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ABSTRACT

The ability to automatically scan voicemail messages for
content and caller identity cues would be a useful service.
This paper describes a system which automatically �les
voicemail messages into caller folders using text indepen-
dent speaker recognition techniques. Callers are repre-
sented by Gaussian mixture models (GMM's). The speech
for an incoming message is processed and scored against
caller models created for a subscriber. A message whose
matching score exceeds a threshold is �led in the matching
caller folder; otherwise it is tagged as \unknown". The sub-
scriber has the ability to listen to an \unknown" message
and �le it in the proper folder, if it exists, or create a new
folder, if it does not. Such subscriber labelled messages are
used to train and adapt caller models. The system has been
evaluated on a database of voicemail messages collected at
AT&T Labs. A set of 20 callers from this database is des-
ignated as \ingroup". Each of these callers has recorded at
least 20 messages totalling 10 or more minutes in duration.
A distinct set of 220 messages, each from a di�erent caller,
are designated as \outgroup". Representative performance
�gures with threshold parameters set to ensure that out-
group acceptance is low compared with ingroup rejection
are the following. The average ingroup message rejection
rate is 11.0% and the average ingroup message confusion
rate (matching the wrong caller) is 1.0%, while the average
outgroup message accept rate is 2.7%.

1. INTRODUCTION

The search and navigation capabilities that allow sub-
scribers to manage and sort email messages are not avail-
able for voicemail. Email messages come tagged with
header information about the sender and the subject. Both
the header and body text of such messages can be readily
searched using simple key word or information retrieval
techniques to locate messages about a particular topic
and/or sent by a particular person. Email text �lters can
sort messages into appropriate folders even before they are
read. We are currently engaged in research designed to
provide search and navigational capabilities for voicemail
messages. The speech content of each message can be an-
alyzed to identify words or phrases as well as speakers.
This paper describes a system for identifying voice-

mail message callers by applying text independent speaker
recognition techniques to the speech content in the mes-
sages. The speech for each incoming message is processed
and compared with existing speaker models established for
the subscriber. If the message does not score well enough
against the existing speaker models, or if no models exist,
it is tagged as \unknown". When the subscriber listens
to a message tagged as unknown, he/she has the opportu-
nity to label it and �le it in the proper folder, if it exists,
or create a new caller folder, if it does not. When the
accumulated duration of messages stored in a folder is suf-
�cient, an initial speaker model is created for the caller.

Subsequent messages for the caller are stored in the folder
if the matching score is good enough. New messages from
the caller, together with old messages, may be used to re-
train the speaker model. Messages from the caller that are
rejected (tagged as unknown) or tagged incorrectly with
another caller's label, but corrected by the subscriber af-
ter listening to the message, may be used to adapt caller
models.

2. DATABASE DESCRIPTION

The experimental database is extracted from a corpus of
approximately 10,000 voicemail messages collected from
the voice mailboxes of approximately 140 employees at
AT&T Labs over a 3-month period. The messages were
transmitted from a representative variety of telephones in-
cluding ordinary telephone handsets, speakerphones, and
cellular phones. The recorded messages are digitized at an
8 kHz sampling rate as 8-bit mulaw samples. Each mes-
sage is manually labelled, including information about the
caller. The name of the caller, if provided in the message,
is included as a label, as well as such information as gen-
der, age (child/adult), foreign language, speech pathology,
etc. A histogram showing the distribution of individual
message durations is shown in Fig. 1.
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Figure 1. Histogram of individual message durations

For the purposes of the experimental evaluation, mes-
sages are selected for which the caller label contains both
a �rst and last name to ensure that each caller label is
associated with a unique caller. Also, no messages are se-
lected in which more than one person is speaking. The
experimental messages are divided into four groups. The
�rst group, designated \ingroup", consists of 973 messages
recorded by 20 callers, 11 female and 9 male adults. Each
ingroup caller has at least 20 messages with a total du-
ration of at least 10 minutes. Ingroup caller set size is
an experimental variable in the evaluation. A set of 220
messages, each from a distinct caller (not included in the
ingroup messages), 130 male and 90 female, are designated
\outgroup". Finally, two distinct groups of messages, one
drawn from 43 callers and the other from 138 callers, both
approximately half male, half female, are used to create
speaker background models.
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3. DETAILS OF OPERATION

