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ABSTRACT

This paper describes NewExpress, the new text-to-phonetic-
representation component of the AT&T Bell Laboratories Text-
to-Speech system (TTS). To the best of our knowledge, NewEx-
press represents the first extensive use of corpus-based linguistic
techniques in a text-to-speech program. We discuss the use of
such techniques in the system in four main areas: general pitch
accent assignment, prosodic phrasing, pitch accent assignment in
noun compounds, and homograph disambiguation. We demon-
strate that these techniques afford an improvement in the perfor-
mance of TTS.

1 INTRODUCTION

This paper describes three applications of corpus-based lin-
guistic techniques implemented in NewExpress, the new text-to-
phonetic-representation component of the AT&T Bell Laborato-
ries Text-to-Speech system. As far as we know, NewExpress rep-
resents the first extensive use of such methods within a text-to-
speech system. Below, we describe applications of corpus-based
methods to four major problems in text-to-speech: general pitch
accent assignment, the determination of prosodic phrasing, accent
assignment within noun compounds, and homograph disambigua-
tion.

2 PITCH ACCENT AND
PHRASING PREDICTION

The association between prosodic variations and semantic,
syntactic and discourse features of utterances has long been an
important issue in theoretical studies of language as well as in
applications to speech synthesis. Most current text-to-speech sys-
tems use simple word-class information to assign pitch accent:
function words, such as prepositions, are deaccented while con-
tent words, such as nouns, are accented. Intonational boundaries
are placed where non-final punctuation occurs in text or accord-
ing to very simple parsing of the input text. Message-to-speech
systems and text-to-speech systems for restricted domains take
advantage of richer semantic, syntactic, and discourse-level in-
formation [18, 5, 11], but such information is not available for
unrestricted text-to-speech. While truly natural prosodic assign-
ment is not currently achievable for text-to-speech, current corpus-
based analysis techniques applied to relatively large prosodically
labeled corpora, do make it is possible to improve prosodic assign-
ment considerably with fairly simple information inferred from
unrestricted input.
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Such information is being exploited for the assignrment of
prosodic features in NewExpress. Both phrasing and accent al-
gorithms are derived from the analysis of sizeable, prosodically
labeled corpora. For pitch accent placement, these included single
and multi-speaker corpora of radio speech, multi-speaker sponta-
neous (elicited) speech, and single speaker read sentences; phras-
ing prediction procedures have been developed both from sponta-
neous and from read multi-speaker speech.

2.1 Pitch accent prediction

Models for accent placement were derived both by hand and au-
tomatically from corpus analysis. The hand-crafted rules model
observed accent decisions on radio speech test sets with 82.4%
accuracy; on citation-format utterances, they performed at 98.3%
accuracy. Procedures developed automatically produce decision
trees which predict radio speech accent with 85.1% success. These
trees were produced via Classification and Regression Tree anal-
ysis (CART) (1] techniques.?

The rules currently implemented in T'T'S make use of part-of-
speech and morphological information to assign input tokens to
one of four broad classes — closed-cliticized, closed-deaccented,
closed-accented, and open — based upon frequency distributions
in the training data. For each token the following additional in-
formation is collected: preposed adverbials are identifed from sur-
face position and part-of-speech, as are fronted PPs, and labeled
as potentially contrastive. Cue phrases (discourse markers, such
as ‘well’ and ‘now’ which provide explicit structural information
about the text) are identified from surface position and part-of-
speech, and their accent status is predicted following findings in
[13]. Verb-particle constructions are identified by table look-up.
Local focus is implemented as a stack of lemmas of all content
words in a phrase. New items are pushed on the stack as each
phrase is read and subsequently treated as ‘given’, and thus po-
tentially deaccentable. Cue phrases trigger either push or pop
operations, roughly as described in [9]. Paragraph boundaries
cause the entire stack to be popped. Noun compounds and their
citation-form stress assignment are identified by the NP compo-
nent described in Section 3. Finally, possible contrastiveness is
inferred by comparing the presence of roots of elements of a nom-
inal in local focus; if some items are ‘given’ and others ‘new’, the
new items are marked as potentially contrastive. Accent assign-
ment is then determined as follows: assign ‘closed-cliticized’ and
‘closed-deaccented’ items the status accorded their class. Next,
‘contrastive’ items are assigned emphatic accent. Then ‘closed-
accented’ items are accented, remaining ‘given’ items deaccented,
remaining noun-compound elements assigned their citation-form

