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DIALOGUE AND
2 2 CONVERSATIONAL
AGENTS

| want you to tell me the names of the fellows on the St.

Louis team.

I’'m telling you. Who's on first, What's on second, |
Don’t Know is on third.

You know the fellows’ names?

Yes.

Well, then, who'’s playing first?

Yes.

I mean the fellow’s name on first.

Who.

The guy on first base.

Who is on first.

Well what are you askirmmefor?

I’'m not asking you — I'm telling you. Who is on first.

Who's on First— Bud Abbott and Lou Costello’s version
of an old burlesque standard.
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The literature of the fantastic abounds in inanimate objetagically endowed
with sentience and the gift of speech. From Ovid’s statue yafnRalion to Mary
Shelley’s Frankenstein, Cao Xue Qin’s Divine Luminescdoh8-in-Waiting to Snow
White’s mirror, there is something deeply touching aboatting something and then
having a chat with it. Legend has it that after finishing hidpture ofMoses Michelan-
gelo thought it so lifelike that he tapped it on the knee anchimanded it to speak.
Perhaps this shouldn’t be surprising. Language itself eaya been the mark of hu-
CONVERSATION manity and sentience, amgnversationor dialogueis the most fundamental and spe-
oiaocue  cially privileged arena of language. It is certainly thetfikid of language we learn
as children, and for most of us, it is the kind of language wathcommonly indulge
in, whether we are ordering curry for lunch or buying postsigenps, participating in
business meetings or talking with our families, bookingjragr flights or complaining
about the weather.
This chapter introduces the fundamental structures araditighs inconversa-
tional agents also known aspoken dialogue systemsr spoken language systems
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These are programs which communicate with users in spokarahianguage in order
to make travel arrangements, answer questions about weathggorts, route telephone
calls, act as a general telephone assistant, or performmuemsophisticated tasks.

Many of these tasks involve telephony, and also involve meahiuations where
a large screen and keyboard may not be available (Cohen aiatt,Ch994). Appli-
cations relating to the domain of travel are thus very comnindeed travel planning
and management has been a key concern of dialogue systarastwrearly influential
GUS system for planning airline travel (Bobrow et al., 19Mbpre recently, a number
of spoken language systems for booking airline flights weiit bnder the Air Traffic
Information System (ATIS) (Hemphill et al., 1990) and Commiuator (Walker, 2001)
programs. We will use this travel domain as an example througthe chapter (as
we used it to discuss grammar rules for parsing ATIS senteimc€h. 11). Fig. 22.1
shows a sample dialogue from a Communicator system, takemXu and Rudnicky
(2000).

S1: Hello. You've reached the [Communicator]. Tell me yault iame

U2:  hii'dlike to fly to seattle tuesday morning

S3: Traveling to Seattle on Tuesday, August eleventh in tbming. Your full name?

U4: [John Doe]

S5: Hello, [John], I'm glad to hear from you again. You can rask me for help.

S6: OK. Let's see | have a United flight departing Pittsburgtea forty five a.m. arriving
into Seattle at one fifty seven p.m. Is that OK?

U7: Yes

S8: Will you return to Pittsburgh from Seattle?

U9: noiwill goto Los Angeles

S10: Traveling to Los Angeles. on what date

Ull: Sorry can we go back to talk about the previous leg again

S12: For the first leg, you are on a United flight 1446 depar®ittsburgh at ten forty five
A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Dauywant to take that?

U13: actually i want to leave on wednesday

S14: aflight on wednesday.

S15: | have a flight departing Pittsburgh at ten forty five aanives Seattle at one fifty
seven p.m. Is that OK?

Ul6: Yes

1%

Figure 22.1  The travel domain: a fragment from a successful conversdt@ween a
user (U) and the Communicator system (S) of Xu and RudnicR9@2

Another promising domain is automatic call routing. A caluting system di-
rects incoming calls in a telephone call center, transfgrthe call to the appropriate
human. Call routing dialogue systems generally begin bingsthe user open-ended
questions likeHow may | help you?Gorin et al., 1997), oHow may | direct your
call? (Chu-Carroll and Carpenter, 1999). Fig. 22.2 shows sanjptgarsations from
the AT&T How May | Help You (HMIHY) system (Gorin et al., 1997)

A somewhat different domain, which is very far from the télepy area, is auto-
matic tutoring systems. Fig. 22.3 shows part of a dialogomafthe ITSPOKE dialogue
system (Litman and Silliman, 2004), which uses the Whyzétext-based tutoring
system as its tutoring backend (?).



How may | help you?

can you tell me how much it is to tokyo?
You want to know the cost of a call?
yes that's right

Please hold on for rate information.
How may | help you?

what's the area code for chicago?

You want an area code.

(silence)

The area code for Chicago is 312.

wcunwcuncncn

Figure 22.2  The call routing domain: two conversations between a usgrid the
AT&T How May | Help You (HMIHY) system (S) (Gorin et al., 1997)

S: | didn’t understand. What force acts on all objects wittlose proximity to earth?

u: uh the force of gravity

S: Fine. Besides the Earth’s gravitational force, are theseother forces acting on the
person, keys, and elevator after the release?

u: no

S: Yep. Thus, keep in mind that after the release, the ontyefon the person, keys, and
elevator is the force of gravity. If gravity is the only foraeting on an object, will it
be moving or staying still?

u: it will be moving

S: Fine. Not only are the person, keys, and elevator movirgy, have only gravitational
forces on them. When an object is falling and has only graeital force on it, it ig
said to be in what?

u: freefall

Figure 22.3  The tutoring domain: part of an conversation between a stuaker (U)
and the ITSPOKE system (S) of Litman and Silliman (2004).

Sec. 22.1 starts out with a summary of facts about human csetven, includ-
ing the idea of turns and utterances, speech acts, groundigiggue structure, and
conversational implicature. Sec. 22.2 then introducepkspoken language systems,
introducing in detail each of the components of a typicatfeabased dialogue system,
followed by an overview in Sec. 22.3 of the WoiceXML langu&ge implementing
these systems. We then turn Sec. 22.4.2 to the problem afatirad system perfor-
mance. Sec. 22.5 then introduces the more sophisticatedriafion-state model of
conversation. Sec. 22.6 shows how Markov Decision Prosesse provided a mo-
tivated probabilistic foundation for conversational anti Finally we discuss some
advanced topics, including the BDI (belief-desire-inten} paradigm for dialogue un-
derstanding, and a brief mention of issues involved in sicg human-human dia-
logue.
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22.1 HROPERTIES OFHUMAN CONVERSATIONS

TURN-TAKING

CONVERSATION
ANALYSIS

(22.1)

Conversation between humans is an intricate and compleigotivity. Because of the
limitations of our current technologies, conversationsMeen humans and machines
are vastly simpler and more constrained than these humarexsations. Nonethe-
less, before we attempt to design a conversational ageonigecse with humans, it is
crucial to understand something about how humans convetiseach other.

In this section we discuss some properties of human-humavecsation that
distinguish it from the kinds of (text-based) discourseshaee seen so far. The main
difference is that conversation is a kind jofnt activity between two (or more) in-
terlocutors. This basic fact has a number of ramificationsyersations are built up
out of consecutivéurns, each turn consists ¢bint action of the speaker and hearer,
and the hearer make special inferences caltmu/ersational implicaturesabout the
speaker’s intended meaning.

22.1.1 Turns and Turn-Taking

Dialogue is characterized liyrn-taking ; Speaker A says something, then speaker B,
then speaker A, and so on. If having a turn (or “taking the flpisra resource to be
allocated, what is the process by which turns are allocatéd® do speakers know
when it is the proper time to contribute their turn?

It turns out that conversation and language itself are strad in such a way as
to deal efficiently with this resource allocation problemnelsource of evidence for
this is the timing of the utterances in normal human convinss. While speakers
can overlap each other while talking, it turns out that orrage the total amount of
overlap is remarkably small; perhaps less than 5% (Levink®83). If speakers aren’t
overlapping, do they figure out when to talk by waiting for aipa after the other
speaker finishes? This is also very rare. The amount of timedas turns is quite
small, generally less than a few hundred milliseconds emendilti-party discourse.
Since it may take more than this few hundred millisecond$tfemext speaker to plan
the motor routines for producing their utterance, this nsghat speakers begin motor
planning for their next utterance before the previous spebks finished. For this to
be possible, natural conversation must be set up in such ahaaymost of the time)
people can quickly figure owtho should talk next, and exactlyhenthey should talk.
This kind of turn-taking behavior is generally studied ire theld of Conversation
Analysis (CA). In a key conversation-analytic paper, Sacks et al. (1argyed that
turn-taking behavior, at least in American English, is goeel by a set of turn-taking
rules. These rules apply atte@nsition-relevance place or TRP; places where the
structure of the language allows speaker shift to occurehten version of the turn-
taking rules simplified from Sacks et al. (1974):

Turn-taking Rule. Ateach TRP of each turn:

a. If during this turn the current speaker has selected Aaselt speaker then A
must speak next.

b. If the current speaker does not select the next speakeother speaker may
take the next turn.
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c. If no one else takes the next turn, the current speaker akaytihe next turn.

There are a number of important implications of rule (22at)dialogue model-
ing. First, subrule (22.1a) implies that there are someautiges by which the speaker
specifically selects who the next speaker will be. The mogioals of these are ques-
tions, in which the speaker selects another speaker to artbe/guestion. Two-part

ADJACENCYPAIRS  Structures likeQUESTION-ANSWER are calledadjacency pairs (Schegloff, 1968) or
piocicear  dialogic pair (Harris, 2005). Other adjacency pairs includREETING followed by
GREETING, COMPLIMENT followed byDOWNPLAYER, REQUESTfollowed byGRANT.
We will see that these pairs and the dialogue expectati@yssét up will play an im-
portant role in dialogue modeling.

Subrule (22.1a) also has an implication for the interpietadf silence. While
silence can occur after any turn, silence in between the &wts pf an adjacency pair

SIGNFICANT s significant silence For example Levinson (1983) notes this example from Atkins
and Drew (1979); pause lengths are marked in parenthesesdamds):

(22.2)  A: Isthere something bothering you or not?
(2.0)
A: Yesorno?
(1.5)
A: Eh?
B: No.

Since A has just asked B a question, the silence is inteigbredea refusal to
DISPREFERRED respond, or perhapstspreferred response (a response, like saying “no” to a request,

which is stigmatized). By contrast, silence in other pladesexample a lapse after
a speaker finishes a turn, is not generally interpretablaéi;mway. These facts are
relevant for user interface design in spoken dialogue systeisers are disturbed by
the pauses in dialogue systems caused by slow speech reergfankelovich et al.,
1995).

Another implication of (22.1) is that transitions betweg@eakers don’'t occur
just anywhere; théransition-relevance placeswvhere they tend to occur are generally

UTTERANCE atutterance boundaries. Recall from Ch. 11 that spoken utteranceg ditien written

sentences in a number of ways. They tend to be shorter, are likely to be single
clauses or even just single words, the subjects are usualhlyopns rather than full
lexical noun phrases, and they include filled pauses andrsepahearer must take all
this (and other cues like prosody) into account to know whekeegin talking.

22.1.2 Language as Action: Speech Acts

The previous section showed that conversation consistssefjaence of turns, each
of which consists of one or more utterance. A key insight icdoversation due to
Wittgenstein (1953) but worked out more fully by Austin (296s that an utterance in
a dialogue is a kind odction being performed by the speaker.

PERFORMATIVE The idea that an utterance is a kind of action is particuleggr inperformative
sentences like the following:

(22.3) I name this ship thd&itanic.



Chapter 22. Dialogue and Conversational Agents

(22.4)
(22.5)

SPEECH ACTS

ILLOCUTIONARRORCE

(22.6)

COMMON GROUND

GROUND

| second that motion.
| bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (22.3) the effect of changing
the state of the world (causing the ship to have the n@itamic) just as any action can
change the state of the world. Verbs likameor secondwhich perform this kind of
action are called performative verbs, and Austin calleddéHands of actionspeech
acts What makes Austin’s work so far-reaching is that speech a not confined
to this small class of performative verbs. Austin’s clainthat the utterance of any
sentence in a real speech situation constitutes three &fraigs:

¢ |locutionary act: the utterance of a sentence with a particular meaning.

o illocutionary act: the act of asking, answering, promising, etc., in uttering a
sentence.

e perlocutionary act: the (often intentional) production of certain effects upon
the feelings, thoughts, or actions of the addressee inngtarsentence.

For example, Austin explains that the utterance of exanttes) might have thélo-
cutionary force of protesting and the perlocutionary effect of stoppingaldressee
from doing something, or annoying the addressee.

You can't do that.

The termspeech acis generally used to describe illocutionary acts rathen tha
either of the other two types of acts. Searle (1975b), in fyodj a taxonomy of
Austin’s, suggests that all speech acts can be classifiedird of five major classes:

e Assertives: committing the speaker to something’s being the casgdesting
putting forward swearing boasting concluding.

o Directives: attempts by the speaker to get the addressee to do somedbkigg
ordering, requestinginviting, advising begging.

e Commissives:committing the speaker to some future course of actwaniis-
ing, planning, vowing, betting, opposing

e Expressives:expressing the psychological state of the speaker aboate ait
affairsthanking apologizing welcomingdeploring

e Declarations: bringing about a different state of the world via the uttesn
(including many of the performative examples abdwesign You're fired)

22.1.3 Language as Joint Action: Grounding

The previous section suggested that each turn or utterandée be viewed as an ac-
tion by a speaker. But dialogue is not a series of unrelatéegandent acts. Instead,
dialogue is a collective act performed by the speaker anti¢glaeer. One implication

of joint action is that, unlike in monologue, the speaker &edrer must constantly
establishcommon ground (Stalnaker, 1978), the set of things that are mutually be-
lieved by both speakers. The need to achieve common grouadsrbat the hearer
mustground the speaker’s utterances, making it clear that the heaseuhderstood
the speaker’s meaning and intention.
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As Clark (1996) points out, people need closure or grounftingon-linguistic
actions as well. For example, why does a well-designed &letatton light up when
it's pressed? Because this indicates to the would-be eletraiveler that she has suc-
cessfully called the elevator. Clark phrases this needlésuce as follows (following
(Norman, 1988)):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in perfgrinin

Grounding is also important when the hearer needs to irelitatt the speaker
hasnotsucceeded in performing an action. If the hearer has prabileomderstanding,
she mustindicate these problems to the speaker, againtsouhzal understanding can
eventually be achieved.

