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Chapter 8 |
Speech Synthesis

And computers are getting smarter all the time: Scientislisus that soon they will be
able to talk to us. (By ‘they’ | mean ‘computers’: | doubt stists will ever be able to
talk to us.)

Dave Barry

In Vienna in 1769, Wolfgang von Kempelen built for the Emgré4aria Theresa the
famous Mechanical Turk, a chess-playing automaton cangisf a wooden box filled
with gears, and a robot mannequin sitting behind the box vidapepl chess by moving
pieces with his mechanical arm. The Turk toured Europe amdthericas for decades,
defeating Napolean Bonaparte and even playing Charles@ghbThe Mechanical
Turk might have been one of the early successes of artificielligence if it were not
for the fact that it was, alas, a hoax, powered by a human ples®s hidden inside the
box.

What is perhaps less well-known is that von Kempelen, araexdiinarily prolific
inventor, also built between 1769 and 1790 what is definitedy a hoax: the first
full-sentence speech synthesizer. His device consisted h#llows to simulate the
lungs, a rubber mouthpiece and a nose aperature, a reedutatnthe vocal folds,
various whistles for each of the fricatives. and a small karyi bellows to provide
the puff of air for plosives. By moving levers with both handgening and closing
various openings, and adjusting the flexible leather ‘vor@adt’, different consonants
and vowels could be produced.

More than two centuries later, we no longer build our speguithesizers out of
wood, leather, and rubber, nor do we need trained human toperd he modern task

Speech synthesis  Of speech synthesjsalso calledext-to-speechor TTS, is to produce speech (acoustic
Text-to-speech  waveforms) from text input.

TTS Modern speech synthesis has a wide variety of applicat®ysthesizers are used,
together with speech recognizers, in telephone-basececsational agents that con-
duct dialogues with people (see Ch. 23). Synthesizer arialportant in non-
conversational applications that speakpeople, such as in devices that read out loud
for the blind, or in video games or children’s toys. Finadgeech synthesis can be used
to speakor sufferers of neurological disorders, such as astroptstssteven Hawking
who, having lost the use of his voice due to ALS, speaks byntypd a speech synthe-
sizer and having the synthesizer speak out the words. Stdte art systems in speech
synthesis can achieve remarkably natural speech for a vidgywariety of input situa-
tions, although even the best systems still tend to soundlemand are limited in the
voices they use.

The task of speech synthesis is to map a text like the follgwin

(8.1) PG&E will file schedules on April 20.
to a waveform like the following:
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Speech synthesis systems perform this mapping in two dfiegtsconverting the

input text into aphonemic internal representationand then converting this internal
Textanalysis  representation into a waveform. We will call the first stegpt analysisand the second
Vg;fgggg stepwaveform synthesig(although other names are also used for these steps).

A sample of the internal representation for this sentensbasvn in Fig. 8.1. Note
that the acronynPG&Eis expanded into the words P G AND E, the numBéris
expanded intdwentieth a phone sequence is given for each of the words, and there is
also prosodic and phrasing information (the *'s) which wd define later.

5 = T LL% |
P G AND | E| WILL FILE SCHEDULES ON APRIL TWENTIETH
p|iy| jh|iy| ag n| d|iy |w] ih| I| f| ay| || s| k| eh| jh| ax| || z| ad n| ey| p| r| ih| || t| w| eh| n| t] iy| aX] th|
Intermediate output for a unit selection synthesizer ferdantenc®G&E will file schedules on April
20.. The numbers and acronyms have been expanded, words havedmeerted into phones, and prosodic features

have been assigned.

While text analysis algorithms are relatively standardréhare three widely differ-
ent paradigms for waveform synthes@ncatenative synthesisformant synthesis
andarticulatory synthesis. The architecture of most modern commercial TTS sys-
tems is based on concatenative synthesis, in which samipdggech are chopped up,
stored in a database, and combined and reconfigured to omateentences. Thus we
will focus on concatenative synthesis for most of this chalithough we will briefly
introduce formant and articulatory synthesis at the enti@thapter.

Fig. 8.2 shows the TTS architecture for concatenative atgicsion synthesis, using

'ﬁg{gﬁ; the two-stephourglass metaphorof Taylor (2008). In the following sections, we'll
examine each of the components in this architecture.