!Success rates cited here are cross-validated (determined by successive
training on 90% of the data and testing on 10%, averaging the results) from
feature values available automatically for text-to-speech.
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accent, and all other items accented.

2.2 Phrase boundary prediction

Phrasing procedures are derived using CART techniques on a
sample from the DARPA ATIS corpus [6]. Resulting prediction
trees achieve cross-validated success rates on multi-speaker read
speech of 91.2% for major boundaries only, 88.4% for collapsed
major/minor phrases, and 81.9% for a three-way distinction be-
tween major, minor and null boundary. For spontaneous speech,
they predict correctly in 88.2% of cases for major only, 84.4%
for collapsed major/minor phrases, and 78.9% for the three-way
distinction.

The current prototype boundary assignment module identi-
fies phrase boundaries based upon decision trees trained on read
speech only. The following automatically-available variables were
examined for each potential boundary location < w;,w; > (where
w; represents the word to the left of the site and w; the word to
the right): temporal information (including length of utterance
in words and seconds, rate, distance of w; in syllables, lexically
stressed syllables, words, and seconds from the beginning of the
utterance and distance of w; in words and seconds from the end
utterance); predicted pitch accent (as described in Section 2.1)
for w; and w; and stress level of last syllable in w;; part-of-speech
for a four word window around < wj;,w; >; largest syntactic
constituent dominating w; but not w; and vice versa, and small-
est constituent dominating them both; whether < wj;,w; > is
dominated by an NP and, if so, distance of w; from the beginning
of that NP, the NP, and distance/length; and mutual information
scores for a four-word window around < w;,w; >. The most
successful of these predictors so far appear to be part-of-speech,
some constituency information, and mutual information; each can
predict a large percentage of observed boundaries. However, more
training data is clearly needed to improve predictive power, par-
ticular upon text not well represented by the training corpus.

Since the current method of obtaining training data (prosodic
labeling of a large corpus) is fairly slow and labor intensive, an al-
ternate method for augmenting the original corpus is being tested.
First, text is chosen at random from the AP news wire and phras-
ing predictions are obtained from the corpus-based prediction
trees. Next, these results are corrected by hand to insert or delete
undesired phrase boundaries, where desirability is determined by
human subjects. Finally, these sentences are treated as data for
the training of new phrasing predictors.

3 NOUN-NOUN COMPOUND
ACCENT

Sequences of nouns in English text — noun compounds — pose
a difficult problem for text-to-speech systems, because lexical ac-
cent can in principle be assigned to any member [14, 16].2 Thus
-— failing pragmatic reasons to do otherwise — English speakers
would generally accent the first word (and deaccent the second)
in ARBITRATION panel, but accent the second in eity LIFE-
GUARD. It is often argued that accent placement depends partly
upon the semantic relationship between the words in the com-
pound, and in part upon purely lexical factors 7, 12]. Indeed, the
compound analyzer in NewExpress — NP -— uses a database of

2Although the NP component of NewExpress analyzes compounds of
length greater than two, we will restrict our discussion here to binary cases,
which comprise the majority of examples (90%) of noun compounds that one
encounters in text. :
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literal compounds listed with their accent attributes (e.g. lLittle-
neck CLAM), plus a database of quasi-semantic rules to predict
accent: so a rule of the form ROOM + HOUSEWARE = right-
hand accent derives the correct accent for kitchen PHONE. This
system is described in detail in [16]. While this approach fares
well enough on material that it can sensibly analyze, one still en-
counters a large number of noun-noun compounds for which the
system gives no analysis, and in those cases it reverts to the default
of assigning accent to the penultimate member of the sequence.
Since this fallback option is only right about 75% of the time in
most speakers’ judgment, it is not really satisfactory.