How is closure achieved? Clark and Schaefer (1989) intretheeidea that each

conTrBUTION joint linguistic act orcontribution has two phases, callgatesentation and accep-
tance In the first phase, a speaker presents the hearer with aantes performing
a sort of speech act. In the acceptance phase, the hearer gpaihd the utterance,
indicating to the speaker whether understanding was agthiev

What methods can the hearer (call her B) use to ground thé&spA&a utterance?
Clark and Schaefer (1989) discuss five main types of metlwrdsyed from weakest
to strongest:

1. Continued attention: B shows she is continuing to attend and therefore remains
satisfied with A's presentation.
2. Relevant next contribution: B starts in on the next relevant contribution.
3. Acknowledgement:B nods or says a continuer likéd-huh yeah or the like, or
anassessmeniike that's great
4. Demonstration: B demonstrates all or part of what she has understood A to
REFORMULATING mean, for example bseformulating (paraphrasing) A's utterance, or bgllab-
COLLABORATIVE orative completionof As utterance.
5. Display: B displays verbatim all or part of A's presentation.

Let’s look for examples of these in a human-human dialogaengpte. We'll be
returning to this example throughout the chapter; in ordetdsign a more sophisti-
cated machine dialogue agent, it helps to look at how a hurgantgerforms similar
tasks. Fig. 22.4 shows part of a dialogue between a humaal tagent and a human
client.

Utterance A, in which the agent repeais May, repeated below in boldface,
shows the strongest form of grounding, in which the heasgldys their understanding
by repeating verbatim part of the speakers words:

Ci: ...l needto travein May.
Ai1: And, what dayin May did you want to travel?

This particular fragment doesn’t have an example ofaknowledgemenbut
there’s an example in another fragment:

C: He wants to fly from Boston
A: Mm hmm
C: to Baltimore Washington International
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CONTINUER
BACKCHANNEL

Ci: ...l need to travel in May.

Az And, what day in May did you want to travel?

Co: OK uh I need to be there for a meeting that's from the 12th ¢olthth.

Ao: And you're flying into what city?

Cas: Seattle.

As: And what time would you like to leave Pittsburgh?

Cs: Uh hmm | don’t think there’s many options for non-stop.

Ay Right. There’s three non-stops today.

Cs: What are they?

As: The first one departs PGH at 10:00am arrives Seattle at #2e@3ime. The
second flight departs PGH at 5:55pm, arrives Seattle at 8pnal the las
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Cs: OK I'll take the 5ish flight on the night before on the 11th.

Ag: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8., Air flight
115.

Cr OK.

Figure 22.4  Part of a conversation between a travel agent (A) and cl@nt (

The wordmm-hmmhere is acontinuer, also often called &@ackchannelor
an acknowledgement token A continuer is a (short) optional utterance which ac-
knowledges the content of the utterance of the other, anghMiioesn’t require an
acknowledgement by the other (Yngve, 1970; Jefferson, 198degloff, 1982; Ward
and Tsukahara, 2000).

In Clark and Schaefer’s third method, the speaker starta itheir relevant next
contribution. We see a number of examples of this in the samiallogue above, for
example where the speaker asks a question and the heararaiisvwWe mentioned
theseadjacency pairsabove; other examples inclugeoprosaALfollowed by ACCEP-
TANCE Or REJECTION APOLOGY followed by ACCEPTANCHREJECTION SUMMONS
followed by ANSWER, and so on.

In a more subtle but very important kind of grounding act,speaker can com-
bine this method with the previous one. For example notie¢ wWhenever the client
answers a question, the agent begins the next questiorAwithThe Andindicates to
the client that the agent has successfully understood theeario the last question:

And, what day in May did you want to travel?
And you're flying into what city?

And what time would you like to leave Pittsburgh?

As we will see in Sec. 22.5, the notions of grounding and dbutions can
be combined with speech acts to give a more sophisticatecinoddoint action in
conversation; these more sophisticated models are adiidatjue acts

Grounding is just as crucial in human-machine conversam®it is in human
conversation. The examples below, from Cohen et al. (264)gest how unnatural
it sounds when a machine doesn't ground properly. The usgkafymakes (22.7) a
much more natural response than (22.8) to ground a usegsti@):
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(22.7)  System: Did you want to review some more of your personal jefofi
Caller: No.
System:Okay,what’s next?
(22.8)  System: Did you want to review some more of your personal lefdfi

Caller: No.
System: What'’s next?

Indeed, this kind of lack of grounding can cause errors.eltiéin et al. (1993)
and Yankelovich et al. (1995) found that humans get confugeeh a conversational
system system doesn’t give explicit acknowledgements.

22.1.4 Conversational Structure

We have already seen how conversation is structured byetjsgairs and contribu-
tions. Here we’'ll briefly discuss one aspect of therall organization of a conversa-

tion: conversational openings. The openings of telephongersations, for example,
tend to have a 4-part structure (Clark, 1994; ?):

Stage 1:Enter a conversation, with summons-response adjacency pai
Stage 2:ldentification

Stage 3:Establish joint willingness to converse

Stage 4:The first topic is raised, usually by the caller.

These four stages appear in the opening of this short taskted conversation
from Clark (1994).

Stage Speaker & Utterance

1 A1 (rings B’s telephone)

1,2 Bi1: Benjamin Holloway

2 Aj: thisis Professor Dwight's secretary, from Polymania €gd
2,3 B1: oohyes—

4 Ai1:  uh:m. about the: lexicology *seminar*

4 Bi: *yes*

It is common for the person who answers the phone to speak(dirate the
caller’s ring functions as the first part of the adjacency)daut for the caller to bring
up the first topic, as the caller did above concerning thei¢tdrgy seminar”. This
fact that the caller usually brings up the first topic causegusion when the answerer
brings up the first topic instead; here’s an example of thasfthe British directory
enquiry service from Clark (1994):

Customer: (rings)

Operator: Directory Enquiries, for which town please?

Customer: Could you give me the phone number of um: Mrs. unittSon?
Operator: Yes, which town is this at please?

Customer: Huddleston.

Operator: Yes. And the name again?

Customer: Mrs. Smithson.
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IMPLICATURE

In the conversation above, the operator brings up the tdpicvhich town
please?in her first sentence, confusing the caller, who ignoresttipic and brings up
her own. This fact that callers expect to bring up the topa&xs why conversational
agents for call routing or directory information generallse very open prompts like
How may | help you?r How may | direct your call?rather than a directive prompt
like For which town please?Open prompts allow the caller to state their own topic,
reducing recognition errors caused by customer confusion.

Conversation has many other kinds of structure, includiegntricate nature of
conversational closings and the wide use of presequenceswil\discuss structure
based ortoherencein Sec. 22.7.

22.1.5 Conversational Implicature

We have seen that conversation is a kind of joint activityvhich speakers produce
turns according to a systematic framework, and that theribonions made by these
turns include a presentation phase of performing a kind tbacand an acceptance
phase of grounding the previous actions of the interloci8orfar we have only talked
about what might be called the ‘infrastructure’ of convéimsa But we have so far said
nothing about the actual information that gets communétttam speaker to hearer in
dialogue.

While Ch. 16 showed how we can compute meanings from serggiht@rns out
that in conversation, the meaning of a contribution is offeite a bit extended from the
compositional meaning that might be assigned from the walalse. This is because
inference plays a crucial role in conversation. The integtion of an utterance relies
on more than just the literal meaning of the sentences. @entie client’s response
C, from the sample conversation in Fig. 22.4, repeated here:

A1: And, what day in May did you want to travel?
Co: OK uh | need to be there for a meeting that's from the 12th éolibth.

Notice that the client does not in fact answer the questione dlient merely
states that he has a meeting at a certain time. The semaortitssfsentence produced
by a semantic interpreter will simply mention this meetikghat is it that licenses the
agent to infer that the client is mentioning this meeting stoeinform the agent of the
travel dates?

Now consider another utterance from the sample convergatics one by the
agent:

Ay: ...There’s three non-stops today.

Now this statement would still be true if there were seven-simps today, since
if there are seven of something, there are by definition dismet But what the agent
means here is that there are thes®l not more than three non-stops today. How is
the client to infer that the agent meamdy three non-stops?

These two cases have something in common; in both cases dhkespseems
to expect the hearer to draw certain inferences; in othedsyahe speaker is com-
municating more information than seems to be present in tteged words. These
kind of examples were pointed out by Grice (1975, 1978) asqgddris theory ofcon-
versational implicature. Implicature means a particular class of licensed inferences.
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MAXIMS

QUANTITY

QUALITY

RELEVANCE

MANNER

Grice proposed that what enables hearers to draw thesermties is that conversa-
tion is guided by a set ahaxims, general heuristics which play a guiding role in the
interpretation of conversational utterances. He proptisedbllowing four maxims:

e Maxim of Quantity: Be exactly as informative as is required:
1. Make your contribution as informative as is required (for current pur-

poses of the exchange).
2. Do not make your contribution more informative than isuiegd.

e Maxim of Quality: Try to make your contribution one that is true;

1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

o Maxim of Relevance:Be relevant.
e Maxim of Manner: Be perspicuous:

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

It is the Maxim of Quantity (specifically Quantity 1) that@is the hearer to
know thatthree non-stopslid not mearseven non-stopsrhis is because the hearer
assumes the speaker is following the maxims, and thus if peaker meant seven
non-stops she would have said seven non-stops (“as infivera is required”). The
Maxim of Relevance is what allows the agent to know that tlentwants to travel by
the 12th. The agent assumes the client is following the msximd hence would only
have mentioned the meeting if it was relevant at this poinhandialogue. The most
natural inference that would make the meeting relevantddriference that the client
meant the agent to understand that his departure time waeetibe meeting time.

22.2 Basic DIALOGUE SYSTEMS

We've now seen a bit about how human dialogue works, althasghe’ll see, not ev-
ery aspect of human-human conversation is modeled in huraniiine conversation.
Let's therefore turn now to the spoken dialogue systems irsedmmercial applica-
tions today.

Fig. 22.5 shows a typical architecture for a dialogue systirhas six compo-
nents. The speech recognition and understanding compoagmact meaning from
the input, while the generation and TTS components map fraanimg to speech.
The dialogue manager controls the whole process, alonganvigsk manager which
has knowledge about the task domain (such as air travel)ll Yéethrough each of
these components in the next sections. Then we’ll explonesophisticated research
systems in following sections.
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Speech Natural Language
= Recognition Understanding
Dialogue Task
Manager Manager
Text-to-Speech Natural Language
- Synthesis = Generation

Figure 22.5  Simplified architecture of the components of a conversatiagent.

22.2.1 ASR component

The ASR (automatic speech recognition) component takeis &yult, generally from
the telephone, and returns a transcribed string of worddisasssed in chapter Ch. 9.

Various aspects of the ASR system may be optimized spedjffcaluse in con-
versational agents. For example, the large vocabularnchgeeognizers we discussed
in Ch. 9 for dictation or transcription focused on transicrgany sentence on any topic
using any English word. But for domain-dependent dialogigtesns it is of little use
to be able to transcribe such a wide variety of sentencesséitences that the speech
recognizer needs to be able to transcribe need are just thaisean be understood by
the natural language understanding component. For thi®neecommercial dialogue
systems generally use non-probabilistic language modedsdon finite-state gram-
mars. These grammars are generally hand-written, andfgdicpossible responses
that the system understands. We'll see an example of suchdvaditen grammar
for a VoiceXML system in Sec. 22.3. Such grammars-basediagg models can also
be compiled automatically from, e.g., unification grammased for natural language
understanding (Rayner et al., 2006).

Because what the user says to the system is related to whatysitem has
just said, language models in conversational agent ardlysiialogue-state depen-
dent For example, if the system has just asked the user “Whatoéyou departing
from?”, the ASR language model can be constrained to onlgisbof city names, or
perhaps sentences of the form ‘I want to (Iddepart) from [CITYNAME]'. These
dialogue-state-specific language models often consisanflitwritten finite-state (or
even context-free) grammars as discussed above, one fodédogue state.

In some systems, the understanding component is more pdyentl the set of
sentences the system can understand is larger. In such oesgtead of a finite-state
grammar, we can use ad-gram language model whose probabilities are similarly
conditioned on the dialogue state.

Whether we use a finite-state, context-free, ofNagram language model, we

RESIRIGINE  call such a dialogue-state dependent language madstidctive grammar. when the
system wants to constrain the user to respond to the syskashigtterance, it can use
a restrictive grammar. When the system wants to allow themsee options, it might
mix this state-specific language model with a more genergjuage model. As we
will see, the choice between these strategies can be tused ba how muchitiative
the user is allowed.
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Speech recognition in dialogue, as well as in many otheriegns like dicta-
tion, has the advantage that the identity of the speakerinsmanstant across many ut-
terances. This means that speaker adaptation technigad@gliLR and VTLN (Ch. 9)
can be applied to improve recognition as the system hears amat more speech from
the user.

22.2.2 NLU component

The NLU (natural language understanding) component obdis systems must pro-
duce a semantic representation which is appropriate falittegue task. Many speech-
based dialogue systems, since as far back as the GUS sysbemoyBet al., 1977), are
based on the frame-and-slot semantics discussed in CHeptek travel system, for
example, which has the goal of helping a user find an appregftight, would have a
frame with slots for information about the flight; thus a ssme likeShow me morn-
ing flights from Boston to San Francisco on Tuesahaght correspond to the following
filled-out frame (from Miller et al. (1994)):

SHOW:
FLIGHTS:
ORIGIN:
CITY: Boston
DATE:
DAY-OF-WEEK: Tuesday
TIME:
PART-OF-DAY: morning
DEST:

CITY: San Francisco

How does the NLU component generate this semantics? Inipkénany of the
methods for semantic analysis discussed in Ch. 17 could ipéogead.

For example, some dialogue systems use general-purpdemtion grammars
with semantic attachments, such as the Core Language Engjioguced in Ch. 13. A
parser produces a sentence meaning, from which the sknsfiéire extracted (Lewin
etal., 1999).