8.1 Text Normalization

In order to generate a phonemic internal representati@ntaxt first needs to be pre-
textnormalization ~ processed omormalized in a variety of ways. We'll need to break the input text into

sentences, and deal with the idiosyncracies of abbrengtimumbers, and so on. Con-

sider the difficulties in the following text drawn from the ©Bm corpus (Klimt and

Yang, 2004):

He said the increase in credit limits helped B.C. Hydro aghiecord net income
of about $1 billion during the year ending March 31. This fegdoes not include
any write-downs that may occur if Powerex determines thgtadrits customer
accounts are not collectible. Cousins, however, was grgighat all debts will
be collected: “We continue to pursue monies owing and we a&xjpebe paid for
electricity we have sold.”
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OGN, Architecture for the unit selection (concatenative) amstture for speech synthe-
sis.

The first task in text normalization Bentence tokenization In order to segment
this paragraph into separate utterances for synthesis,eed to know that the first
sentence ends at the period afidéarch 31 not at the period oB.C. We also need
to know that there is a sentence ending at the vemitected despite the punctuation
being a colon rather than a period. The second normaliztaglnis dealing witon-
standard words. Non-standard words include number, acronyms, abbrevigtiand
so on. For exampléviarch 31needs to be pronouncédiarch thirty-first not March
three one $1 billion needs to be pronouncede billion dollars with the worddollars
appearing after the worgillion.

8.1.1 Sentence Tokenization

We saw two examples above where sentence tokenizatiorfimuttibecause sentence

boundaries are not always indicated by periods, and cantsoegebe indicated by

punctuation like colons. An additional problem occurs wla@nabbreviation ends a

sentence, in which case the abbreviation-final period igipdga dual role:

(8.2) He said the increase in credit limits helped B.C. Hydro aghiecord net income of
about $1 billion during the year ending March 31.

(8.3) Cousins, however, was insistent that all debts will be ctdld: “We continue to pursue
monies owing and we expect to be paid for electricity we halg.’s

(8.4) The group included Dr. J. M. Freeman and T. Boone Pickens Jr.
A key part of sentence tokenization is thus period disandtign; we've seen a

simple perl script for period disambiguation in Ch. 3. Moshtence tokenization al-
gorithms are slightly more complex than this determiniatgorithm, and in particular
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are trained by machine learning methods rather than beind-bailt. We do this by
hand-labeling a training set with sentence boundariestlam using any supervised
machine learning method (decision trees, logistic regpasSVM, etc) to train a clas-
sifier to mark the sentence boundary decisions.

More specifically, we could start by tokenizing the inputttero tokens separated
by whitespace, and then select any token containing oneedhtiee charactets . or
? (or possibly alsa ). After hand-labeling a corpus of such tokens, then we taain
classifier to make a binary decision (EOS (end-of-sentevers)is not-EOS) on these
potential sentence boundary characters inside thesesoken

The success of such a classifier depends on the featuregéhatteacted for the
classification. Let's consider some feature templates wghimise to disambiguate
thesecandidate sentence boundary characters, assuming we have a smalhtafou
training data, labeled for sentence boundaries:

the prefix (the portion of the candidate token preceding trellate)
the suffix (the portion of the candidate token following tladidate)
whether the prefix or suffix is an abbreviation (from a list)

the word preceding the candidate

the word following the candidate

whether the word preceding the candidate is an abbreviation
whether the word following the candidate is an abbreviation

Consider the following example:
(8.5) ANLP Corp. chairman Dr. Smith resigned.

Given these feature templates, the feature values for thedpe in the wordCorp.
in (8.5) would be:

PreviousWord = ANLP NextWord = chairman
Prefix = Corp Suffix = NULL
PreviousWordAbbreviation = 1 NextWordAbbreviation = 0

If our training set is large enough, we can also look for lekicues about sen-
tence boundaries. For example, certain words may tend tar semtence-initially, or
sentence-finally. We can thus add the following features:

e Probability[candidate occurs at end of sentence]
e Probability[word following candidate occurs at beginnofgsentence]

Finally, while most of the above features are relativelyglaage-independent, we
can use language-specific features. For example, in Englistiences usually begin
with capital letters, suggesting features like the follogui

e case of candidate: Upper, Lower, AllCap, Numbers
e case of word following candidate: Upper, Lower, AliCap, Nagns

Similary, we can have specific subclasses of abbreviatmud) as honorifics or
titles (e.g., Dr., Mr., Gen.), corporate designators (€3grp., Inc.), or month-names
(e.g., Jan., Feb.).