As a supplement to the rule-based methods used in NP, we
have trained a simple statistical method on a hand-labeled cor-
pus of 7831 noun compound types picked randomly from the 1990
Associated Press newswire, and tagged for lefthand or righthand
accent by one of the authors. Of these, 88% (6891) compounds
were used as a training set and the rest were set aside as the test
set. For each compound in the training set and for each of the
two lemmata in the compound we collect the set of broad topi-
cal categories associated with the lemma in Roget’s Thesaurus [3].
Then, for each element of the cross-product of these Roget cate-
gories we tally the accent (left or right) tagged for the compound.
Intuitively, the cross-product of the categories gives a crude en-
coding of the set of possible semantic relationships between the
two words. We also create entries for the first lemma (modifier)
qua modifier, and the second lemma (head) qua head, and tally the
accent for those entries. For a compound in the test set, we sum
the accent pattern evidence accumulated for each of the elements
in the cross product of the Roget categories for the compound,
and the head/modifier entries for the two lemmata, selecting the
accenting that wins. As an example, consider cloth DIAPERS,
which occurs in the test set and not in the training set. In the
training set, the lemma diaper never occurs in the righthand posi-
tion; the lemma cloth occurs twice in the lefthand position, once in
a compound with lefthand accent (CLOTH merchant) and once
in a compound with righthand accent (cloth BANNERS). This
amounts to no evidence, so one would by default assign lefthand
accent to cloth diapers; however this compound also matches the
category sequence MATERIALS/CLOTHING, for which there is
a score of 13 favoring righthand accent. In practice it was found
that a large number of the Roget cross-categorial combinations
were not useful and often in fact detrimental: this is because Ro-
get categories are usually topical rather than taxonomic classifica-
tions. However, 19 fairly taxonomic combinations were retained.

The overall results of the experiment were as follows. For the
940 nominals in the test set there was an error rate of 16%: note
that the error rate for uniformly assigning lefthand accent is 30%
for this set, so the approach roughly halves the error rate of the
fallback option. (Of the 30% in the test set that were hand-tagged
with righthand accent, 58% were correctly assigned righthand ac-
cent.) Only 35 nominals in the test set matched one of the pruned
set of cross-categorial combinations. However, of these 27 (77%)
correctly predicted accent on the basis of the category combi-
nations alone. This suggests that a more reasonable taxonomic
categorization than Roget’s could be useful in accent assignment
to nominals.

At present, the statistical method is used within NP as a back-
up for noun-noun sequences in case the input cannot be analyzed
by NP’s rule-based methods. To evaluate the system, we had six
judges independently judge accent placement for 1138 compound
types picked randomly from the 1992 Associated Press newswire.
Pairwise similarity measures between judges averages 0.91 and
this may be taken as an upper bound for performance of computer
models. The baseline algorithm of always assigning lefthand ac-
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cent agrees with the judges on average at 0.76, whereas NP agrees
at 0.85, meaning that NP covers about 67% of the difference in
performance between humans and the baseline. If one counts by
token rather than by type, then the judges agree at 0.93, and the
baseline/judge and NP/judge agreement scores are respectively
0.74 and 0.89. Interestingly, only 174 (15%) of the cases were ac-
tually handled by the hand-built rules of NP: the 964 remaining
cases were assigned accent on the basis of the trained models de-
scribed above, suggesting that corpus-trainable models are more
extensible than hand-built systems in this domain.