Other dialogue systems rely on simpler domain-specific séimanalyzers, such
as thesemantic grammarsalso discussed in Ch. 17. In a semantic grammar, the
actual node names in the parse tree correspond to the sereatities which are being
expressed, as in the following grammar fragments:

SHOW — show me| i want| cani seé..
DEPART.TIME_RANGE — (aftejaroundbefore) HOUR|

morning| afternoon| evening
HOUR

— ondtwolthredfour.. [twelve (AMPM)
FLIGHTS — (a) flight| flights
AMPM — am|pm
ORIGIN — from CITY
DESTINATION — to CITY
CITY — Boston| San Francisco Denver| Washington

These grammars take the form of context-free grammars arsige transition
networks (Issar and Ward, 1993; Ward and Issar, 1994), andehean be parsed by
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NORMALIZED

any standard CFG parsing algorithm, such as the CKY or Eaftgyrithms introduced
in Ch. 12. The result of the CFG or RTN parse is a hierarchaatling of the input
string with semantic node labels:

SHOW FLIGHTS ORIGIN DESTINATION DEPART_DATE DEPART_TIME
to CITY
Show me flights from boston to san francisco on tuesday  morni ng

Since semantic grammar nodes like ORIGIN correspond tddheia the frame,
the slot-fillers can be read almost directly off the resglfiarse above. It remains only
to put the fillers into some sort of canonical form (for exaenghtes can beormalized
into a DD:MM:YY form, times can be put into 24-hour time, etc)

The semantic grammar approach is very widely used, but iblaria deal with
ambiguity, and requires hand-written grammars that aremsige and slow to create.

SENTENCE

Q-SUBJECT BE-QUESTION

LINK SUBJECT PRED-ADJUNCT
|
ARTICLE A-PLACE ON-STREET

|
AHOTEL /\

WHAT STREET HOTEL-NAME  ON A—ST‘F{EET
|

What sfreet s the Hyatt on Q-SUBJECT

Figure 22.6 A parse of a sentence in the TINA semantic grammar (from (§en
1995)). PLACEHOLDER FIGURE.

D

Ambiguity can be addressed by adding probabilities to tlaengnar; one such
probabilistic semantic grammar system is the TINA systean&H, 1995) shown in
Fig. 22.6; note the mix of syntactic and semantic node narfike.grammar rules in
TINA are written by hand, but parse tree node probabilitiesteained by a modified
version of the SCFG method described in Ch. 14.

An alternative to semantic grammars that is probabilistid also avoids hand-
coding of grammars is the semantic HMM model of Pieraccinalet(1991). The
hidden states of this HMM are semantic slot labels, whileahserved words are the
fillers of the slots. Fig. 22.7 shows how a sequence of hidties corresponding to
slot names, could be decoded from (or could generate) a segué observed words.
Note that the model includes a hidden state called DUMMY Wwiligcused to generate
words which do not fill any slots in the frame.

The goal of the HMM model is to compute the labeling of senardlesC =
C1,C,...,Ci (C for ‘cases’ or ‘concepts’) that has the highest probgbRiC|W) given
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Show me flights that go from Boston to San Francisco
Figure 22.7 The Pieraccini et al. (1991) HMM model of semantics for fijjislots in
frame-based dialogue systems.
some word$V = wy,Wo, ..., W,. As usual, we use Bayes Rule as follows:
P(WIC)P(C)
P(CW) = ——— =
argcma (CIW) argmax PW
(22.9) = argma>P(W|C)P(C)
C
N M
(22.10) = HP(wi|wi,1...w1, P(w|C) HP GilGi_1...c1)
i=2 i=2
The Pieraccini et al. (1991) model makes a simplification the concepts (the
hidden states) are generated by a Markov process (a codegm model), and that
the observation probabilities for each state are genebgtadtate-dependent (concept-
dependent) wordll-gram word model:
(22.11)  P(wi|wi—1,...,w1,C) = P(Wi|Wi_1,...,Wi_N+1,Ci)
(22.12) P(ci|ci-1,...,c1) = P(ci|ci—1,-..,Ci—m+1)
Based on this simplifying assumption, the final equatiorsduis the HMM
model are as follows:
N M
(22.13) argcma>P(C|W []Pwiwi—a..wi w11, 6) [ [ PcilGi-1---Gims1)
i=2

i=2

These probabilities can be trained on a labeled trainingurin which each
sentence is hand-labeled with the concepts/slot-namesias=d with each string of
words. The best sequence of concepts for a sentence, antivaent of concepts to
word sequences, can be computed by the standard Viterbdohecalgorithm.

In summary, the resulting HMM model is a generative modehwito compo-
nents. TheP(C) component represents the choice of what meaning to exptess;
signs a prior over sequences of semantic slots, computeddnycptN-gram.P(W|C)
represents the choice of what words to use to express thatingedhe likelihood of
a particular string of words being generated from a giveh slbis computed by a
wordN-gram conditioned on the semantic slot. This model is vanjlar to the HMM
model fornamed entity detection we saw in Ch. 17. Technically, HMM models like
this, in which each hidden state correspond to multiple eLpservations, are called
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SEMI-HMMS

PROMPTS

(22.14)

semi-HMMs. In a classic HMM, by contrast, each hidden state corresptind single
output observation.

Many other kinds of statistical models have been proposethéosemantic un-
derstanding component of dialogue systems. These inchedditiden Understanding
Model (HUM), which adds hierarchical structure to the HMMdombine the advan-
tages of the semantic grammar and semantic HMM approachiler(t al., 1994,
1996, 2000), or the decision-list method of Rayner and Hp¢R803).

22.2.3 Generation and TTS components

The generation component of a conversational agent chtfusesncepts to express to
the user, plans out how to express these concepts in wordsisaigns any necessary
prosody to the words. The TTS component then takes thesesvamiditheir prosodic
annotations and synthesizes a waveform, as described i8.Ch.

The generation task can be separated into two tasksit to say andhow to
say it The content planner module addresses the first task, decides what content
to express to the user, whether to ask a question, presemisareg and so on. The
content planning component of dialogue systems is gegeratged with the dialogue
manager, and we will return to it below.

Thelanguage generatiormodule addresses the second task, choosing the syn-
tactic structures and words needed to express the mearanguage generation mod-
ules are implemented in one of two ways. In the simplest anst c@mmon method,
all or most of the words in the sentence to be uttered to thearseprespecified by the
dialogue designer. This method is known as template-basedrgtion, and the sen-
tences created by these templates are often cpiteuipts. While most of the words
in the template are fixed, templates can include some vasakhich are filled in by
the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

A second method for language generation relies on techsiffoen the field
natural language generation Here the dialogue manager builds a representation of
the meaning of the utterance to be expressed, and passeseisng representation
to a full generator. Such generators generally have thregooents, a sentence plan-
ner, surface realizer, and prosody assigner. A sketch sfatuhitecture is shown in
Fig. 22.8. See Reiter and Dale (2000) for further infornmatia natural language gen-
eration systems and their use in dialogue.

In the hand-designed prompts that are common in currenémigstthere are
a number of important conversational and discourse cangrthat must be imple-
mented.

Like any discourse, a conversation needs to be coheren2@@hFor example,
as Cohen et al. (2004) show, the use of discourse markersrandyms in the hand-
built system prompts makes the dialogue in (22.15) morerabtioan the dialogue in
(22.14):

Please say the data.
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Content Sentence Surf.ace Prqsody Speech
Planner | ™| Planner Realizer | | Assigner > Synthesizer
What to Say How to Say it
Figure 22.8  Architecture of a natural language generation system falaglie system,
after Walker and Rambow (2002).
Please say the start time.
Please say the duration.
Please say the subject.
(22.15)  First, tell me the date.
i\.l.ext, I'll need the time it starts.
;I."hanks.<pause Now, how long is it supposed to last?
Last of all, I just need a brief description...
Another important case of discourse coherence occurs waicydar prompts
may need to be said to the user repeatedly. In these casestahdard in dialogue sys-
TAPERED PROMPTS  tems to useapered prompts, prompts which get incrementally shorter. The following
example from Cohen et al. (2004) shows a series of (handhoed) tapered prompts:
(22.16)  System: Now, what'’s the first company to add to your watcR list

Caller: Cisco

System: What'’s the next company name? (Or, you can say,stiai.”)
Caller: IBM

System: Tell me the next company name, or say, “Finished.”
Caller: Intel

System: Next one?

Caller: America Online.

System: Next?

Caller: ...

Other constraints on generation are more specific to spolkéogdie, and refer
to facts about human memory and attentional processes.xaorge, when humans
are prompted to give a particular response, it taxes themong less if the suggested
response is the last thing they hear. Thus as Cohen et ad)poit out, the prompt
“To hear the list again, say ‘Repeat list” is easier for sstiran “Say ‘Repeat list’ to
hear the list again.”

Similarly, presentation of long lists of query results (eptential flights, or
movies) can tax users. Thus most dialogue systems havent@iéaning rules to
deal with this. In the Mercury system for travel planninga#sed in (Seneff, 2002),
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SYSTEM INITIATIVE
SINGLE INITIATIVE
INITIATIVE

UNIVERSAL

for example, a content planning rule specifies that if theee@ore than three flights to
describe to the user, the system will just list the availailnes and describe explicitly
only the earliest flight.

22.2.4 Dialogue Manager

The final component of a dialogue system is the dialogue n&aneadpich controls the
architecture and structure of the dialogue. The dialogueamer takes input from the
ASR/NLU components, maintains some sort of state, intedadth the task manager,
and passes output to the NLG/TTS modules.

We saw a very simple dialogue manager in Chapter 2's ELIZAqseharchitec-
ture was a simple read-substitute-print loop. The systead e a sentence, applied a
series of text transformations to the sentence, and thateplrit out. No state was kept;
the transformation rules were only aware of the currenttispatence. In addition to
its ability to interact with a task manager, a modern diabmanager is very different
than ELIZA's manager in both the amount of state that the mankeeps about the
conversation, and the ability of the manager to model atrestof dialogue above the
level of a single response.

Four kinds of dialogue management architectures are mostnam. The sim-
plest and most commercially developed architecturesefistibte and frame-based, are
discussed in this section. Later sections discuss the noovenful information-state di-
alogue managers, including a probabilistic version oflimfation-state managers based
on Markov Decision Processes, and finally the more clasait-phsed architectures.

The simplest dialogue manager architecture is a finite-st@nager. For exam-
ple, imagine a trivial airline travel system whose job waagk the user for a departure
city, a destination city, a time, and whether the trip wasnabitrip or not. Fig. 22.9
shows a sample dialogue manager for such a system. Theact#tesd=SA correspond
to questions that the dialogue manager asks the user, araddbeorrespond to ac-
tions to take depending on what the user responds. Thisnsystenpletely controls
the conversation with the user. It asks the user a seriesestigns, ignoring (or mis-
interpreting) anything the user says that is not a direcvan$o the system’s question,
and then going on to the next question.

Systems that control the conversation in this way are caljstem initiative or
single initiative systems. We say that the speaker that is in control of theersation
has thanitiative ; in normal human-human dialogue, initiative shifts bacé gorth be-
tween the participants (?)The limited single-initiative finite-state dialogue maeag
architecture has the advantage that the system always kmbatsquestion the user is
answering. This means the system can prepare the speednitémoengine with a
specific language model tuned to answers for this questiowihg what the user is
going to be talking about also makes the task of the natungiuage understanding
engine easier. Most finite-state systems also allow alloiversal commands. Uni-
versals are commands that can be said anywhere in the déglegery dialogue state

1 Single initiative systems can also be controlled by the,usexhich case they are calledser initiative
systems. Pure user initiative systems are generally usestdteless database querying systems, where the
user asks single questions of the system, which the systawerts into SQL database queries, and returns
the results from some database.
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(22.17)
(22.18)

=} What city are you leaving from? i|=

'

‘ Where are you going? I

Y
‘ ‘What date do you want to leave? I

!

‘ Is it a one-way trip? I

Ye/ \1:10

Do you want to go from
<FROM> to <TO> on <DATE>? ‘ What date do you want to return? I
L 1
No Yes \

Do you want to go from <FROM> to <TO>
on <DATE> returning on <RETURN>?

|
Yes No

Book the flight

Figure 22.9 A simple finite-state automaton architecture for a dialognamager.

recognizes the universal commands in addition to the answiie question that the
system just asked. Common universals inclhedp, which gives the user a (possi-
bly state-specific) help messag#art over (or main menu), which returns the user
to some specified main start state, and some sort of commasadriect the system’s

understanding of the users last statement (San-Seguntp2iGl). System-initiative

finite-state dialogue managers with universals may be sifidor very simple tasks

such as entering a credit card number, or a name and passwdite phone.

Pure system-initiative finite-state dialogue manageritectures are probably
too restricted, however, even for the relatively uncongikd task of a spoken dialogue
travel agent system. The problem is that pure system-iniaystems require that the
user answer exactly the question that the system askedhButan make a dialogue
awkward and annoying. Users often need to be able to say bongéhat is not exactly
the answer to a single question from the system. For exariipke travel planning
situation, users often want to express their travel goalk womplex sentences that
may answer more than one question at a time, as in Communiemple (22.17)
repeated from Fig. 22.1, or ATIS example (22.18).

Hi I'd like to fly to Seattle Tuesday morning

I want a flight from Milwaukee to Orlando one way leaving affige p.m. on
Wednesday.

A finite state dialogue system, as typically implemented;tdsndle these kinds
of utterances since it requires that the user answer eadtigues it is asked. Of
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course itis theoretically possible to create a finite stethitecture which has a separate
state for each possible subset of questions that the ussiesrsent could be answering,
but this would require a vast explosion in the number of stateaking this a difficult
architecture to conceptualize.

Therefore, most systems avoid the pure system-initiativieefistate approach
and use an architecture that allomsxed initiative, in which conversational initiative
can shift between the system and user at various points iidhegue.

One common mixed initiative dialogue architecture reliestloe structure of
the frame itself to guide the dialogue. Thdsame-basedor form-based dialogue
managers asks the user questions to fill slots in the frani@llow the user to guide
the dialogue by giving information that fills other slots retframe. Each slot may be
associated with a question to ask the user, of the followjipg:t

Slot Question

ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

A frame-based dialogue manager thus needs to ask quesfitms user, filling
any slot that the user specifies, until it has enough infalonab perform a data base
query, and then return the result to the user. If the userdvappo answer two or
three questions at a time, the system has to fill in these atatshen remember not
to ask the user the associated questions for the slots. Moy slot need have an
associated question, since the dialogue designer may mattha user deluged with
guestions. Nonetheless, the system must be able to fill 8ietif the user happens
to specify them. This kind of form-filling dialogue managkus does away with the
strict constraints that the finite-state manager imposetherrder that the user can
specify information.

While some domains may be representable with a single frathers, like the
travel domain, seem to require the ability to deal with nplétiframes. In order to han-
dle possible user questions, we might need frames with gerarte information (for
questions likewhich airlines fly from Boston to San Francisgpihformation about
airfare practices (for questions lilk#o | have to stay a specific number of days to get a
decent airfare or about car or hotel reservations. Since users may switch frame
to frame, the system must be able to disambiguate which Slehizh frame a given
input is supposed to fill, and then switch dialogue contrahat frame.