Any machine learning method can be applied to train EOS iflasss Logistic
regression and decision trees are two very common methogistit regression may
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have somewhat higher accuracy, although we have insteatinsho example of a
decision tree in Fig. 8.3 because it is easier for the readse¢ how the features are
used.

A decision tree for predicting whether a period '’ is an efidentence (YES) or
not an end-of-sentence (NO), using features like the |agilibod of the current word being the
beginning of a sentencegrob ), the previous word being an end of senteregr¢b ), the cap-
italization of the next word, and the abbreviation subc{assnpany, state, unit of measurement).
After slides by Richard Sproat.

8.1.2 Non-Standard Words

The second step in text normalization is normaliziman-standard words Non-
standard words are tokens like numbers or abbreviationghwteed to be expanded
into sequences of English words before they can be prondunce

What is difficult about these non-standard words is that #reyoften very am-
biguous. For example, the numiet50can be spoken in at least three different ways,
depending on the context:

seventeen fifty: (in ‘The European economy in 1750’

one seven five zero: (in ‘The password is 175’

seventeen hundred and fifty: (in ‘1750 dollars))

one thousand, seven hundred, and fifty: (in ‘1750 dollars))

Similar ambiguities occur for Roman numerals lik& (which can be pronounced
four , fourth , or as the letters V (meaning ‘intravenous’)), 02/3, which can be
two thirds  orFebruary third ortwo slash three

In addition to numbers, various non-standard words are csegpof letters. Three
types non-standard words includébreviations, letter sequencesandacronyms
Abbreviations are generally pronouncedd®¥pandingthem; thuslan lis pronounced
January first , andWedis pronouncedVednesday . Letter sequencedike UN,
DVD, PC,andIBM are pronounced by pronouncing each letter in a sequence idBM
thus pronouncedy b iy eh m). Acronyms like IKEA, MoOMA, NASAandUNICEF
are pronounced as if they were worddpMA is pronouncedn ow m ax Ambiguity
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occurs here as well; shoulldinbe read as a word (the nardan ) or expanded as the
monthJanuary ?

These different types of numeric and alphabetic non-stahaards can be sum-
marized in Fig. 8.1.2. Each of the types has a particulaiza#n (or realizations).
For example, a yeatYER is generally read in thpaired method, in which each pair
of digits is pronounced as an integer (egpyenteen fifty for 1750), while a
U.S. zip codenzip is generally read in theerial method, as a sequence of single digits
(e.g.,nine four one one zero for 9411Q. The typeBMONEY deals with the
idiosyncracies of expressions lil#.2 billion, which must be read out with the word
dollars  atthe end, athree point two billion dollars

For the alphabetic NSWs, we have the class EXPN for abbrensahke N.Y.
which are expanded, LSEQ for acronyms pronounced as letjgiesnces, and ASWD
for acronyms pronounced as if they were words.

< EXPN abbreviation adv, N.Y., mph, gov't

o LSEQ letter sequence DVD, D.C., PC, UN, IBM,

< ASWD read as word IKEA, unknown words/names
NUM number (cardinal) 12, 45, 1/2, 0.6
NORD number (ordinal) May 7, 3rd, Bill Gates IlI
NTEL telephone (or part of) 212-555-4523
NDIG number as digits Room 101

@ NIDE identifier 747, 386, 15, pc110, 3A

o NADDR number as street address 747, 386, 15, pc110, 3A

2 NZIP zip code or PO Box 91020

=) NTIME a (compound) time 3.20, 11:45
NDATE a (compound) date 2/28/05, 28/02/05
NYER year(s) 1998, 80s, 1900s, 2008
MONEY money (US or other) $3.45, HK$300, Y20,200$200K
BMONEY money tr/m/billions $3.45 billion
PRCT percentage 75% 3.4%

Some types of non-standard words in text normalizatiorecset! from Table 1 of
Sproat et al. (2001); not listed are types for URLS, emaiild,some complex uses of punctuation.

Dealing with non-standard words requires at least thrgesstekenization to sep-
arate out and identify potential non-standard wondigssificationto label them with
a type from Fig. 8.1.2, andxpansionto convert each type into a string of standard
words.