3.1. Front-end processing

Two types of front-end processing are used in the experi-
mental evaluations. The �rst is based on linear predictive
coding (LPC) based cepstral analysis, the second on mel
spaced �lter bank cepstral analysis. Each digitized message
is trimmed by approximately 0.25 secs at the beginning and
end to avoid recorded onset and o�set clicks. For the LPC-
based analysis, 10th order LPC coe�cients are calculated
every 10 ms over 30 ms windows. The LPC coe�cients
are converted to 12th order cepstral coe�cients and aug-
mented by 12th order delta cepstral coe�cients calculated
over 5-frame windows. Frames with energy falling below
30 dB below the peak energy over the message are elimi-
nated. Channel normalization is carried out by means of
utterance based cepstral mean subtraction.
For the mel �lter bank analysis, 12th order cepstral coef-

�cients are calculated by applying a discrete cosine trans-
form (DCT) to the output of 24 mel scale spaced �lters
every 10 ms over 20 ms windows throughout the digitized
message. Real time energy normalization and cepstral bias
removal are applied with a 300 ms look ahead window. The
cepstral coe�cients are augmented by 12th order delta-
cepstral plus delta-delta-cepstral coe�cients plus energy,
delta-energy and delta-delta-energy.

3.2. Training and models

Callers are represented by 64-component Gaussian mixture
models (GMM's) iteratively trained using the Expectation-
Maximization (EM) algorithm, initialized with the segmen-
tal K-Means algorithm [?]. Each caller's messages, ar-
ranged sequentially, are partitioned into two groups. Ap-
proximately the �rst six minutes of messages are desig-
nated for training models. The balance of the messages
(at least 4 minutes cumulative duration) are used for test-
ing. Several schemes for training caller models have been
examined. The scheme reported here is the following. An
initial model is created for a caller when at least 60 secs
of messages have been accumulated. (The longest message
may be truncated so that the total accumulated duration
does not exceed 90 secs.) These are referred to as the �rst
stage of training messages. When an additional 60 secs of
messages are accumulated, a new model is created contain-
ing both the �rst and new stage of messages. This process
continues until 4 stages of messages are accumulated. The
fourth stage model is referred to as \mature". This se-
quential process of model building has been found to help
create adequately representative caller models.
In addition to caller models, speaker background models

are created. These are constructed from the \background"
message lists mentioned in Section 2. Single background
models are constructed from the 43-caller set and the 138-
caller set. Each caller's messages are truncated to 15 secs
for a total of 645 secs for the �rst set, referred to as b43, and
2070 secs for the second set, referred to b138. In addition,
a set of 2 background models is created from the 138-caller
set. Each message in this set is listened to to judge whether
it originates from an ordinary telephone handset (with elec-
tret or carbon button microphone) or from a speakerphone
or cellular phone. 92 15-sec messages, totalling 1380 secs,
are used to create an ordinary handset speaker background
model while 46 messages, totalling 690 secs, are used to cre-
ate a non-handset speaker background model. This set is
referred to b138-2.

3.3. Scoring

Scoring a test message proceeds as follow. Let X =
fx1; x2; : : : ; xNg be a sequence of feature vectors repre-
senting a processed test message. Let �T1 ; �T2 ; : : : ; �TM
be GMM's for each of a set of M ingroup callers and
�B1

; �B2
; : : : ; �BK be the set of K speaker background

models. (In these experiments K is either 1 or 2.) Log

likelihood scores are computed for test frame xt with re-
spect to a model �,

s(xtj�) = log p(xtj�) (1)

and averaged over all the processed message frames

S(Xj�) =
1

N

NX

t=1

s(xtj�) (2)

The average normalized score for an ingroup caller T is
obtained as

SN(Xj�T ) = S(Xj�T ;�B1
; �B2

; : : : ; �BK ) =

S(Xj�T )�max
k

S(Xj�Bk) (3)

A normalized score SN(Xj�Tj ) is obtained for each in-
group caller model j = 1; 2; : : : ;M .