Because of this need to dynamically switch control, fraraeda systems are of-
ten implemented gsroduction rule systems. Different types of inputs cause different
productions to fire, each of which can flexibly fill in differtefnames. The production
rules can then switch control based on factors such as this irggut and some simple
dialogue history like the last question that the systemdskae Mercury flight reser-
vation system (Seneff and Polifroni, 2000; Seneff, 2002suslarge ‘dialogue control
table’ to store 200-350 rules, covering request for hellgsrto determine if the user is
referring to a flight in a list ("I'll take that nine a.m. flight and rules to decide which
flights to describe to the user first.

Now that we've seen the frame-based architecture, letsmeab our discussion
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OPEN PROMPT

DIRECTIVE PROMPT

of conversational initiative. It's possible in the same rige allow system-initiative,
user-initiative, and mixed-initiative interactions. Weid earlier that initiative refers
to who has control of the conversation at any point. The ghnagiged initiative is
generally used in two ways. It can mean that the system orgbeaould arbitrarily
take or give up the initiative in various ways (?; Chu-Cdranld Brown, 1997). This
kind of mixed initiative is difficult to achieve in currentalbgue systems. In form-
based dialogue system, the term mixed initiative is usedaforore limited kind of
shift, operationalized based on a combination of prompe tigpen versus directive)
and the type of grammar used in the ASR. dgen promptis one in which the system
gives the user very few constraints, allowing the user tpaed however they please,
asin:

How may | help you?
A directive prompt is one which explicitly instructs the user how to respond:

Sayyesif you accept the call; otherwise, sagp.

In Sec. 22.2.1 we defined ra@strictive grammar as a language model which
strongly constrains the ASR system, only recognizing prapsponses to a given
prompt.

Prompt Type
Grammar Open Directive
Restrictive Doesn’t make sense System Initiative
Non-Restrictive User Initiative Mixed Initiative
Figure 22.10  Operational definition of initiative, following Singh et.§2002).

In Fig. 22.10 we then give the definition of initiative usedanm-based dialogue
systems, following Singh et al. (2002) and others. Here tegyitiative interaction
uses a directive prompt and a restrictive grammar; the sgdetd how to respond, and
the ASR system is constrained to only recognize the respahsat are prompted for.
In user initiative, the user is given an open prompt, and tlaengnar must recognize
any kind of response, since the user could say anything.l¥ziiraa mixed initiative
interaction, the system gives the user a directive promibt particular suggestions for
response, but the non-restrictive grammar allows the wserspond outside the scope
of the prompt.

Defining initiative as a property of the prompt and grammauetyn this way
allows systems to dynamically change their initiative typedifferent users and in-
teractions. Novice users, or users with high speech retiogrérror, might be better
served by more system initiative. Expert users, or those dppen to speak more
recognizably, might do well with mixed or user initiativeténactions. We will see in
Sec. 22.6 how machine learning techniques can be used teehubative.

22.3 \VoICEXML

VOICEXML

VoiceXML is the Voice Extensible Markup Language, an XML-based djaéodesign
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VXML language released by the W3C. The goal of VoiceXML\®mI) is to create simple
audio dialogues of the type we have been describing, malsegofiASR and TTS,
and dealing with very simple mixed-initiative in a frameskd architecture. While
VoiceXML is more common in the commercial rather than acadesetting, it offers a
convenient summary of the dialogue system design issuesawediscussed, and will
continue to discuss.

<form>
<field name="transporttype">
<prompt>
Please choose airline, hotel, or rental car.
</prompt>
<grammar type="application/x=nuance-gs|">
[airline hotel "rental car"]
</grammar>
</field>
<block>
<prompt>
You have chosen <value expr="transporttype">.
</prompt>
</block>
</form>

Figure 22.11 A minimal VoiceXML script for a form with a single field. Usesi
prompted, and the response is then repeated back.

A VoiceXML document contains a set of dialogues, each of Witian be dorm
or amenu We will limit ourselves to introducing forms; see (?) for manformation
on VoiceXML in general. The VoiceXML document in Fig. 22.1éfthes a form with
a single field named ‘transporttype’. The field has an attdgirempt,Please choose
airline, hotel, or rental car which can be passed to the TTS system. It also has a
grammar (language model) which is passed to the speechmitiongngine to specify
which words the recognizer is allowed to recognize. In thengple in Fig. 22.11, the
grammar consists of a disjunction of the three watikne, hotel andrental car.

A <form> generally consists of a sequence<dfeld> s, together with a
few other commands. Each field has a name (the name of the ri¢fiyi 22.11 is
transporttype ) which is also the name of the variable where the user’s respo
will be stored. The prompt associated with the field is spedifiia the<prompt>
command. The grammar associated with the field is specifiednd<grammar>
command. VoiceXML supports various ways of specifying awrzar, including XML
Speech Grammar, ABNF, and commercial standards, like Nu@st.. We will be us-
ing the Nuance GSL format in the following examples.

The VoiceXML interpreter walks through a form in documerder, repeatedly
selecting each item in the form. If there are multiple fieldh® interpreter will visit
each one in order. The interpretation order can be changetious ways, as we will
see later. The example in Fig. 22.12 shows a form with thrédsfiéor specifying the
origin, destination, and flight date of an airline flight.

The prologue of the example shows two global defaults fasrenandling. If
the user doesn’t answer after a prompt (i.e., silence escadineout threshold), the
VoiceXML interpreter will play the<noinput> prompt. If the user says something,
but it doesn’t match the grammar for that field, the VoiceXMiterpreter will play
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the<nomatch> prompt. After any failure of this type, it is normal to re-a$le user
the question that failed to get a response. Since thessesutan be called from any
field, and hence the exact prompt will be different every tivaiceXML provides a
<reprompt\> command, which will repeat the prompt for whatever field eaiihe
error.

<noinput>

I'm sorry, | didn't hear you. <reprompt/>
</noinput>
<nomatch>
I'm sorry, | didn’'t understand that. <reprompt/>
</nomatch>
<form>

<block> Welcome to the air travel consultant. </block>

<field name="origin">

<prompt> Which city do you want to leave from? </prompt>

<grammar type="application/x=nuance-gs|">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
</[filled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gs|">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt>  OK, to <value expr="destination">  </prompt>
</filled>
</field>
<field name="departdate" type="date">
<prompt> And what date do you want to leave? </prompt>

<filled>
<prompt> OK, on <value expr="departdate">  </prompt>
<ffilled>
</[field>
<block>
<prompt> OK, | have you are departing from <value expr="orig in">
to <value expr="destination"> on <value expr="departdate ">
</prompt>
send the info to book a flight...
</block>

</form>

Figure 22.12 A VoiceXML script for a form with 3 fields, which confirms eaclefi
and handles theoinput andnomatch situations.

The three fields of this form show another feature of VoiceX ¥ie<filled>
tag. The<filled> tag for a field is executed by the interpreter as soon as th fiel
has been filled by the user. Here, this feature is used to hevager a confirmation of
their input.

The last fielddepartdate , shows another feature of VoiceXML, thegpe at-
tribute. VoiceXML 2.0 specifies seven built-in grammar tggmolean , currency ,
date , digits , number, phone, andtime . Since the type of this field idate ,

a data-specific language model (grammar) will be autonibtipassed to the speech
recognizer, so we don't need to specify the grammar herecitkpl

Fig. 22.13 gives a final example which shows mixed initiatire a mixed ini-
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<noinput> I'm sorry, | didn't hear you. <reprompt/> </noinp ut>
<nomatch> I'm sorry, | didn’t understand that. <reprompt/> </nomatch>
<form>
<grammar type="application/x=nuance-gs|">
<I[ CDATA[
Flight ( ?[
(i [wanna (want to)] [fly go])
("d like to [fly go])
([(i wanna)(i'd like a)] flight)
( [from leaving departing] City:x) {<origin $x>}
(' [(?going to)(arriving in)] City:x) {<destination $x>}
( [from leaving departing] City:x
[(?going to)(arriving in)] City:y) {<origin $x> <destinat ion $y>}
?please
)
City [ [(san francisco) (s f 0)] {return( "san francisco, cal ifornia")}

[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}

1]> </grammar>

<initial name="init">
<prompt> Welcome to the air travel consultant. What are your travel plans? </prgmpt>
<finitial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
<ffilled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>

<filled>
<prompt> OK, to <value expr="destination"> </prompt>
<ffilled>
</field>
<block>
<prompt> OK, | have you are departing from <value expr="orig in">

to <value expr="destination">. </prompt>
send the info to book a flight...
</block>
</form>

Figure 22.13 A mixed initiative VoiceXML dialogue. The grammar allowsrgences
which specify the origin or destination cities or both. Usan respond to the initial promp
by specifying origin city, destination city, or both.

tiative dialogue, users can choose not to answer the quettaa was asked by the
system. For example, they might answer a different questionse a long sentence to
fill in multiple slots at once. This means that the VoiceXMltarpreter can no longer
just evaluate each field of the form in order; it needs to sléfiéi whose values are
set. This is done by guard condition a test that keeps a field from being visited. The
default guard condition for a field tests to see if the fieldisnf item variable has a
value, and if so the field is not interpreted.

Fig. 22.13 also shows a much more complex use of a grammargf&immar is
a CFG grammar with two rewrite rules, namiglight andCity . The Nuance GSL
grammar formalism uses parentheses () to mean concateatibsquare brackets []
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to mean disjunction. Thus a rule like (22.19) means YWantsentence can be ex-
panded as want to fly ori want to go ,andAirports can be expanded
assan francisco ordenver .

(22.19) Wantsentence (i want to [fly go])

Airports [(san francisco) denver]

Grammar rules can refer to other grammar rules recursigaty,so in the gram-
mar in Fig. 22.13 we see the grammar Fdight  referring to the rule foCity .

VoiceXML grammars take the form of CFG grammars with optioseman-
tic attachments. The semantic attachments are genertiigrea text string (such as
"denver, colorado” ) or a slot and a filler. We can see an example of the former
in the semantic attachments for t8#y rule (thereturn statements at the end of
each line), which pass up the city and state hame. The samattdachments for the
Flight rule shows the latter case, where the skair(gin>  or <destination>
or both) is filled with the value passed up in the variabfeom theCity rule.

Because Fig. 22.13 is a mixed initiative grammatr, the graniraa to be appli-
cable to any of the fields. This is done by making the exparfipilight a dis-
junction; note that it allows the user to specify only thegaricity, only the destination
city, or both.

22.4 DALOGUE SYSTEM DESIGN AND EVALUATION

VUl

WIZARD-OF-0Z

22.4.1 Designing Dialogue Systems

How does a dialogue system developer choose dialoguegtstarchitectures, prompts,
error messages, and so on? This process is often ¢allédVoice User Interface
design. The three design principles of Gould and Lewis (1@85 be summarized
as:User-Centered Design:Study the user and task, Build simulations and prototypes,
and Iteratively test them on the user and fix the problems.

1. Early Focus on Users and Task:Understand the potential users and the
nature of the task, via interviews with users and investigedf similar systems, and
study of related human-human dialogues.

2. Build Prototypes: In Wizard-of-Oz systems(WOZ) or PNAMBIC (Pay No
Attention to the Man Behind the Curtain) systems, the usgesact with what they
think is a software system, but is in fact a human operatoizgvd”) behind some
disguising interface software (e.g. Gould et al., 1983; €Gebal., 1984; Fraser and
Gilbert, 1991). The name comes from the children’s bable Wizard of O£?), in
which the Wizard turned out to be just a simulation contelly a man behind a
curtain. A WOZ system can be used to test out an architecefirdimplementation;
only the interface software and databases need to be in.pldeewizard’s linguistic
output can be be disguised by a text-to-speech system, textimnly interactions. It
is difficult for the wizard to exactly simulate the errorsnitations, or time constraints
of a real system; results of WOZ studies are thus somewhatizeé, but still can
provide a useful first idea of the domain issues.



26 Chapter 22. Dialogue and Conversational Agents

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you'd use the system in the future?

Figure 22.14  User satisfaction survey, adapted from Walker et al. (2001)

3. lterative Design: An iterative design cycle with embedded user testing is
essential in system design (Nielsen, 1992; Cole et al., 1P997; Yankelovich et al.,
1995; Landauer, 1995). For example Stifelman et al. (1988) & system that origi-
nally required the user to press a key to interrupt the systéray found in user testing

BaRGeN  that users instead tried to interrupt the systearge-in), suggesting a redesign of the
system to recognize overlapped speech. The iterative méshalso very important
for designing prompts which cause the user to respond inrstadelable or normative
piRecTiveProMPTS  ways: Kamm (1994) and Cole et al. (1993) found tthia¢ctive prompts (“Say yesif

you accept the call, otherwise, sag’) or the use of constrained forms (Oviatt et al.,
1993) produced better results than open prompts like “Vdill gccept the call?”. Sim-
ulations can also be used at this stage; user simulatiohsntieeact with a dialogue
system can help test the interface for brittleness or efféinsing, 2004).

See Cohen et al. (2004), Harris (2005) for more details onemational inter-
face design.

22.4.2 Dialogue System Evaluation

As the previous section suggested, user testing and eialuatcrucial in dialogue
system design. Computing wser satisfaction ratingan be done by having users
interact with a dialogue system to perform a task, and theingahem complete
a questionnaire (Shriberg et al., 1992; Polifroni et al92;9Stifelman et al., 1993;
Yankelovich et al., 1995; Moller, 2002). For example Fig.24 shows multiple-choice
questions adapted from Walker et al. (2001); responses appeal into the range of 1
to 5, and then averaged over all questions to get a total atisfastion rating.

It is often economically infeasible to run complete useiséattion studies after
every change in a system. For this reason it is often usehdve performance evalua-
tion heuristics which correlate well with human satisfanti A number of such factors
and heuristics have been studied. One method that has begtoudassify these fac-
tors is based on the idea that an optimal dialogue systeneisvbich allows a user to
accomplish their goals (maximizing task success) with ¢astl problems (minimizing
costs). Then we can study metrics which correlate with theeecriteria.

Task Completion Success: Task success can be measured by evaluating the correct-
ness of the total solution. For a frame-based architecthiemight be the percentage
of slots that were filled with the correct values, or the petage of subtasks that were
completed (Polifroni et al., 1992). Since different dialegsystems may be applied
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to different tasks, it is hard to compare them on this mesacWalker et al. (1997)
suggested using the Kappa coefficiagtto compute a completion score which is nor-
malized for chance agreement and better enables crogsysgsmparison.

Efficiency Cost: Efficiency costs are measures of the system’s efficiencylpiritg
users. This can be measured via the total elapsed time fatidhegue in seconds,
the number of total turns or of system turns, or the total neinab queries (Polifroni
et al., 1992). Other metrics include the number of systemnesponses, and the “turn
correction ratio”: the number of system or user turns thaewesed solely to correct
errors, divided by the total number of turns (Danieli and lfé®w, 1995; Hirschman
and Pao, 1993).