In the tokenization step, we can tokenize the input by wpies, and then assume
that any word which is not in the pronunciation dictionaryaision-standard word.
More sophisticated tokenization algorithms would alsol déth the fact that some
dictionaries already contain some abbreviations. The CNdtlathary, for example,
contains abbreviated (and hence incorrect) pronuncigfionst, mr, mrs as well as
day and month abbreviations likaon, tues, nov, deetc. Thus in addition to unseen
words, we also need to label any of these acronyms and alglestharacter token as
potential non-standard words. Tokenization algorithnss aleed to split words which
are combinations of two tokens, likecar or RVing Words can be split by simple
heuristics, such as splitting at dashes, or at changes thericase to upper-case.
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The next step is assigning a NSW type; many types can be ddtadth simple
regular expressions. For exampie;ER could be detected by the following regular
expression:

/(1[89][0-9][0-9])|(20[0-9][0-9V/

Other classes might be harder to write rules for, and so a pwserful option is
to use a machine learning classifier with many features.

To distinguish between the alphabetiswD, LSEQandEXPN classes, for example
we might want features over the component letters. Thug,shibcapital wordsIiBM,
US) might be LSEQ, longer all-lowercase words with a singletgugov't, cap’n
might beExPN, and all-capital words with multiple vowelNASA, IKEA might be
more likely to beaswb.

Another very useful features is the identity of neighbonmgyrds. Consider am-
biguous strings lik&/4, which can be anDATE march third  or anumthree-fourths
NDATE might be preceded by the woomh, followed by the wordbf, or have the word
Mondaysomewhere in the surrounding words. By contrastv examples might be
preceded by another number, or followed by words likiée andinch. Similarly, Ro-
man numerals lik&/Il tend to beNORD (seveh when preceded bZhapter part, or
Act, butNum (seventhwhen the word&ing or Popeoccur in the neighborhood. These
context words can be chosen as features by hand, or can beddar machine learning
techniques like theecision listalgorithm of Ch. 8.

We can achieve the most power by building a single machimaileg classifier
which combines all of the above ideas. For example, the NSMsiler of (Sproat
et al., 2001) uses 136 features, including letter-baseulifes like ‘all-upper-case;
‘has-two-vowels’ ‘contains-slash’ and‘token-length, as well as binary features for
the presence of certain words likghapter on, or king in the surrounding context.
Sproat et al. (2001) also included a rough-draft rule-batassifier, which used hand-
written regular expression to classify many of the numbewsS The output of this
rough-draft classifier was used as just another featuresimthin classifier.

In order to build such a main classifier, we need a hand-ldbe#ning set, in
which each token has been labeled with its NSW category; aoh band-labeled
data-base was produced by Sproat et al. (2001). Given swatietet training set, we
can use any supervised machine learning algorithm to budldtassifier.

Formally, we can model this task as the goal of producingabesequenc€ which
is most probable given the observation sequence:

(8.6) T* = argma¥P(T|O)
T

One way to estimate this probability is via decision treesr €&ample, for each
observed tokem;, and for each possible NSW tag the decision tree produces the
posterior probabilityP(t;|o;). If we make the incorrect but simplifying assumption
that each tagging decision is independent of its neighleesan predict the best tag
sequencd = argmax P(T|O) using the tree:

T = argma@(T|0)
T
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(8.7) ~ rl argtma>P(t |oi)

The third step in dealing with NSWs is expansion into ordingords. One NSW
type,EXPN, is quite difficult to expand. These are the abbreviatiorsaamonyms like
NY. Generally these must be expanded by using an abbreviattardary, with any
ambiguities dealt with by the homonym disambiguation atpars discussed in the
next section.

Expansion of the other NSW types is generally deterministiiany expansions
are trivial; for exampleLSEQ expands to a sequence of words, one for each letter,
ASWD expands to itselffyum expands to a sequence of words representing the cardinal
number,NORD expands to a sequence of words representing the ordinalenanid
NDIG andNzIP both expand to a sequence of words, one for each digit.

Other types are slightly more complexyER expands to two pairs of digits, unless
the year ends i00, in which case the four years are pronounced as a cardingbe&um
(2000astwo thousand ) or in the hundreds method (e.g., 1800 asighteen
hundred ). NTEL can be expanded just as a sequence of digits; alternatilielJast
four digits can be read gmired digits, in which each pair is read as an integer. It is
also possible to read them in a form knowrtrasling unit , in which the digits are read
serially until the last nonzero digit, which is pronouncetdwed by the appropriate
unit (e.g.,876-5000aseight seven six five thousand ). The expansion of
NDATE, MONEY, andNTIME is left as exercises (1)-(4) for the reader.