3.4. Identi�cation

The normalized scores for a message are sorted and ranked.
The ingroup caller Tr1 associated with the best scoring
caller model is tentatively identi�ed as the caller. The best
ranking score is compared with a caller dependent thresh-
old THN(Tr1 ). If the score exceeds the threshold, the
identi�cation is con�rmed. Otherwise it is rejected, tag-
ging the message as \unknown". If the number of callers,
M , is greater than some preassigned value Mc (currently
taken to be 10), an additional test is performed. A di�er-
ence score

SD(X;Tr1 ; Tr2 ) = SN(Xj�Tr1 )� SN(Xj�Tr2 ) (4)

between the best and next best scores is calculated and
compared with a threshold, THD(Tr1 ). In this case, if ei-
ther threshold test succeeds, the identi�cation is con�rmed;
otherwise it is rejected. The use of di�erence scores is re-
stricted to ingroup caller set sizes greater than Mc in order
to assure statistical stability.
In some experiments thresholds are allowed to adapt

from trial to trial according to an algorithm in which the
next threshold is function of the current threshold and the
current score. Initial thresholds are set empirically.

3.5. Model adaptation

Caller models can be updated when a message is rejected.
This simulates the situation in which a message is reported
to the subscriber as \unknown" and the subscriber subse-
quently �les the message in the proper caller folder. In the
model adaptation, the message feature vectors are used to
adapt the means and mixture weights for the caller's GMM
using a procedure similar to what is described in [?].

4. EXPERIMENTAL EVALUATIONS

Experimental evaluations are carried out assuming that a
single subscriber has assigned caller folders to the entire
set of 20 ingroup callers or to some subset of it. There
are a total of 734 test messages from the ingroup callers.
The number of messages per caller varies widely from 11
to 116 with an average of 36.7 and a median of 27.5. It
is also assumed that the subscriber receives 220 messages
from the outgroup callers for whom no folders are assigned.
In a typical experiment all the subscriber's ingroup mes-
sages and all the outgroup messages are scored against all
existing ingroup caller models and the background models.
The following performance statistics are calculated for

each experiment. For ingroup messages, performance
statistics are calculated either over the entire set of mes-
sages or over each caller's messages and then averaged over
the set of callers. Closed-set error rate is the fraction of
messages for which the correct caller is not the best match.



Ingroup reject rate is the fraction of messages which fail
the decision threshold (whether or not the correct caller is
the best match). Ingroup confusion rate is the fraction of
ingroup messages for which the wrong caller is accepted.
For outgroup messages, false accept rate is the fraction of
outgroup messages which are accepted.
The following experimental variables are examined: the

number and kind of background models, the number of in-
group callers, the front-end processing (LPC derived cep-
stral coe�cients or mel-spaced �lter bank cepstral coef-
�cients), the length of test messages, speaker indepen-
dent and speaker dependent decision thresholds, and model
adaptation. Most performance statistics will be shown for
so-called \mature" caller models where each caller model
is trained from a total of 4 to 6 mins of messages drawn
from the training message lists. For speaker independent
thresholds, a �xed threshold (or set of thresholds) is found
which minimizes the overall ingroup reject rate when the
outgroup accept rate is 5%. In addition, performance will
be described when caller models are bootstrapped from
scratch.

4.1. Ingroup caller set size

First, we compare performance as a function of the size of
the ingroup caller set. In this experiment, a single back-
ground model, b43, is used, the front end uses LPC-derived
cepstral coe�cients, and full length messages are scored.
The performance is shown in Table 1 for caller set sizes
20, 10, 5, and 1. In this and subsequent tables, two error
rate �gures are shown in each box separated by a slash.
The �rst represents errors averaged over messages and the
second errors averaged over callers. For caller set size 10,
10 di�erent caller sets are constructed by selecting callers
evenly distributed from the entire set of 20. Each caller
is included in 5 di�erent sets. Similarly, 20 size 5 caller
sets are constructed with each caller included in 5 di�erent
sets. Only best matching scores are used for caller set sizes
5 and 1. Both reject and closed-set error rates decrease
as ingroup size decreases. Ingroup confusion is negligible
for all ingroup sizes. Ingroup size 1 is equivalent to a ver-
i�cation mode and the reject rate is approximately at the
veri�cation equal-error rate.

ingroup size 20 10 5 1
reject 22.6/22.8 18.6/19.9 14.2/15.2 4.4/5.7
confusion 0.0/0.0 0.2/0.1 0.0/0.0 {
closed set 5.2/4.8 3.2/3.1 2.0/2.2 {

Table 1. Average ingroup error rates (%) as a function of
group size when outgroup acceptance is set at 5%.