Quality Cost:  Quality cost measures other aspects of the interactiomaffeat users’
perception of the system. One such measure is the numbened the ASR system
failed to return any sentence, or the number of ASR rejegtimmpts (‘I'm sorry,
| didn’'t understand that’). Similar metrics include the riaen of times the user had
BaRGEIN  to barge-in (interrupt the system), or the number of time-out prompés/etl when
the user didn't respond quickly enough. Other quality nestfocus on how well the
system understood and responded to the user. This can éntiednappropriateness
(verbose or ambiguous) of the system’s questions, ansaedserror messages (Zue
et al., 1989), or the correctness of each question, answerrar message (Zue et al.,
ASONCERY - 1989; Polifroni et al., 1992). A very important quality céstconcept accuracyor
concept error rate, which measures the percentage of semantic concepts ¢t th
component returns correctly. For frame-based architesttiris can be measured by
counting the percentage of slots that are filled with theeminmeaning. For example if
the sentence ‘I want to arrive in Austin at 5:00’ is misreciagd to have the semantics
"DEST-CITY: Boston, Time: 5:00” the concept accuracy woblkl 50% (one of two
slots are wrong).

MAXIMIZE USER SATISFACTION I

/_\

MAXIMIZE TASK MINIMIZE COSTS I
SUCCESS
EFFICIENCY QUALITY
MEASURES MEASURES

Figure 22.15 PARADISE's structure of objectives for spoken dialoguefgenance.
After Walker et al. (2001).

How should these success and cost metrics be combined agtited? One
approach is the PARADISE algorithm (Walker et al., 1997)R&aigm for Dlalogue
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System Evaluation), which applies multiple regressiorts problem. The algorithm
first assigns each dialogue a user satisfaction rating ugiegtionnaires like the one
in Fig. 22.14. A set of cost and success factors like thosealzothen treated as a
set of independent factors; multiple regression is useto & weight for each factor,
measuring its importance in accounting for user satigfactiFig. 22.15 shows the
particular model of performance that the PARADISE expentadave assumed. Each
box is related to a set of factors that we summarized on théqure page. The resulting
metric can be used to compare quite different dialogueegjiias; evaluations using
methods like PARADISE have suggested that task completiohcancept accuracy
are may be the mostimportant predictors of user satisfagtialker et al. (2001, 2002).

A wide variety of other evaluation metrics and taxonomieghaeen proposed
for describing the quality of spoken dialogue systems; sasd¥ (1992), Moller (2002),
?(?, ?, inter alia).

22.5 INFORMATION-STATE & DIALOGUE ACTS

INFORMATION-STATE

The basic frame-based dialogue systems we have introdactza are only capable

of limited domain-specific conversations. This is becahgesemantic interpretation

and generation processes in frame-based dialogue systerhased only on what is

needed to fill slots. In order to be be usable for more tharfquist-filling applications,

a conversational agent needs to be able to do things likalelaehen the user has
asked a question, made a proposal, or rejected a suggemtidmeeds to be able to
ground a users utterance, ask clarification questions, @ggest plans. This suggests
that a conversational agent needs sophisticated modeiteopietation and generation
in terms of speech acts and grounding, and a more sophésticapresentation of the

dialogue context than just a list of slots.

In this section we sketch a more advanced architecture &wglie management
which allows for these more sophisticated components. fioidel is generally called
the information-state architecture (Traum and Larsson, 2003), although we wal us
the term loosely to include architectures such as Allen e{24101). A probabilis-
tic architecture which can be seen as an extension of thenwafiion-state approach,
the Markov decision processmodel, will be described in the next section. The term
information-state architecture is really a cover term for a number of quite different
efforts toward more sophisticated agents; we’ll assume aetructure consisting of 5
components:

¢ the information state (the ‘discourse context’ or ‘mentaidal’)
¢ adialogue act interpreter (or “interpretation engine”)
e adialogue act generator (or “generation engine”)

e a set of update rules, which update the information stateiasgilie acts are
interpreted, and which include rules to generate dialogte a

e a control structure to select which update rules to apply

The terminformation state is intended to be very abstract, and might include
things like the discourse context and the common ground eftwo speakers, the
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beliefs or intentions of the speakers, user models, and saCoucially, information
state is intended to be a more complex notion than the sttiessin a finite-state
dialogue manager; the current state includes the valuesyrariables, the discourse
context, and other elements that are not easily modeled bgterisumber in a finite
network.

Dialogue acts are an extension of speech acts which ineegieas from ground-
ing theory, and will be defined more fully fully in the next sdetion. The interpre-
tation engine takes speech as input and figures out serteati@ntics and an ap-
propriate dialogue act. The dialogue act generator takasglie acts and sentential
semantics as input and produces text/speech as output.

Finally, the update rules modify the information state with information from
the dialogue acts. These update rules are a generalizdtiba production rules used
in frame-based dialogue systems described above (Sergfalifroni, 2000,inter
alia). A subset of update rules, callsélection rules are used to generate dialogue
acts. For example, an update rule might say that when thgpnetation engine recog-
nizes an assertion, that the information state should beteddvith the information in
the assertion, and an obligation to perform a groundingeetia to be added to the in-
formation state. When a question is recognized, an updiamght specify the need
to answer the question. We can refer to the combination aipigate rules and control
structure as thBehavioral AgentAllen et al., 2001), as suggested in Fig. 22.16.

Speech
\

Natural /SpeeCh
Information State Language
Generation
-discourse context / /
-beliefs 3
Dialogue Act /] - . Dialogue Act

Interpreter -user model Generator
-task context

:

Behavioral Agent
-update rules
-control

Natural
Language
|Understanding]

Figure 22.16 A version of the information-state approach to dialogudidecture.

While the intuition of the information-state model is qusieple, the details can
be quite complex. The information state might involve rigkcdurse models such as
Discourse Representation Theory or sophisticated modeleaiser’s belief, desire,
and intention (which we will return to in Sec. 22.7). Insteddiescribing a particular
implementation here, we will focus on the dialogue act iotetation and generation
engines. The next subsections will present a definition alodue acts, a model for
detecting them, and a model for generating them. The foligvgection will then
show how to use Markov decision processes to implement aapilidtic version of
the information-state architecture.
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DIALOGUE ACT
MOVES

22.5.1 Dialogue Acts

As we implied above, the speech acts as originally definedustiA don’t model key
features of conversation such as grounding, contributiadigcency pairs and so on.
In order to capture these conversational phenomena, werusg&tansion of speech
acts calleddialogue acts(Bunt, 1994) (ordialogue movesor conversational moves
(Power, 1979; Carletta et al., 1997b). A dialogue act exdepetech acts with internal
structure related specifically to these other conversatifumctions (Allen and Core,
1997; Bunt, 2000).

A wide variety of dialogue act tagsets have been proposeagl.2Ri.17 shows a
very domain-specific tagset for the Verbmobil two-partyestiling domain, in which
speakers were asked to plan a meeting at some future dafee @t it has many very
domain-specific tags, such as &GEST, used for when someone proposes a particular
date to meet, and @cepTand REJECT, used to accept or reject a proposal for a date.
Thus it has elements both from the presentation and acaapfamases of the Clark
contributions discussed on page

|  Tag Example |

THANK Thanks
GREET Hello Dan
INTRODUCE It's me again
BYE Allright bye
REQUESFCOMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I'm booked all day
ACCEPT Saturday sounds fine,
REQUESFSUGGEST What is a good day of the week for you?
INIT | wanted to make an appointment with you
GIVE_REASON Because | have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

Figure 22.17  The 18 high-level dialogue acts used in Verbmobil-1, alssdchover a

total of 43 more specific dialogue acts. Examples are fromatletal. (1995).

By contrast, a more domain-independent dialogue act tagybet DAMSL (Dia-
logue Act Markup in Several Layers) architecture (Allen &uade, 1997; Walker et al.,
1996; Carletta et al., 1997a; Core et al., 1999). Drawinghenidea of contributions
(Clark and Schaefer, 1989) and the work of Allwood et al. @9%llwood (1995), the
DAMSL tag set allows each utterance to be tagged for two fanst Theforward
looking function of an utterance is an extension of the Searle/Austin spedciThe
backward looking function of DAMSL focuses on the relationship of an uttemte
previous utterances by the other speaker, such as grouaxéhgnswering questions.

Traum and Hinkelman (1992) proposed that the core speestaadtgrounding



Section 22.5. Information-state & Dialogue Acts 31

Act type Sample Acts

turn-taking take-turn, keep-turn, release-turn, assign-turn
grounding acknowledge, repair, continue

core speech acts inform, wh-question, accept, request, offer
argumentation elaborate, summarize, question-answer, clarify

Figure 22.18 Conversation act types, from Traum and Hinkelman (1992).

acts that constitute dialogue acts could fit into an evereribierarchy otonversation

CONVERSATION  acts Fig. 22.18 shows the four levels of act types they propodh, tve two middle
levels corresponding to DAMSL dialogue acts (grounding emeé speech acts). The
two new levels include turn-taking acts aatyumentatiorrelation, a conversational
version of the coherence relations of Ch. 20.

The acts form a hierarchy, in that performance of an act aghdmilevel (for
example a core speech act) entails performance of a lowelrdev (taking a turn). We
will see the use of conversational acts in generation lateindhis section, and will
return to the question of coherence and dialogue struatusec. 22.7.

22.5.2 Interpreting Dialogue Acts

How can we do dialogue act interpretation, deciding whedhgiven input is a QUES-
TION, a STATEMENT, a SUGGEST (directive), oran ACKNOWLEDGIENT? Per-
haps we can just rely on surface syntax? We saw in Ch. 11 tlsahgejuestions in
English haveaux-inversion (the auxiliary verb precedes the subject) statements have
declarative syntax (no aux-inversion), and commands hawyntactic subject:

(22.20) YES-NO-QUESTION Will breakfast be served on USAir 15577
STATEMENT | don’t care about lunch
COMMAND Show me flights from Milwaukee to Orlando.

Alas, as is clear from Abbott and Costello’s famaMbo’s on Firstroutine at the
beginning of the chapter, the mapping from surface formltziitionary act is com-
plex. For example, the following ATIS utterance looks lik&YBS-NO-QUESTION
meaning something lik&re you capable of giving me a list of. ... ?

(22.21) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whetiesystem wasapa-
bleof giving a list; this utterance was a polite form of a REQUE®Eaning something
more likePlease give me a list of... Thus what looks on the surface like a QUESTION
can really be a REQUEST.

Similarly, what looks on the surface like a STATEMENT canliiebe a QUES-
TION. The very common CHECK question (Carletta et al., 1997bov and Fan-
shel, 1977), is used to ask an interlocutor to confirm somgttiiat she has privileged
knowledge about. CHECKS have declarative surface form:
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INDIRECT SPEECH
ACTS

MICROGRAMMAR

(22.22)

(22.23)

A OPEN-OPTION | was wanting to make some arrangements for a trip that I'm
going to be taking uh to LA uh beginning of the week after

next.

B HoOLD OK uh let me pull up your profile and I'll be right with you
here. [pause]

B CHECK And you said you wanted to travel next week?

A ACCEPT Uh yes.

Utterances which use a surface statement to ask a quest@sucface question
to issue a request, are calledlirect speech acts How can a surface yes-no-question
like Can you give me a list of the flights from Atlanta to Bostdr@?mapped into the
correctillocutionary act REQUEST?

Dialogue act interpretation can be modeled as a superviasdification task,
with dialogue act labels as hidden classes to be detectechikilearning classifiers
are trained on a corpus in which each utterance is handedlfet dialogue acts. The
features used in dialogue act interpretation derive froencttnversational context and
from the act'smicrogrammar (Goodwin, 1996): lexical, collocation, and prosodic
features characteristic of the act. Stolcke et al. (2000akgxample, used three kinds
of features:

1. Words and Collocations: Pleaseor would youis a good cue for a REQUEST,
are youfor YES-NO-QUESTIONS.

2. Prosody: Rising pitch is a good cue for a YES-NO-QUESTION. Loudness or
stress can help distinguish tiieahthat is an AGREEMENT from thgeahthat
is a BACKCHANNEL.

3. Conversational Structure: A yeahfollowing a proposal is probably an AGREE-
MENT,; ayeahafter an INFORM is likely a BACKCHANNEL.

We can integrate these cues into a dialogue act classifiesing an HMM, in
which the dialogue acts are the hidden events (Nagata anididtor, 1994; Woszczyna
and Waibel, 1994; Reithinger et al., 1996; Kita et al., 1986rnke et al., 1997; Chu-
Carroll, 1998; Stolcke et al., 1998; Taylor et al., 1998;I&e et al., 2000b). In the
HMM approach, given all available eviden&eabout a conversation, the goal is to
find the dialogue act sequenbe= {d;,d>...,dy} that has the highest posterior prob-
ability P(D|E) given that evidence (as usual here we use capital lettesetprences).
Applying Bayes’ Rule we get

D* argmaxP(D|E)
D

= arg Dmax%

= argmax(D)P(E|D)
D
Assuming the three types of evidence (words, prosody, andersational structure)
and making an (incorrect but) simplifying assumption ttet prosody and the words

are independent, we can estimate the evidence likelihood gequence of dialogue
actsD asin (22.23):

P(E|D) = P(F|D)P(W|D)
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(22.24) D* = argma¥’(D)P(F|D)P(W|D)
D

The resulting equation (22.24) thus has three componenésfar each of the
kinds of cues discussed above. Let's briefly discuss eachesktthree components.
The prior probability of a sequence of dialogue &{B) acts as a model of conversa-
tional structure. Drawing on the idea of adjacency pairhi€goff, 1968; Sacks et al.,
1974) introduced above, we can make the simplifying assiamphat conversational
structure is modeled as a Markov sequence of dialogue acts.

M
(22.25)  P(D) =[] P(di|di-1...i-m+1)
i=2
Woszczyna and Waibel (1994) give the dialogue HMM shown ig. R2.19 for a
Verbmobil-like appointment scheduling task.
Figure 22.19 A dialogue act HMM (after Woszczyna and Waibel (1994))

The lexical component of the HMM likelihood, designed to ttap the micro-
grammar of each dialogue act, is modeled by training a seppaad-N-gram grammar
for each dialogue act, just as we saw with the concept HMM.