Of course many of these expansions are dialect-specific. ustrAlian English,
the sequenc83 in a telephone number is generally redouble three . Other
languages also present additional difficulties in nongdad word normalization. In
French or German, for example, in addition to the above fsnermalization may
depend on morphological properties. In French, the phta#ie (‘one girl’) is nor-
malized toune fille , but1l garcon(‘one boy’) is normalized taun garc®n
Similarly, in GermarHeinrich IV (‘Henry IV’) can be normalized tbleinrich der
Vierte ,Heinrich des Vierten ,Heinrich dem Vierten , orHeinrich
den Vierten depending on the grammatical case of the noun (Demberg)2006

8.1.3 Homograph Disambiguation

The goal of our NSW algorithms in the previous section wasdteanine which se-
quence of standard words to pronounce for each NSW. But soeetdetermining
how to pronounce even standard words is difficult. This isipalarly true forhomo-
graphs, which are words with the same spelling but different prasiations. Here are
some examples of the English homograpks live, andbass

(8.8) It's no use(/y uw s/)to ask to usé/y uw z/) the telephone.
(8.9) Do you live(/l ih v/) near a zoo with live/l ay v/) animals?
(8.10) I prefer basg/b ae s/¥ishing to playing the baggb ey s/)guitar.
French homographs includis (which has two pronunciations [fis] ‘son’ versus

[fil] ‘thread]), or the multiple pronunciations fdier (‘proud’ or ‘to trust’), andest('is’
or ‘East’) (Divay and Vitale, 1997).
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Luckily for the task of homograph disambiguation, the twinfie of homographsin
English (as well as in similar languages like French and Gedrtend to have different
parts of speech.For example, the two formsiséabove are (respectively) a noun and
a verb, while the two forms dive are (respectively) a verb and a noun. Fig. 8.5 shows
some interesting systematic relations between the praéatime of some noun-verb
and adj-verb homographs.

Final voicing Stress shift -ate final vowel
N (/s/) V (/z]) N (init. stress) V (fin. stress) N/A (final /ax/) V (final /ey/)
use yuws yuwz record rehlkaxrOd rixOkaolrd estimate ehstihmaxt ehstihmeyt
close klows klowz insult ihInsaxOlt ixOnsahllt separate sehpaxraxtsehpaxreyt
house haws hawz object aalbjehOktaxObjehlkt moderate maadaxrax maadaxreyt
Some systematic relationships between homographs: finaboant (noun /s/ versus verb /z/), stress
shift (noun initial versus verb final stress), and final vowebkening in-ate noun/ad;s.

Indeed, Liberman and Church (1992) showed that many of th&t meguent ho-
mographs in 44 million words of AP newswire are disambighkgust by using part-
of-speech (the most frequent 15 homographs in ordeneeincrease close record,
house contract lead live, lives protest survey project separatepresentread).

Thus because knowledge of part-of-speech is sufficientdandbiguate many ho-
mographs, in practice we perform homograph disambigudtjostoring distinct pro-
nunciations for these homographs labeled by part-of-¢peew then running a part-
of-speech tagger to choose the pronunciation for a giveroigoaph in context.

There are a number of homographs, however, where both peatioms have the
same part-of-speech. We saw two pronunciationsbss(fish versus instrument)
above. Other examples of these incluelad (because there are two noun pronuncia-
tions, /l iy d/ (a leash or restraint) and /I eh d/ (a metal)l ¥&n also think of the task
of disambiguating certain abbreviations (mentioned easlfNSW disambiguation) as
homograph disambiguation. For examply, is ambiguous betweettoctor and
drive , andSt. betweenSaint or street . Finally, there are some words that dif-
fer in capitalizations likepolishPolish, which are homographs only in situations like
sentence beginnings or all-capitalized text.

In practice, these latter classes of homographs that cdrenmsolved using part-
of-speech are often ignored in TTS systems. Alternativedycan attempt to resolve
them using the word sense disambiguation algorithms thatilwantroduce in Ch. 20,
like thedecision-listalgorithm of Yarowsky (1997).