4.2. Front end processing, message length, back-
ground models

Ingroup error rates are shown in Table 2 for a variety
of conditions. Ingroup confusions rates, again, are quite
small. However, decreases in ingroup reject rates are often
accompanied by small increases in ingroup confusion rates.

front mesg back closed ingroup ingroup
end length model set reject confuse

lpc cep whole b43 5.2/4.8 22.6/22.8 0.0/0.0
lpc cep whole b138 5.2/4.8 20.4/23.6 0.4/0.2
lpc cep whole b138-2 5.2/4.8 18.0/22.0 1.0/0.3
lpc cep trunc b138-2 5.9/4.7 21.0/26.1 1.2/0.6
mel cep whole b43 7.5/6.1 19.1/16.9 1.0/0.6
mel cep whole b138-2 7.5/6.1 16.4/15.2 1.5/0.8

Table 2. Average ingroup error rates (%) for various condi-
tions when outgroup acceptance is 5%.

The �rst three rows compare performance for di�erent
background models with LPC-cepstrum front end process-
ing. Using ingroup reject rates to compare performance,
it can be seen that there appears to be a slight improve-
ment for b138, the large background speaker set, compared

to b43, the smaller one. There is a more distinct improve-
ment for the 2-model large speaker set, b138-2. Recall that
one model in this set represents ordinary handsets while
the other model is a catch-all for speakerphones, cellular
phones, etc. The scoring normalization process selects the
best matching of these two background models for nor-
malization (see Sec. 3.3.). This suggests that improved
performance can be obtained by using a set of background
models each of which represents the di�erent calling condi-
tions expected for a message. The last two rows compare
background models (b43 and b138-2) for the mel cepstrum
front end with similar conclusions.
Comparing now LPC cepstrum and mel cepstrum front

ends, it can be seen that although for closed-set error rate,
mel cepstrum performs worse then lpc cepstrum, the re-
verse is true for open-set error rates. The open-set im-
provement can be attributed to a more homogeneous dis-
tribution of scores across the population of callers for mel
cepstrum processed messages. This results in more com-
pact and better separated distributions for ingroup and
outgroup scores.
Also shown in Table 2 is a performance comparison be-

tween scoring whole messages and scoring messages which
are truncated to 20 secs, which is slightly less than the me-
dian duration of the messages (see Fig. 1). There is about
a 15% degradation in ingroup reject rates with truncated
messages.

condition ingroup ingroup outgroup
reject confusion accept

lpc cep 18.3/19.9 1.0/0.3 6.8
mel cep 17.0/16.8 1.6/0.6 2.3
mel cep w/updates 11.0/12.8 1.2/0.5 2.7

Table 3. Average error rates (%) with speaker dependent
thresholds for mature models. Thresholds are allowed to adapt
from trial to trial.

4.3. Speaker dependent thresholds

Table 3 compares performance when speaker dependent
thresholds are used. Here score thresholds for all callers
are initially set to the same values and allowed to adapt
from message to message if the message is accepted. The
threshold adaptation parameters are set so that the in-
group reject rates are approximately the same as those
obtained with speaker independent thresholds. The val-
ues of updated thresholds depend on the current thresh-
old and the score for the current message. Outgroup mes-
sages are scored after all the ingroup messages. The initial
thresholds for outgroup messages are the �nal thresholds
for ingroup messages. Outgroup messages are also allowed
to update thresholds. The �rst two rows compare perfor-
mance between lpc cepstrum and mel cepstrum front ends.
At those settings it can be seen that the outgroup accept
rate for mel cepstrum is less than half the rate obtained
with the lpc cepstrum. Finally, the last row shows the ef-
fect of model adaptation. Models are updated using data
from messages that have been rejected. Starting with the
same threshold parameters used in the experiment with no
model updating, it can be seen that overall ingroup rejec-
tion is reduced by some 25% or 30% with only a slight
increase in outgroup accept rate.