N
(22.26)  P(W[D) = []P(Wiwi1..w n1,0h)

FINAL LOWERING

i=2

Prosodic models of dialogue act microgrammar rely on asgdrtundaries, or
their acoustic correlates like FO, duration, and energyekample the pitch rise at the
end of YES-NO-QUESTIONSIs a useful cue (Sag and Liberman, 1975; Pierrehumbert,
1980; Waibel, 1988; Daly and Zue, 1992; Kompe et al., 199¥iofaet al., 1998).
Declarative utterances (like STATEMENTS) haugal lowering: a drop in FO at the
end of the utterance (Pierrehumbert, 1980).

Shriberg et al. (1998) trained CART-style decision treesiarple acoustically-
based prosodic features such as the slope of FO at the ené ottdrance, the av-
erage energy at different places in the utterance, andusdaration measures, nor-
malized in various ways. They found that these features weedul, for example,
in distinguishing the four dialogue actSATEMENT (S), YES-NO QUESTION (QY),
DECLARATIVE-QUESTIONSlike CHECKS(QD) andwH-QUESTIONS(QW). Fig. 22.20
shows the decision tree which gives the posterior protigifilid|F) of a dialogue act
d type given a sequence of acoustic featiedlote that the difference between S and
QY toward the right of the tree is based on the featwwem -f0 _diff (normalized
difference between mean FO of end and penultimate regiotnde the difference be-
tween QW and QD at the bottom left is basedutin _grad , which measures FO slope
across the whole utterance.
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(22.27)

Decision trees produce a posterior probabifityl|F ), and equation (22.24) re-
quires a likelihoodP(F|d). Therefore we need to massage the output of the decision
tree by Bayesian inversion (dividing by the priefd;) to turn it into a likelihood); we
saw this same process with the use of SVMs and MLPs insteacho$gian classi-
fiers in speech recognition in Se22. If we make the simplifying assumption that the
prosodic decisions for each sentence are independent@f s¢intences, we arrive at
the following final equation for HMM tagging of dialogue acts

D*

argmaxP(D)P(F|D)P(W|D)
D

M N P(di“:) N

Hp(di|difl---difM+l)H% HP(Wi|Wi71---Wi7N+17di)

i=2 i=1 P(d) i=2
Standard HMM decoding techniques (like Viterbi) can thembed to search for
this most-probable sequence of dialogue acts given theesequwof input utterances
culminating in the user’s most recent utterance.
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utt_grad < -36.113 | utt_grad >=-36.113 stdev_enr_utt < 0.02903 stdev_enr_utt >= 0.02903

QD QW S
0.3316 0.2038 0.2297 0.2349 0.3069 0.08995 0.1799 0.42; 0.2283 0.5668 0.1115 0.09339

cont_speech_frames_n >= 98.334

Figure 22.20 Decision tree for classifyinQECLARATIVE QUESTIONS(QD), STATEMENT(S), YES-NO QUES
TIONS (QY), andwH-QUESTIONS(QW), after Shriberg et al. (1998). Each node in the tree showr probabil-
ities, one for each of the four dialogue acts in the order QOR'® QW; the most likely of the four is shown as
the label for the node. Note that questions are shorter tiz@@nsents (conspeechframes), that QY'’s rise at th
end (endgrad), and that QD’s rise throughout the utterance ).

D

Many statistical classifiers besides HMMs have been useatéopret dialogue
acts, as well as the non-statistical BDI model, which intetpdialogue acts based on
plan-inference (see Sec. 22.7).
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CORRECTION

HYPERARTICULA-
TION

22.5.3 Detecting Correction Acts

In addition to the general-purpose dialogue act interfimialgorithms just described,
we may want to build special-purpose detectors for padityimportant acts. In this
section we briefly introduce the issues in designing one sietéctor, for the recog-
nition of usercorrection of system errors. If a dialogue system misrecognizes an
utterance (usually as a result of ASR errors) the user wilkgally correct the error by
repeating themselves, or rephrasing the utterance. Dialegstems need to recognize
that users are doing a correction, and then figure out whatgbeis trying to correct,
perhaps by interacting with the user further.

Unfortunately, corrections are actualarder to recognize than normal sen-
tences. Swerts et al. (2000) found that corrections in th@T@ialogue system were
misrecognized about twice as often (in terms of WER) as rmmnections. One reason
for this is that speakers use a very different prosodic stgleed hyperarticulation
for corrections. In hyperarticulated speech, some pah@fitterance has exaggerated
energy, duration, or FO contours, suchl asid BAL-TI-MORE, not Bosto(?; Oviatt
et al., 1998; Levow, 1998; Hirschberg et al., 2001).

Speakers use various strategies to make corrections; Seteat. (2000) catego-
rize these as repetition (REP), paraphrase (PAR), addinigob(ADD), and omitting
content (OMIT), as shown in Fig. 22.21. They found that maestactions were repe-
titions and omissions rather than paraphrases.

Turn Corr
Type

On which day of the week do you want to leave?

Sorry, | didn’t hear anything from you. Please tell me yoepatture date

Um tomorrow NA
You can say the departure date. For example, you can say’tod'tomorrow’.

Or you can say 'Monday’, 'Tuesday’, 'Wednesday'...

Tomorrow REP
You can say the departure date. For example, you can say’tod'tomorrow’.

Or you can say 'Monday’, 'Tuesday’, 'Wednesday'...

Saturday PAR
Do you want to leave on Saturday?

Yes

What time do you want to leave?

Eight o'clock AM

Do you want to leave around ten oclock p-m

Eight o'clock OoMIT
Do you want to leave around ten oclock p-m

No OMIT
What time do you want to leave?

Eight o'clock AM ADD

ncunm

nC

cnoCcunCcmnmncCcwmnmcwmcCc

Figure 22.21 Dialogue fragment from the TOOT system labeled for coroectiype,
from Swerts et al. (2000).

Various machine learning classifiers have been appliecetpitbblem of detect-
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EXPLICIT
CONFIRMATION

Cue Turn-taking acts signaled

um KEEP-TURN, TAKE-TURN, RELEASE-TURN
<lipsmack>, <click>, so, uh KEEP-TURN, TAKE-TURN
you know, isn’t that so ASSIGN-TURN

Figure 22.22 Language used to perform turn-taking acts, from Stent (2002

ing correction acts (Levow, 1998; Hirschberg et al., 200dlyRo et al., 2004). Useful
features include lexical information (words like “no”, “@ection”, “I don't”, swear
words), prosodic and hyperarticulation features (in@eas FO range, pause duration,
and word duration, generally normalized by the values fevimus sentences), features
indicating utterance length, ASR features (confidenceguage model probability),
and various dialogue features.

In addition to correction detection, a conversational 4g&so needs appropriate
control or update rules in the dialogue manager (Bulyko.efal04).

22.5.4 Generating Dialogue Acts: Confirmation and Rejectin

Deciding which dialogue acts to generate has received messhdttention than dia-
logue act interpretation. Stent (2002) is one recent moiddibdogue act generation in
the TRIPS system (Allen et al., 2001), based on Conversatits (page 31) and the
BDI model to be described in Sec. 22.7. Stent uses a set oteipdles for content
planning. One such rule says that if a user has just releasetlitn, the system can
perform a TAKE-TURN act. Another rule says that if the systeam a problem-solving
need to summarize some information for the user, then itldhese the ASSERT con-
versation act with that information as the semantic confEiné content is then mapped
into words using the standard techniques of natural langgageration systems (see
e.g., Reiter and Dale (2000)) After an utterance is genérdte information state
(discourse context) is updated with its words, syntactigcstire, semantic form, and
semantic and conversation act structure. We will sketclein 32.7 some of the issues
in modeling and planning that make generation a tough omgaisearch effort.

Stent showed that a crucial issue in dialogue generatiandibesn’t occur in
monologue text generation is turn-taking acts. Fig. 22t some example of the
turn-taking function of various linguistic forms, from hiabeling of conversation acts
in the Monroe corpus.

In the rest of this section, rather than trying to cover thirerfield, we’ll focus
narrowly on one kind of dialogue act generation task thatadably the most explored
in this relatively new research area. This is the task of geimgyconfirmation andre-
jection acts. Because this task is often solved by probabilistidqods, we’ll continue
this discussion in Sec. 22.6.

In a dialogue system, mishearings are a particularly ingmitlass of problems,
because speech recognition has such a high error rate. heriefore important for
dialogue systems to make sure that they have achieved thectamterpretation of
the user’s input. This is generally done by confirmation wifite user. A system us-
ing theexplicit confirmation strategy asks the user a direct question to confirm their
understanding. Here are two examples of explicit confiromstifrom travel planning
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systems. The (boldface) confirmation questions are botmgegiestions, one using a
single sentence, the other presenting a declarative senteltowed by a tag question
(a short question phrase like “right?” or “isn’t it?"):

Which city do you want to leave from?

Baltimore.

Do you want to leave from Baltimore?

Yes.

I'd like to fly from Denver Colorado to New York City on Sepbtbder

twenty first in the morning on United Airlines

S: Let's see then. | have you going from Denver Colorado to New Y&
on September twenty first. Is that correct?

U: Yes

CONFImIPERT A system using thémplicit confirmation strategy, rather than asking a direct
question, uses thdemonstratioror displaygrounding strategies described above, con-
firming to the user by repeating back what the system undmdstee user to have said:

gecrcw

U: | want to travel to Berlin

S:  When do you want to travel to Berlin?

U2: Hil'd like to fly to Seattle Tuesday Morning

A3: Traveling to Seattle on Tuesday, August eleventh in the moiing.
Your full name?

Explicit and implicit confirmation have complementary sgéhs. Explicit con-
firmation makes it easier for users to correct the system®eauognitions since the
user can just answer ‘no’ to the confirmation question (Daaied Gerbino, 1995;
?). But explicit confirmation is awkward and increases tmgtk of the conversation
(Danieli and Gerbino, 1995; Walker et al., 1998). The exptionfirmation dialogue
fragments above sound non-natural and definitely non-hummgalicit confirmation is
much more conversationally natural.

While early dialogue systems tended to fix the choice of e implicit con-
firmation, recent systems treat the question of how to confiore like a dialogue act
generation task, in which the confirmation strategy is adapthanging from sentence
to sentence.

Various factors can be used in making this decision. The mgsbrtant factor
is some measure of ASR performance. A number of systemsxfomple, use the
acoustic confidence that the ASR system assigns to an utesraomputed from the
acoustic log-likelihood of the utterance, to decide whetbanake an explicit confir-
mation. Such systems explicitly confirm sentences for wilehrecognizer was not
confident of its output (?; San-Segundo et al., 2001; Litntaad.e1999; Litman and
Pan, 2002). Recent research has focused on more sopleidtitaetasures of confi-
dence that go beyond acoustic log-likelihood, such as gliodactors; for example
utterances with longer prior pauses, FO excursions, argklodurations are likely to
be misrecognized, (Litman et al., 2000). Another imporfaotor in deciding whether
to explicitly confirm is the cost of an error; obviously bedactually booking a flight
or moving money in an account, explicit confirmation is inpot (Kamm, 1994; Co-
hen et al., 2004). All of these factors can thus be combineal inachine learning
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approach to predict whether explicit confirmation shouldubed. This can be done
with a simple classifier, or via more complex methods; whatdgiired needed is that
the information-state include information about uttepoosody, ASR confidence.

22.5.5 Rejection

Confirmation is just one kind of conversational action thagstem has to express lack
resecTion  of understanding. Another optionrigjection. An ASR system rejects an utterance by
giving the user a prompt likem sorry, | didn’t understand thatas in the VoiceXML
nomatch prompts we saw in Sec. 22.3. Rejection might happen when 8 éonfi-
dence is so low, or the best interpretation is so semantitiafbrmed, that the system
can be relatively sure that the user’s input was not receghi all. Systems thus
might have a three-tiered level of confidence; below a aedanfidence threshold, an
utterance is rejected. Above the threshold, it is explid@tnfirmed. If the confidence
is even higher, the utterance is implicitly confirmed.
Sometimes utterances are rejected multiple times. Thisitmigean that the
user is using language that the system is unable to follomushen an utterance
PROGOESSNE  is rejected, systems often follow a strategypobgressive prompting or escalating
detail (Yankelovich et al., 1995; ?) as in this example from Coheal.g2004):

System: When would you like to leave?

Caller:  Well, um, | need to be in New York in time for the first WbSeries
game.

System: <reject>. Sorry, | didn't get that. Please say the month and day
you'd like to leave.

Caller: | wanna go on October fifteenth.

In this example, instead of just repeating ‘When would yée lio leave?’, the
rejection prompt gives the caller more guidance about hofertmulate an utterance
the system will understand. Thegeu-can-sayhelp messages are important in help-
ing improve systems understanding performance Bohus addigky (2005). If the
caller’s utterance gets rejected yet again, the promptegect this (‘I still didn’t get
that’), and give the caller even more guidance.

- An alternative strategy for error handlingrapid reprompting , in which the
system rejects an utterance just by saying “I'm sorry?” oh@wvas that?”. Only if the
caller’s utterance is rejected a second time does the systtrapplying progressive
prompting. Cohen et al. (2004) summarizes experiments isigotliat users greatly
prefer rapid reprompting as a first-level error prompt.

Instead of rejecting or confirming entire utterances, it lddae nice to be able
to clarify only the parts of the utterance that the systenm'tlighderstand. If a system
can assign confidence at a more fine-grained level than teantte, it can clarify such

SHRFICAION — individual elements viglarification subdialogues
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22.6 MARKOV DECISIONPROCESSARCHITECTURE

MARKOV DECISION
PROCESS

MDP

(22.28)

One of the fundamental insights of the information-stagraach to dialogue architec-
ture is that the choice of conversational actions is dynalyidependent on the current
information state. The previous section discussed hovegisd systems could change
confirmation and rejection strategies based on contexteXample if the ASR or NLU
confidence is low, we might choose to do explicit confirmatidrtonfidence is high,
we might chose implicit confirmation, or even decide not tafgm at all. Using a
dynamic strategy lets us choose the action which maximimdeglie success, while
minimizing costs. This idea of changing the actions of aatjak system based on
optimizing some kinds of rewards or costs is the fundamentaition behind model-
ing dialogue as Markov decision process This model extends the information-state
model by adding a probabilistic way of deciding on the praagions given the current
state.

A Markov decision process ®DP is characterized by a set sfatesSan agent
can be in, a set ofictions A the agent can take, andreward r(a,s) that the agent
receives for taking an action in a state. Given these factggrxan compute policy Tt
which specifies which actioa the agent should take when in a given sgtso as to
receive the best reward. To understand each of these comigome’ll need to look
at a tutorial example in which the state space is extremelyaed. Thus we’ll return
to the simple frame-and-slot world, looking at a pedagddi¢tBP implementation
taken from Levin et al. (2000). Their tutorial example is aayPand-Month” dialogue
system, whose goal is to get correct values of day and month iwo-slot frame via
the shortest possible interaction with the user.

