. (2000) is a
good recent summary of the role of intentional structure in dialogue. The BDI model
integrating earlier AI planning work (Fikes and Nilsson, 1971) with speech act theory
(Austin, 1962; Gordon and Lakoff, 1971; Searle, 1975a) was first worked out by Co-
hen and Perrault (1979), showing how speech acts could be generated, and Perrault and
Allen (1980) and Allen and Perrault (1980), applying the approach to speech-act inter-
pretation. Simultaneous work on a plan-based model of understanding was developed
by Wilensky (1983) in the Schankian tradition.

Modern dialogue systems drew on research at many different labs in the 1980’s
and 1990’s. Models of dialogue as collaborative behavior were introduced in the late
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1980’s and 1990’s, including the ideas of common ground (?),reference as a collabora-
tive process (Clark and Wilkes-Gibbs, 1986), and models ofjoint intentions (Levesque
et al., 1990), andshared plans(Grosz and Sidner, 1980). Related to this area is the
study of initiative in dialogue, studying how the dialogue control shifts between par-
ticipants (?; Smith and Gordon, 1997; Chu-Carroll and Brown, 1997).

A wide body of dialogue research came out of AT&T and Bell Laboratories
around the turn of the century, including much of the early work on MDP dialogue
systems as well as fundamental work on cue-phrases, prosody, and rejection and con-
firmation. Work on dialogue acts and dialogue moves drew froma number of sources,
including HCRC’s Map Task (Carletta et al., 1997b), and the work of James Allen and
his colleagues and students, for example Hinkelman and Allen (1989), showing how
lexical and phrasal cues could be integrated into BDI model of speech acts, and Traum
(2000), Traum and Hinkelman (1992), and from ? (?).

Much recent academic work in dialogue focuses on multimodalapplications (?),
on the information-state model (?) or on reinforcement learning architectures (?, ?).

Recent years have seen the widespread commercial use of dialogue systems, of-
ten based on VoiceXML. Some more sophisticated systems havealso seen deployment.
For exampleClarissa, the first spoken dialogue system used in space, is a speech-CLARISSA

enabled procedure navigator that was used by astronauts on the International Space
Station (Rayner and Hockey, 2004; Aist et al., 2002).

Good surveys on dialogue systems include Harris (2005), Cohen et al. (2004),
McTear (2002, 2004), Sadek and De Mori (1998), and the dialogue chapter in Allen
(1995).

EXERCISES

22.1 List the dialogue act misinterpretations in theWho’s On Firstroutine at the
beginning of the chapter.

22.2 Write a finite-state automaton for a dialogue manager for checking your bank
balance and withdrawing money at an automated teller machine.

22.3 Dispreferred responses (for example turning down a request) are usually sig-
naled by surface cues, such as significant silence. Try to notice the next time you
or someone else utters a dispreferred response, and write down the utterance. What
are some other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye-gaze and body gestures.

22.4 When asked a question to which they aren’t sure they know the answer, people
display their lack of confidence via cues that resemble otherdispreferred responses.
Try to notice some unsure answers to questions. What are someof the cues? If you
have trouble doing this, read Smith and Clark (1993) and listen specifically for the cues
they mention.

22.5 Build a VoiceXML dialogue system for giving the current timearound the world.
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The system should ask the user for a city and a time format (24 hour, etc) and should
return the current time, properly dealing with time zones.

22.6 Implement a small air-travel help system based on text input. Your system
should get constraints from the user about a particular flight that they want to take,
expressed in natural language, and display possible flightson a screen. Make simpli-
fying assumptions. You may build in a simple flight database or you may use a flight
information system on the web as your backend.

22.7 Augment your previous system to work with speech input via VoiceXML. (or
alternatively, describe the user interface changes you would have to make for it to work
via speech over the phone). What were the major differences?

22.8 Design a simple dialogue system for checking your email overthe telephone.
Implement in VoiceXML.

22.9 Test your email-reading system on some potential users. Choose some of the
metrics described in Sec. 22.4.2 and evaluate your system.
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