8.2 Phonetic Analysis

The next stage in synthesis is to take the normalized wonaigstfrom text analysis
and produce a pronunciation for each word. The most impbcamponent here is a
large pronunciation dictionary. Dictionaries alone tutnt to be insufficient, because
running text always contains words that don’t appear in tlséahary. For example
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Black et al. (1998) used a British English dictionary, the LMAlexicon on the first
section of the Penn Wall Street Journal Treebank. Of the 398#tds (tokens) in this
section, 1775 word tokens (4.6%) were not in the dictionafryyhich 943 are unique
(i.e. 943 types). The distributions of these unseen wordnskvas as follows:

names unknown typos and other
1360 351 64
76.6% 19.8%  3.6%

Thus the two main areas where dictionaries need to be augohisrinh dealing with
names and with other unknown words. We'll discuss dicti@gin the next section,
followed by names, and then turn to grapheme-to-phoneras fat dealing with other
unknown words.

8.2.1 Dictionary Lookup

Phonetic dictionaries were introduced in Sec. 7.5 of Ch.r& &f the most widely-used
for TTS is the freely available CMU Pronouncing DictionaGMU, 1993), which has
pronunciations for about 120,000 words. The pronunciatam roughly phonemic,
from a 39-phone ARPAbet-derived phoneme set. Phonemisdrgations means that
instead of marking surface reductions like the reduced \@ye] or [ix], CMUdict
marks each vowel with a stress tag, 0 (unstressed), 1 (sthess 2 (secondary stress).
Thus (non-diphthong) vowels with 0 stress generally cqoes to [ax] or [ix]. Most
words have only a single pronunciation, but about 8,000@ftbrds have two or even
three pronunciations, and so some kinds of phonetic reshgtire marked in these
pronunciations. The dictionary is not syllabified, althbuge nucleus is implicitly
marked by the (humbered) vowel. Fig. 8.2.1 shows some sgpnpiainciations.

ANTECEDENTS AE2NTIHOSIYIDAHONT S PAKISTANI PAE2KIHOS TAE1NIYO
CHANG CH AE1 NG TABLE TEY1BAHO L
DICTIONARY DIH1 KSHAHON EH2 R IYO TROTSKY TRAALTSKIY2
DINNER D IH1 N ERO WALTER WAO1LTERO

LUNCH L AH1 N CH WALTZING WAOL1LTSIHONG
MCFARLAND MAHOKF AALRLAHOND WALTZING(2) WAO1L SIHONG

SEMIGENS Some sample pronunciations from the CMU Pronouncing Dietig.

The CMU dictionary was designed for speech recognitionemrathan synthesis
uses; thus it does not specify which of the multiple pronations to use for synthesis,
does not mark syllable boundaries, and because it cagitetie dictionary headwords,
does not distinguish between e.gS andus (the formUShas the two pronunciations
[AH1 S] and [Y UW1 EH1 S].

The 110,000 word UNISYN dictionary, freely available fosearch purposes, re-
solves many of these issues as it was designed specificalyfdhesis (Fitt, 2002).
UNISYN gives syllabifications, stress, and some morphaalgbioundaries. Further-
more, pronunciations in UNISYN can also be read off in any@fahs of dialects of
English, including General American, RP British, Aus@atnd so on. The UNISYN
uses a slightly different phone set; here are some examples:
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Grapheme-to-
phoneme

going: {g * ou}>ing >
antecedents: { * an .t i.s ii.dnt}s>
dictionary: {d » ik.sh @ .n"e . rii}

8.2.2 Names

As the error analysis above indicated, names are an imgasture in speech synthe-
sis. The many types can be categorized into personal namstsifimes and surnames),
geographical names (city, street, and other place namesg@anmercial names (com-
pany and product names). For personal names alone, Spifs)(gives an estimate
from Donnelly and other household lists of about two milldifferent surnames and
100,000 first names just for the United States. Two millioa isery large number; an
order of magnitude more than the entire size of the CMU dietig. For this reason,
most large-scale TTS systems include a large name prortiamcdictionary. As we
saw in Fig. 8.2.1 the CMU dictionary itself contains a wideiety of names; in partic-
ular it includes the pronunciations of the most frequen060,surnames from an old
Bell Lab estimate of US personal name frequency, as well@G30djrst names.