4 HOMOGRAPH
DISAMBIGUATION

The processing of words with multiple pronunciations is an
instance of the word sense disambiguation problem, and we have
employed statistical techniques developed for this larger task in
the new pronunciation rules for TTS. Homographs are of three
types: 1) Part of Speech: Ambiguities such as lives [livz / larvz] or
read [ri:d / red] are handled by a stochastic tagger [4] augmented
with word-specific optimizations which substantially reduce its er-
ror rate. I1) Capitalization: Proper names such as Nice and Begin
are ambiguous in certain contexts, such as sentence initial po-
sition, titles and single-case text. III) Polysemy within part of
speech: Words including bass and bow require additional “seman-
tic” evidence for disambiguation.

Our previous work in sense disambiguation {8, 17| has been
based on wide-context Bayesian discrimination, where words in an
n-word window independently contribute positive or negative ev-
idence for a given sense. Due to this strict independence assump-
tion, the method cannot exploit evidence conditional on other
evidence. For example, take is evidence for the non-metallic sense
of lead only in collocations such as take the lead, a condition which
cannot be expressed in this formalism. Others (2] have used clas-
sification trees, but due to the conditional branching at each tree
level, have encountered problems with sparse-data estimation in
a very large parameter space.

Our new approach combines the strengths of these two
methods, by using an n-gram model to capture local, condi-
tional dependencies, and uses probabilities derived from a wide-
context Bayesian model to capture long-distance semantic col-
locations. As in [10], the system incorporates several poten-
tial sources of evidence, such as words, parts-of-speech, and
lemmas in specific positions, as well as questions about the
ambiguous word (e.g., is it capitalized?). The strength of
each piece of evidence (E;) is expressed in log likelihoods |15],
logy Pr(E;|Pronunciation,) [ Pr{E;|Pronunciationg). Tradi-
tionally the log likelihoods are summed. However, there are prob-
lems due to the non-independence in the multiple sources of evi-
dence, and because one count in the ratio is often zero, the result
is highly sensitive to the smoothing strategy used. Rather than
combining all the available evidence probabilities, we discovered
that performance actually improves when only the single strongest
piece of evidence is used.* Thus we use the best evidence first,

3A possible explanation for this is based on another interesting discovery
- that collocations between content words (Noun, Verb, Adverb, Adjective)
are overwhelmingly unambiguous. In a sample study of adjacent colloca-
tions with content words, pronunciations were ambiguous in fewer than 1%
of the bigrams with frequency > 3, and fewer than 0.1% of the bigrams when
weighted by token. The very rare exceptions include fish for [black bass) / a
[ black bass | player. It appears that a single observed bigram with a content
word is enough to motivate that pronunciation for future instances of the bi-
gram, not only with the given word but with its lemma. The strength of this
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sorting by log likelihood and using the first pattern that matches.
Sample, abbreviated decision tables are outlined below:

Decision Table for wound
Logprob  Position  Type Evidence Pronunciation
14.13 +1 WORD up = waund
12.01 -1 pr.oF.SP  <aRTICLE> = wund
11.95 -1 WORD gunshot = wund
11.23 +1 pT.Of.5P <suBI-PRO> = waund
10.70 -1 WORD bullet = wund
9.72 B | vemma  have/V = waund
9.70 -1 WORD head = wund
9.45 IN_SENTENCE LEMMA cotl = waund
Decision Table for putting
Logprob Position  Type Evidence Pronunciation
12.82 +1 LEMMA green/N = patg
11.32 +1 vemma  surface/N = patm
10.40 IN_.SENTENCE LEMMA wedge = patig
10.25 IN_SENTENCE LEMMA golfer = patig
8.89 IN_SENTENCE  LBMMA golf = patm
DEFAULT = putig