In principle, a state of an MDP could include any possibleinfation about the
dialogue, such as the complete dialogue history so far. gdJsirch a rich model of
state would make the number of possible states extraoilyifege. So a model of
state is usually chosen which encodes a much more limiteaf §gfiormation, such as
the values of the slots in the current frame, the most reagestepn asked to the user,
the users most recent answer, the ASR confidence, and so otheHday-and-Month
example let’s represent the state of the system as the vafuhe two slotsday and
month If we assume a special initial stateand final states;, there are a total of 411
states (366 states with a day and month (counting leap yigasfates with a month but
no day (d=0, m=1,2,...12), and 31 states with a day but no momt0, d=1,2,...31)).

Actions of a MDP dialogue system might include generatindipalar speech
acts, or performing a database query to find out informatir.the Day-and-Month
example, Levin et al. (2000) propose the following actions:

ag: a question asking for the day

am: a question asking for the month

agm: a question asking for both the day and the month

a;: afinal action submitting the form and terminating the digie

Since the goal of the system is to get the correct answer Witshortest inter-
action, one possible reward function for the system woulegrate three terms:

R = —(Win; + WeNe + Wt Ny)
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(22.29)

The termn; is the number of interactions with the useayjs the number of errors,
n¢ is the number of slots which are filled (0, 1, or 2), andwseare weights.

Finally, a dialogue policytspecifies which actions to apply in which state. Con-
sider two possible policies: (1) asking for day and monttasaiely, and (2) asking for
them together. These might generate the two dialogues simolig. 22.23.

Strategy 2:

Which datood Bye

C,=2-W,+2-K-W,

Strategy 3:
Which day ? Which month? Geod Bye.

C,=3-W,+2-P,-W,

Figure 22.23 REDRAW FIG 2 WITH JUST 2 POLICIES, IN REVERSE ORDER,
after Levin et al. (2000).PLACEHOLDER FIGURE.

In policy 1, the action specified for the no-date/no-monéiesis to ask for a
day, while the action specified for any of the 31 states wheréhave a day but not
a month is to ask for a month. In policy 2, the action specifiedtfie no-date/no-
month state is to ask an open-ended questiwhi¢h daté to get both a day and a
month. The two policies have different advantages; an opgmpt can leads to shorter
dialogues but is likely to cause more errors, while a divecprompt is slower but
less error-prone. Thus the optimal policy depends on theegabf the weightsv,
and also on the error rates of the ASR component. Let'sgathe probability of
the recognizer making an error interpreting a month or a ddyevafter a directive
prompt. The (presumably higher) probability of error ipteting a month or day value
after an open prompt we'll calp,. The reward for the first dialogue in Fig. 22.23
is thus—3 x w; +2 x pg X We. The reward for the second dialogue in Fig. 22.23 is
—2X Wi+ 2 X pg x We. The directive prompt policy, policy 2, is thus better thariqy
1 when the improved error rate justifies the longer inteoagiie., whermp, — pg > %‘e

In the example we've seen so far, there were only two posaidilens, and hence
only a tiny number of possible policies. In general, the namdif possible actions,
states, and policies is quite large, and so the problem oifinithe optimal policyrt*
is much harder.

Markov decision theory together with classical reinforesearning gives us
a way to think about this problem. First, generalizing froig. R2.23, we can think of
any particular dialogue as a trajectory in state space:

S1 —alrl 2 —a2,r2 S8 —a3r3 -
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The best policyt* is the one with the greatest expected reward over all trajec-
tories. What is the expected reward for a given state se@®efite most common
DISCOUNTER  way to assign utilities or rewards to sequences is tadiseunted rewards Here we
compute the expected cumulative rewg@f a sequence as a discounted sum of the
utilities of the individual states:

(22.30)  Q([s0,80,51,81,%,82+*]) = R(S0,a0) + YR(s1,a1) + Y’R(s2,82) + -,

The discount factoy is a number between 0 and 1. This makes the agent care
more about current rewards than future rewards; the motedwt reward, the more
discounted its value.

Given this model, it is possible to show that the expectedudative reward
Q(s,a) for taking a particular action from a particular state is théowing recursive

BELLMANEQUATION  equation called thBellman equation

(22.31)  Q(s,a) =R(sa)+Yy> _P(s|s,a)maxQ(s,a)
g a

What the Bellman equation says is that the expected cumelegivard for a
given state/action pair is the immediate reward for theentrstate plus the expected
discounted utility of all possible next statésweighted by the probability of moving
to that states, and assuming once there we take the optimal action

Equation (22.31) makes use of two parameters. We need a mbldelv likely
a given state/action pais,a) is to lead to a new stat8. And we also need a good
estimate ofR(s,a). If we had lots of labeled training data, we could simply cortep
both of these from labeled counts. For example, with labeliatbgues, we could
simply count how many times we were in a given stgtand out of that how many
times we took actiora to get to states, to estimateP(s|s,a). Similarly, if we had a
hand-labeled reward for each dialogue, we could build a inafde(s, a).

Given these parameters, it turns out that there is an ieratijorithm for solving

vaerreration  the Bellman equation and determining proper Q valuesy#hge iteration algorithm
(?). We won't present this here, but see Chapter 17 of RumselNorvig (2002) for the
details of the algorithm as well as further information onrkéas Decision Processes.

How do we get enough labeled training data to set these pteesfeThis is
especially worrisome in any real problem, where the numbstaiess is extremely
large. Two methods have been applied in the past. The firstdgarefully hand-tune
the states and policies so that there are a very small nunfilstates and policies that
need to be set automatically. In this case we can build agliglsystem which explore
the state space by generating random conversations. Hitesban then be set from
this corpus of conversations. The second is to build a sitedlaser. The user interacts
with the system millions of times, and the system learns thie $ransition and reward
probabilities from this corpus.

The first approach, using real users to set parameters inlastata space, was
taken by Singh et al. (2002). They used reinforcement legrtd make a small set of
optimal policy decisions. Their NJFun system learned tcoskeactions which varied
the initiative (system, user, or mixed) and the confirmasitvategy (explicit or none).
The state of the system was specified by values of 7 featucksding which slot in
the frame is being worked on (1-4), the ASR confidence valt&) (Gow many times
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a current slot question had been asked, whether a restriotinon-restrictive gram-
mar was used, and so on. The result of using only 7 featurdsangtmall number of
attributes resulted in a small state space (62 states). &atd had only 2 possible
actions (system versus user initiative when asking questiexplicit versus no con-
firmation when receiving answers). They ran the system veitth users, creating 311
conversations. Each conversation had a very simple birsvgnd function; 1 if the
user completed the task (finding specified museums, theeiteztasting in the New
Jersey area), 0 if the user did not. The system successfakléa good dialogue pol-
icy (roughly, start with user initiative, then back of totest mixed or system initiative
when reasking for an attribute; confirm only at lower confitkemalues; both initiative
and confirmation policies, however, are different for diffiet attributes). They showed
that their policy actually was more successful based omuambjective measures than
many hand-designed policies reported in the literature.

The simulated user strategy was taken by Levin et al. (20@@)eir MDP model
with reinforcement learning in the ATIS task. Their simelhtuser was a generative
stochastic model that given the system'’s current state etiaha, produces a frame-slot
representation of a user response. The parameters of thiagdthuser were estimated
from a corpus of ATIS dialogues. The simulated user was tised to interact with the
system for tens of thousands of conversations, leading tgptimal dialogue policy.

While the MDP architecture offers a powerful new way of maugldialogue
behavior, it relies on the problematic assumption that yts¢esn actually knows what
state it is in. This is of course not true in a number of ways; ghstem never knows
the true internal state of the user, and even the state inidh@yde may be obscured
by speech recognition errors. Recent attempts to relaxaggamption have relied on
Partially Observable Markov Decision Processes, or POMB&®setimes pronounced
‘pom-deepeez’). In a POMPDB, we model the user output as aargbd signal gen-
erated from yet another hidden variable. See Roy et al. (R0@Qung (2002), and
Russell and Norvig (2002).

22.7 ADVANCED: PLAN-BASED DIALOGUE AGENTS

One of the earliest models of conversational agent behaat also one of the most
sophisticated, is based on the use of Al planning technidt@sexample, the Rochester
TRIPS agent (Allen et al., 2001) simulates helping with egeacy management, plan-
ning where and how to supply ambulances or personnel in alaietlemergency sit-
uation. The same planning algorithms that reason how torgat@bulance from point
A to point B can be applied to conversation as well. Since comigation and conver-
sation are just special cases of rational action in the wirkke actions can be planned
like any other. So an agent seeking to find out some informatim come up with the
plan of asking the interlocutor for the information. An agkearing an utterance can
interpret a speech act by running the planner ‘in reversangiinference rules to infer
what plan the interlocutor might have had to cause them tavbeag they said.

Using plans to generate and interpret sentences in this@pyre that the plan-
ner have good models of iteliefs desires andintentions (BDI), as well as those of
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BDI

ACTION SCHEMA

the interlocutor. Plan-based models of dialogue are thienaéferred to aBDI mod-
els. BDI models of dialogue were first introduced by Allenh€n, Perrault, and their
colleagues and students in a number of influential papensisgchow speech acts
could be generated (Cohen and Perrault, 1979), and intech(Berrault and Allen,
1980; Allen and Perrault, 1980). At the same time, Wilensl§83) introduced plan-
based models of understanding as part of the task of intargrstories. In another
related line of research, Grosz and her colleagues andrgsusieowed how using sim-
ilar notions of intention and plans allowed ideas of dissewstructure and coherence
to be applied to dialogue.

22.7.1 Plan-Inferential Interpretation and Production

Let’s first sketch out the ideas of plan-based comprehermighproduction. How
might a plan-based agent act as the human travel agent tostizuole sentenceGn
the dialogue repeated below?

Ci: I need to travel in May.
A1: And, what day in May did you want to travel?
C,: OK uh | need to be there for a meeting that’s from the 12th éolthth.

The Gricean principle of Relevance can be used to infer beatlient's meeting
is relevant to the flight booking. The system may know thatfmeeondition for having
a meeting (at least before web conferencing) is being atliepvhere the meeting is
in. One way of being at a place is flying there, and booking affiigga precondition for
flying there. The system can follow this chain of inferendgducing that user wants
to fly on a date before the 12th.

Next, consider how our plan-based agent could act as themtnagel agent to
produce sentence;An the dialogue above. The planning agent would reason that i
order to help a client book a flight it must know enough infotimraabout the flight to
book it. It reasons that knowing the month (May) is insuffitienformation to specify
a departure or return date. The simplest way to find out thdetkdate information is
to ask the client.

In the rest of this section, we’ll flesh out the sketchy owtimf planning for un-
derstanding and generation using Perrault and Allen’s &definitions of belief and
desire in the predicate calculus. Reasoning about beligfie with a number of axiom
schemas inspired by Hintikka (1969). We'll represe@ttlieves the propositioR”
as the two-place predicalS P), with axiom schemas such 8A,P) AB(A,Q) =
B(A,PAQ). Knowledge is defined as “true beliefS; knows that Rvill be represented
askKNOW(S,P), defined as KNOWS,P) = PAB(S,P).

The theory of desire relies on the predicate WANT. If an agamantsP to be
true, we sayWANT(S P), or W(S,P) for short. P can be a state or the execution of
some action. Thus if ACT is the name of an actdf(S,ACT(H)) means thaBwants
H to do ACT. The logic of WANT relies on its own set of axiom schanjust like the
logic of belief.

The BDI models also require an axiomatization of actions plashning; the
simplest of these is based on a seaofion schema based on the simple Al planning
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model STRIPS (Fikes and Nilsson, 1971). Each action schema lset of parameters
with constraintsabout the type of each variable, and three parts:

e Preconditions:Conditions that must already be true to perform the action.
o Effects:Conditions that become true as a result of performing thieract

e Body: A set of partially ordered goal states that must be achiavgeiforming
the action.

In the travel domain, for example, the action of agatooking flightF 1 for clientC
might have the following simplified definition:

BOOK-FLIGHT(A,C,F) :

Constraints:  Agent(A) Flight(F) A Client(C)

Precondition: Know(A,depart-date(F)) A Know(A,depart-time(F))
A Know(A,origin(F)) A Know(A,flight-type(F))
A Know(A,destination(F)) A Has-Seats(F) A
W(C,(BOOK(A,C,F)A ...

Effect: Flight-Booked(A,C,F)

Body: Make-Reservation(A,F,C)

This same kind of STRIPS action specification can be usedofeech acts. IN-
FORM is the speech act of informing the hearer of some préipasbased on Grice’s
(1957) idea that a speaker informs the hearer of somethinglyrigy causing the hearer
to believe that the speaker wants them to know something:

INFORM(S,H,P):
Constraints:  Speaker(8)Hearer(H)A Proposition(P)
Precondition: Know(S,P) W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

REQUEST is the directive speech act for requesting the h&éaperform some
action:

REQUEST(S,H,ACT):
Constraints:  Speaker(8)Hearer(H)A ACT(A) A H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))

Let's now see how a plan-based dialogue system might irgttipe sentence:
Co: | need to be there for a meeting that's from the 12th to thé.15t

We'll assume the system has the BOOK-FLIGHT plan mentionteave. In
addition, we’'ll need knowledge about meetings and gettintpém, in the form of the
MEETING, FLY-TO, and TAKE-FLIGHT plans, sketched broadlglbw:

MEETING(P,L,T1,T2):
Constraints:  Person(R)Location (L)A Time (T1)A Time (T2)A Time (TA)
Precondition: At (P, L, TA)
Before (TA, T1)
Body:
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FLY-TO(P, L, T):
Constraints: Person(P)Location (L)A Time (T)
Effect: At (P, L, T)
Body: TAKE-FLIGHT(P, L, T)

TAKE-FLIGHT(P, L, T):
Constraints:  Person(R)Location (L) A Time (T) A Flight (F) A Agent (A)
Precondition: BOOK-FLIGHT (A, P, F)
Destination-Time(F) =T
Destination-Location(F) = L
Body:

Now let’s assume that an NLU module returns a semantics éoclient’s utter-
ance which (among other things) includes the following seimaontent;

MEETING (P, 7L, T1, T2)
Constraints: P = Client T1 = May 12A T2 = May 15

Our plan-based system now has two plans established, ond MEEplan from
this utterance, and one BOOK-FLIGHT plan from the previotisrance. The system
implicitly uses the Gricean Relevance intuition to try tooect them. Since BOOK-
FLIGHT is a precondition for TAKE-FLIGHT, the system may fotpesize (infer) that
the user is planning a TAKE-FLIGHT. Since TAKE-FLIGHT is ihe body of FLY-
TO, the system further infers a FLY-TO plan. Finally, sinbe effect of FLY-TO is
a precondition of the MEETING, the system can unify each efgieople, locations,
and times of all of these plans. The result will be that theespsknows that the client
wants to arrive at the destination before May 12th.