4.4. Enrollment and adaptation

The experiments described so far show performance for test
messages scored against so-called mature models (models
trained on 4 to 6 minutes of training messages). It is also
important to consider performance as models are trained,
simulating the situation in which a subscriber, starting
from enrollment, adds new caller folders to his/her list.
Figure ?? shows performance for such a scenario. Error
rates are shown as a function of \rounds". In each round
a set of ingroup training messages followed by the entire



set of outgroup messages is scored against existing caller
models. At the outset, no caller models exist. In turn,
training messages from each of the �rst 3 ingroup callers
are used to train models successively through maturity (see
Sec. 3.2.) and scored against caller models as they become
available. In round 2, the next 3 callers are trained, and so
forth, through round 7 after which all 20 caller models are
trained. In round 8, the ingroup test messages followed by
outgroup messages are scored against all 20 models. Since,
the number of training messages for each round is small,
averaging 23, the ingroup error rates uctuate signi�cantly.
Generally, it can be seen that the ingroup rejection rate is
high uctuating around an average of 51% while the in-
group confusion rate uctuates around 3.7%. This com-
pares with the ingroup rejection rate of 19.2% and ingroup
confusion rate of 1.0% obtained after training is complete
(round 8). The high ingroup error rates for training can be
explained as follows. First, the very �rst training messages
for each caller must be either rejected or confused since no
model exists for the caller. Of the 160 training messages
in rounds 1 to 7, 37 fall in this category. Thus, the com-
bined rejection and confusion rate can never be less than
approximately 23%. In the experiment, 34 of these (21.2%)
are rejected and 3 (1.9%) are confused. Second, until ma-
turity, the models for some callers are not yet su�ciently
representative of the caller and are more susceptible to re-
jection and confusion. The outgroup accept rate generally
rises slowly to 5% with successive rounds as more and more
caller models are trained.
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Figure 2. Error rates for 7 successive training rounds (see
text); error rates for round 8 are for test messages after training
for all callers is complete.
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Figure 3. Error rates for 4 successive training rounds (see
text); error rates for round 5 are for test messages after training
for all callers is complete.

In a contrasting scenario, illustrated in Fig. ??, all 20
caller models are trained to stage 1 in round 1, to stage
2 in round 2, etc. up to maturity in round 4. In round 1
there are no caller models, so that the ingroup reject rate
is 100% and ingroup confusion and outgroup accept rates
are 0.0. These results are not shown. In round 2, the stage
2 training messages and the outgroup messages are tested
against the stage 1 models. The ingroup reject rate is about
68% while the ingroup confusion rate is 0.0. In successive

rounds, the ingroup reject rate drops as the models be-
come more representative while the ingroup confusion rate
remains at 0.0. The outgroup accept rates climbs slowly
to 5% as the ingroup models become less speci�c. Actual
training scenarios are likely to be some combination of the
two described here.

5. DISCUSSION AND CONCLUSION

By de�nition of the application, voicemail foldering by
callers is a challenging task because it is an open-set iden-
ti�cation problem. Error rates, as shown in Table 1, must
increase as group size increases. Moreover, the applica-
tion requires that misidenti�cation be kept as low as pos-
sible. Misidenti�cation is chiey attributable to outgroup
acceptance since ingroup confusion is generally small, and
often insigni�cant depending on conditions. Maintaining
misidenti�cation at a low level means that ingroup rejec-
tion can be quite high. Another challenge for the appli-
cation is the variety of channel and recording conditions
that can be expected. Among the features that have been
shown to improve performance, particularly with respect to
variable conditions, are mel �lter bank cepstrum front end,
multiple background models, speaker dependent adaptive
thresholds, and adapting models using rejected messages.
The application also has some intrinsic advantages com-

pared to, for example, speaker identi�cation used for access
control and security applications. The most signi�cant ad-
vantage is that it is relatively easy to supervise the training
and updating of caller models and to correct identi�ca-
tion errors with the cooperation of the subscriber. Thus,
rejected messages, messages labelled as \unknown", once
the subscriber listens and labels them, serve to create, ex-
tend, and update caller models and in the process make the
models more representative of the channel and recording
conditions associated with each caller. Even misidenti�ed
messages can be corrected by the subscriber once they are
listened to. When rejected messages are used to update
caller models, the best overall performance is obtained, an
11% or 12% ingroup reject rate with outgroup acceptance
held at 2.7%.
It should be noted that, at the moment, there are appli-

cation parameters which could signi�cantly impact perfor-
mance for which little information is at hand. For example,
we have chosen ingroup folder size to range from 1 to 20,
but we cannot be sure what would be typical and/or use-
ful. We also do not know what the a priori probability of
an ingroup message is relative to an outgroup message.
Although not addressed in this paper, other sources of

information can be used to provide caller information, such
as automatic number identi�cation (ANI) which is widely
available in the U.S., and spotting the caller's name and/or
number in the message using speech recognition. Combin-
ing all these source of caller information should provide a
highly robust and useful service for voicemail subscribers.
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