Rule sets constructed in this way will initially exhibit consid-
erable redundancy. The first type, redundancy by subsumption,
is a consequence of a weighting scheme favoring the most gen-
eral, unambiguous statement possible. Thus a lemma with high
log likelihood will eclipse its member words, and an unambiguous
bigram will eclipse any dependent trigrams. These are easy to
identify and remove; higher order n-grams are not even generated
if the lower-order form is unambiguous. A more subtle case is re-
dundancy by association. For example, riot, soldier, and demon-
stration are all strong indicators of the crying sense of tear in
wide context, but only because of their exclusive association with
the stronger adjacent indicator tear gas. When treated as inde-
pendent probabilities in a traditional Bayesian framework, these
highly correlated sets of words often yield grossly over-inflated
confidence scores. These particular words contribute little to the
classification of novel contexts as they almost never appear inde-
pendent of gas, and when they do there is no evidence that they
are more indicative of the crying sense of tear than the ripping
sense.

We employ several techniques for removing both sources of
redundancy. The simplest is to train a discriminator and then
apply it directly to the training set. Count the number of times
each rule is the first match for a training example, decrementing in
cases where the use yields an incorrect classification. Retain the
rules which actually contribute to the modeling of the training
data, in their original order. Some words pruned in this way
may have contributed to the classification of testing examples.
A 3% drop in performance is observed when all redundancy by
association is removed, but an over 90% reduction in space is
realized. The optimum pruning is subject to cost-benefit analysis.

Training material is acquired through an iterative bootstrap-
ping procedure. Uniform lack of ambiguity in collocations is a
useful way of identifying probable tagging errors. The base set
is often derived from our class-based sense disambiguator using
Roget’s Thesaurus [17]. This method offers full vocabulary cov-
erage with no hand-tagging, but at the cost of reduced precision.
For the current system, we have made an investment in partial
hand-tagging to achieve improved precision relative to more fully
self-organizing methods.

property decreases with distance, but remains very strong for collocations
within a +3 word window.
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Homograph Disambiguation: System Performance
Sample Prior System

Word Pronl  Pron2 Size  Prob. Performance
lives larvz hvz 33186 69 98
wound waund  wund 4483 .55 .98
Nice nas nis 573 .56 .94
Begin brgm  beigm 1143 75 97
Chi tfi kar |, 1288 .53 .98
Colon kovloun ‘koulen 1984 .69 .98
lead (N} lid led 12165 .66 .98
tear (N) tea trar 2271 .88 97
axes (N) wmksiz  eksiz 1344 T2 .96
v a1 vi 216 1442 16 .98
Jan dgeen Jan 1327 .90 .98
routed autid 1autid 589 .60 .94
bass bes bees 1865 57 .99
TOTAL 63660 .67 .97

Performance on type I (part of speech) ambiguities is best mea-
sured in terms of improvement over existing taggers. Typically,
there is a baseline of roughly 80% achievable by a small set of
almost unambiguous part-of-speech sequences (e.g. Det (N|V),
(N|V) Modal). For the remaining difficult cases, performance of
the existing tagger is often only slightly better than chance. By
incorporating lexical collocational information as well, we can dis-
ambiguate examples such as “a bullet wouno under his” and “the
cable wounp around the” which are not distinguished by part-
of-speech sequence alone. This increases tagger performance for
wound from 82% to 98%. Overall we observe over 60% reduction
in error rate, yielding a mean precision of 97%.

Performance on a sample of type II and IIT ambiguities {capi-
talization and within part of speech) is outlined in the preceding
table. All results are based on 5-fold iterative cross validation.
Performance depends on the window size used. If only immedi-
ately adjacent (£1 word) context is examined, mean precision is
92%. Using only a 43 word window yields 94% precision, and
allowing examination of the full sentence results in system perfor-
mance of 97%. Use of broader discourse context has been shown
to improve performance further, and may be productively utilized
in the future.

5 CONCLUSION

In this paper we have described applications of corpus-based
techniques to the development of new procedures for word pronun-
ciation, pitch accent assignment, and prosodic phrasing in TTS.
These procedures demonstrate that the distributional properties
of language can be employed to improve the naturalness of text-
to-speech synthesis.
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