Let's turn to the details of our second example:

Ci: I need to travel in May.
A1: And, what day in May did you want to travel?

How does a plan-based agent know to ask questigh Phis knowledge comes
from the BOOK-FLIGHT plan, whose preconditions were thatdigent know a variety
of flight parameters including the departure date and timigiroand destination cities,
and so forth. Utterance CGcontains the origin city and partial information about the
departure date; the agent has to request the rest. A plaubgent would use an ac-
tion schema like REQUEST-INFO to represent a plan for askifagmation questions
(simplified from Cohen and Perrault (1979)):

REQUEST-INFO(A,C,I):
Constraints:  Agent(A) Client(C)
Precondition: Know(C,I)
Effect: Know(A,1)
Body: B(C,W(A,Know(A,1)))

Because the effects of REQUEST-INFO match each precondiidBOOK-
FLIGHT, the agent can use REQUEST-INFO to achieve the ngdsiformation.
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INTENTIONAL
STRUCTURE

DISCOURSE
PURPOSE

DISCOURSE
SEGMENT PURPOSE

22.7.2 The Intentional Structure of Dialogue

In Sec.??we introduced the idea that the segments of a discourselatedéycoher-
ence relationdike Explanation or Elaboration which describe thaformational re-
lation between discourse segments. The BDI approach tauatte interpretation gives
rise to another view of coherence which is particularlyvate for dialogue, thanten-
tional approach (Grosz and Sidner, 1986). According to this amproshat makes a
dialogue coherent is iiatentional structure, the plan-based intentions of the speaker
underlying each utterance.

These intentions are instantiated in the model by assurhiigeiach discourse
has an underlying purpose held by the person who initigtealied thediscourse pur-
pose(DP). Each discourse segment within the discourse has aspunding purpose,
a discourse segment purposéDSP), which has a role in achieving the overall DP.
Possible DPs/DSPs include intending that some agent indgmelform some physical
task, or that some agent believe some fact.

As opposed to the larger sets of coherence relations useddnmiational ac-
counts of coherence, Grosz and Sidner propose only two slations: dominance
and satisfaction-precedence DSR dominates DSPif satisfying DSR is intended
to provide part of the satisfaction of DEGPDSR satisfaction-precedes D DSP;
must be satisfied before DGP

Ci: I needto travel in May.

A1 And, what day in May did you want to travel?

C,:  OKuh I need to be there for a meeting that's from the 12th ¢olthth.

Az:  And you're flying into what city?

Cz:  Seattle.

A3z:  And what time would you like to leave Pittsburgh?

C4: Uh hmm I don't think there’s many options for non-stop.

A4 Right. There's three non-stops today.

Cs:  What are they?

As:  The first one departs PGH at 10:00am arrives Seattle at 12ed5time. The
second flight departs PGH at 5:55pm, arrives Seattle at 8pnd the las
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Cs:  OKV'll take the 5ish flight on the night before on the 11th.

Ag:  On the 11th? OK. Departing at 5:55pm arrives Seattle at 8@, Air flight
115.

Cy: OK.

Figure 22.24 A fragment from a telephone conversation between a cliehtaf@ a
travel agent (A) (repeated from Fig. 22.4).

Consider the dialogue between a client (C) and a travel a@grthat we saw
earlier, repeated here in Fig. 22.24. Collaboratively,dhier and agent successfully
identify a flight that suits the caller’s needs. Achievingstfoint goal requires that
a top-level discourse intention be satisfied, listed as lbvlhein addition to several
intermediate intentions that contributed to the satigaodf 11, listed as 12-15:

11: (Intend C (Intend A (A find a flight for C)))
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12: (Intend A (Intend C (Tell C A departure date)))

13: (Intend A (Intend C (Tell C A destination city)))

14: (Intend A (Intend C (Tell C A departure time)))

I5: (Intend C (Intend A (A find a nonstop flight for C)))
Intentions 12—15 are all subordinate to intention 11, ag/tivere all adopted to meet pre-
conditions for achieving intention 11. This is reflected lire tdominance relationships
below:

11 dominates I\ 11 dominates I3\ 11 dominates 14 |1 dominates 15
Furthermore, intentions 12 and I3 needed to be satisfiedreéfbention 15, since the

agent needed to know the departure date and destinatiodéntorstart listing nonstop
flights. This is reflected in the satisfaction-precedentziomships below:

12 satisfaction-precedes I513 satisfaction-precedes 15

The dominance relations give rise to the discourse streafepicted in Fig-
ure 22.25. Each discourse segment is numbered in correspoadvith the intention
number that serves as its DP/DSP.

DS1

C, DS, DS3 DS; DS

A1—C, Ap-C3 A3z C4—C;

Figure 22.25 Discourse Structure of the Flight Reservation Dialogue

Intentions and their relationships give rise to a coheratadirse based on their
role in the overalplan that the caller is inferred to have. We assume that the caller
and agent have the plan BOOK-FLIGHT described on page 44. glan requires that
the agent know the departure time and date and so on. As wesdit above, the
agent can use the REQUEST-INFO action scheme from page 4k toauser for this
information.

SUBDIALOGUES Subsidiary discourse segments are also calldatlialogues DS2 and DS3 in
particular arenformation-sharing (Chu-Carroll and Carberry, 199RBhowledge pre-
condition subdialogues (Lochbaum et al., 1990; Lochbaum, 1998)edimey are ini-
tiated by the agent to help satisfy preconditions of a higéesl goal.

Algorithms for inferring intentional structure in dialogwvork similarly to algo-
rithms for inferring dialogue acts, either employing thelBibdel (e.g., Litman, 1985;
Grosz and Sidner, 1986; Litman and Allen, 1987; Carberrg0l ®assonneau and Lit-
man, 1993; Chu-Carroll and Carberry, 1998), or machinenlagrarchitectures based
on cue phrases (Reichman, 1985; Grosz and Sidner, 198&hH&sy and Litman,
1993), prosody (Hirschberg and Pierrehumbert, 1986; GaoszHirschberg, 1992;
Pierrehumbert and Hirschberg, 1990; Hirschberg and Nakdt@96), and other cues.
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22.8 ADVANCED: PROCESSINGHUMAN-HUMAN DIALOG

In addition to work on building conversational agents, catagional dialogue work
also focuses on human-human dialogue. We need to procesmhunman dialogue
in order to automatically transcribe or summarize busimesstings, to close-caption
TV shows, or to building personal telephone assistantscratake notes on telephone
conversations.

SEGMENTATION A key task in human-human conversation is utterance boyrmgmentation
the task of separating out utterances from each other. $tan important task since
many computational dialogue models are based on extragtingterance as a prim-
itive unit. The segmentation problem is difficult becauséngle utterance may be
spread over several turns (as in (22.32)), or a single tugnintdude several utterances
(asin (22.33)).

(22.32) A: Yeah um let me see here we've got you on American flight ririreyt eight
C:. Yep.
A: leaving on the twentieth of June out of Orange County JolatyW& Airport at seven
thirty p.m.
C: Seven thirty.
A: and into uh San Francisco at eight fifty seven.

(22.33)  A: Three two three and seven five one. OK and then does he kneng th
a nonstop that goes from Dulles to San Francisco? Insteadrofection
through St. Louis.

Segmentation algorithms use boundemgssuch as:
CUE WORDS e cue words: Cue words likewell, and, so, that tend to occur at beginnings and
ends of utterances (Reichman, 1985; Hirschberg and Litd2083).

e N-gram word or POS sequencesSpecific word or POS sequences that often
indicate boundariedN-gram grammars can be trained on a training set labeled
with special utterance-boundary tags. (Mast et al., 199€ekr and lyer, 1996;
Stolcke and Shriberg, 1996; Heeman and Allen, 1999).

e prosody: Utterance-final prosodic features like boundary tonesagdnfinal
lengthening and pause duration

GAZE e gaze:In face-to-face dialogugjazeis an important cue.

DIARIZATION A related task in human-human dialogudiarization: assigning each utterance
to the talker who produced it; this can be quite hard in mepiéaker meetings.

22.9 SUMMARY

Conversational agentsare a crucial speech and language processing applicaaon th
are already widely used commercially. Research on thesgsgaies crucially on an
understanding of human dialogue or conversational pregtic

¢ Dialogue systems generally have 5 components: speechmiéiongnatural lan-
guage understanding, dialogue management, natural lgagyeneration, and
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speech synthesis. They may also have a task manager spedtiie task do-
main.

o Dialogue architectures for conversational agents inclinite-state systemgame-
basedproduction systems, and advanced systems such as infornysttite, Markov
Decision Processes, aBiD| (belief-desire-intention) models.

e Turn-taking, grounding, conversational structure, ircglure, and initiative are
crucial human dialogue phenomena that must also be dehlimdbnversational
agents.

e Speaking in dialogue is a kind of action; these acts areneddp as speech acts
or dialogue acts Models exist for generating and interpreting these acts.

¢ Human-human dialogue is another important area of dialogelevant espe-
cially for such computational tasks agtomatic meeting summarization

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Early work on speech and language processing had verydittighasis on the study
of dialogue. The dialogue manager for the simulation of tampoid agent PARRY
(Colby et al., 1971), was a little more complex. Like ELIZAwas based on a pro-
duction system, but where ELIZAs rules were based only awtords in the user’s
previous sentence, PARRY'’s rules also rely on global végmimdicating its emotional
state. Furthermore, PARRY'’s output sometimes makes useriptdike sequences of
statements when the conversation turns to its delusions.example, if PARRY's
angervariable is high, he will choose from a set of “hostile” outhuf the input men-
tions his delusion topic, he will increase the value offear variable and then begin
to express the sequence of statements related to his delusio

The appearance of more sophisticated dialogue manageitedwse better un-
derstanding of human-human dialogue. Studies of the ptiegenf human-human
dialogue began to accumulate in the 1970's and 1980’s. Thwesation Analy-
sis community (Sacks et al., 1974; Jefferson, 1984; Sced®82) began to study
the interactional properties of conversation. Grosz'srf)issertation significantly
influenced the computational study of dialogue with itsadtrction of the study of
dialogue structure, with its finding that “task-orientedldgues have a structure that
closely parallels the structure of the task being perfornfed 27), which led to her
work on intentional and attentional structure with Sidrierchbaum et al. (2000) is a
good recent summary of the role of intentional structureiatogjue. The BDI model
integrating earlier Al planning work (Fikes and Nilsson 719 with speech act theory
(Austin, 1962; Gordon and Lakoff, 1971; Searle, 1975a) was$ fiorked out by Co-
hen and Perrault (1979), showing how speech acts could kerated, and Perrault and
Allen (1980) and Allen and Perrault (1980), applying theraagh to speech-act inter-
pretation. Simultaneous work on a plan-based model of wtaleding was developed
by Wilensky (1983) in the Schankian tradition.

Modern dialogue systems drew on research at many diffeabstih the 1980'’s
and 1990's. Models of dialogue as collaborative behaviaevietroduced in the late
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1980’s and 1990's, including the ideas of common ground€yence as a collabora-
tive process (Clark and Wilkes-Gibbs, 1986), and modejsinf intentions (Levesque
et al., 1990), anghared plans(Grosz and Sidner, 1980). Related to this area is the
study ofinitiative in dialogue, studying how the dialogue control shifts betwear-
ticipants (?; Smith and Gordon, 1997; Chu-Carroll and Broi@97).

A wide body of dialogue research came out of AT&T and Bell Liatories
around the turn of the century, including much of the earlykvon MDP dialogue
systems as well as fundamental work on cue-phrases, prosodyejection and con-
firmation. Work on dialogue acts and dialogue moves drew faammber of sources,
including HCRC'’s Map Task (Carletta et al., 1997b), and tloeknof James Allen and
his colleagues and students, for example Hinkelman andAll889), showing how
lexical and phrasal cues could be integrated into BDI motispbeech acts, and Traum
(2000), Traum and Hinkelman (1992), and from ? (?).

Much recent academic work in dialogue focuses on multimagplications (?),
on the information-state model (?) or on reinforcementrigwy architectures (?, ?).

Recent years have seen the widespread commercial use ajfaiasystems, of-
ten based on VoiceXML. Some more sophisticated systemsadisoseen deployment.
For exampleClarissa, the first spoken dialogue system used in space, is a speech-
enabled procedure navigator that was used by astronautseolmternational Space
Station (Rayner and Hockey, 2004; Aist et al., 2002).

Good surveys on dialogue systems include Harris (2005)e@ @t al. (2004),
McTear (2002, 2004), Sadek and De Mori (1998), and the disdaghapter in Allen
(1995).

EXERCISES

22.1 List the dialogue act misinterpretations in tkiého’s On Firstroutine at the
beginning of the chapter.

22.2 Write a finite-state automaton for a dialogue manager focking your bank
balance and withdrawing money at an automated teller machin

22.3 Dispreferred responses (for example turning down a rejjaestusually sig-
naled by surface cues, such as significant silence. Try tizentite next time you
or someone else utters a dispreferred response, and write ithe utterance. What
are some other cues in the response that a system might us¢etd d dispreferred
response? Consider non-verbal cues like eye-gaze and lestlyregs.

22.4 When asked a question to which they aren’t sure they knownbkeer, people
display their lack of confidence via cues that resemble atiepreferred responses.
Try to notice some unsure answers to questions. What are ebthe cues? If you
have trouble doing this, read Smith and Clark (1993) andrispecifically for the cues
they mention.

22.5 Build a VoiceXML dialogue system for giving the current timeund the world.
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The system should ask the user for a city and a time format ¢24, letc) and should
return the current time, properly dealing with time zones.

22.6 Implement a small air-travel help system based on text inptdur system

should get constraints from the user about a particulartflight they want to take,
expressed in natural language, and display possible flayhts screen. Make simpli-
fying assumptions. You may build in a simple flight databasgom may use a flight
information system on the web as your backend.

22.7 Augment your previous system to work with speech input vicc&gML. (or
alternatively, describe the user interface changes youditave to make for it to work
via speech over the phone). What were the major differences?

22.8 Design a simple dialogue system for checking your email ¢ivertelephone.
Implementin VoiceXML.

22.9 Test your email-reading system on some potential usersosghsome of the
metrics described in Sec. 22.4.2 and evaluate your system.
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