How many names are sufficient? Liberman and Church (1992)dfdlat a dic-
tionary of 50,000 names covered 70% of the name tokens in #idmivords of AP
newswire. Interestingly, many of the remaining names (Up@d3% of the tokens in
their corpus) could be accounted for by simple modificatiohthese 50,000 names.
For example, some name pronunciations can be created bygpsldiple stress-neutral
suffixes likes orville  to names in the 50,000, producing new names as follows:

walters = walter+s lucasville = lucas+ville abelson = abel+ son

Other pronunciations might be created by rhyme analogyelhave the pronunci-
ation for the namdrotsky but not the nam®lotsky we can replace the initial /tr/ from
Trotskywith initial /pl/ to derive a pronunciation fdPlotsky

Techniques such as this, including morphological decoitipas analogical for-
mation, and mapping unseen names to spelling variantdglieahe dictionary (Fack-
rell and Skut, 2004), have achieved some success in namarmiation. In general,
however, name pronunciation is still difficult. Many modeystems deal with un-
known names via the grapheme-to-phoneme methods desaritiedinext section, of-
ten by building two predictive systems, one for names and@neon-names. Spiegel
(2003, 2002) summarizes many more issues in proper nameeiation.

8.2.3 Grapheme-to-Phoneme

Once we have expanded non-standard words and looked them &lla pronuncia-
tion dictionary, we need to pronounce the remaining, unknewrds. The process
of converting a sequence of letters into a sequence of phismedledgrapheme-to-
phonemeconversion, sometimes shorteng2p. The job of a grapheme-to-phoneme
algorithm is thus to convert a letter string likakeinto a phone string likgK EY K] .
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The earliest algorithms for grapheme-to-phoneme corvexgere rules written by
hand using the Chomsky-Halle phonological rewrite rulerfat of Eq. 7.1 in Ch. 7.
These are often callel@tter-to-sound or LTS rules, and they are still used in some
systems. LTS rules are applied in order, with later (defaules only applying if the
context for earlier rules are not applicable. A simple p&irubes for pronouncing the
letterc might be as follows:

(8.11) ¢ — [kK]/ — {a,0}V  ;context-dependent
(8.12) c — [s] ; context-independent

Actual rules must be much more complicated (for exanplman also be pro-
nounced [ch] incello or concertd. Even more complex are rules for assigning stress,
which are famously difficult for English. Consider just onfetloe many stress rules
from Allen et al. (1987), where the symh¥lIrepresents all possible syllable onsets:

(8.13) V — [+stress] X _C* {VgnortC CAV} {VshortC*IV}
This rule represents the following two situations:

1. Assign 1-stress to the vowel in a syllable preceding a wgbdble followed by a morpheme-
final syllable containing a short vowel and 0 or more consténg.difficult)

2. Assign 1-stress to the vowel in a syllable preceding a wgh&ble followed by a morpheme-
final vowel (e.g.oregang

While some modern systems still use such complex handenritiles, most sys-
tems achieve higher accuracy by relying instead on auteroaiemi-automatic meth-
ods based on machine learning. This modern probabilisticlggme-to-phoneme prob-
lem was first formalized by Lucassen and Mercer (1984). Gavéztter sequenck,
we are searching for the most probable phone sequénce

(8.14) P = argma@®(P|L)
P

The probabilistic method assumes a training set and a tesbath sets are lists of
words from a dictionary, with a spelling and a pronunciafieneach word. The next
subsections show how the poputhecision treemodel for estimating this probability
P(P|L) can be trained and applied to produce the pronunciatiomrfamseen word.

Finding a letter-to-phone alignment for the training set

Most letter-to-phone algorithms assume that we haval@mment, which tells us
which phones align with each letter. We’'ll need this aligmif@r each word in the
training set. Some letters might align to multiple phoneg.(& often aligns tdk s),
while other letters might align with no phones at all, like final letter ofcakein the
following alignment:

r

a
|

a — 0

k
|
EY K

o
A— O
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One method for finding such a letter-to-phone alignment & gbmi-automatic
method of (Black et al., 1998). Their algorithm is semi-ami&tic because it relies
on a hand-written list of thallowable phones that can realize each letter. Here are
allowables lists for the lettersande:

cck ch s sh ts ¢
e:ih iy er ax ah eh ey uw ay ow y-uw oy aa €

In order to produce an alignment for each word in the trairdag we take this
allowables list for all the letters, and for each word in th&irting set, we find all
alignments between the pronunciation and the spellingdtiatorm to the allowables
list. From this large list of alignments, we compute, by sunmgrover all alignments
for all words, the total count for each letter being alignedeach phone (or multi-
phone ofe). From these counts we can normalize to get for each pppaerd letter
a probabilityP(pi|l;):

1y countpi,lj)
(8.15) P(pillj) = ~coun(l;)

We can now take these probabilities and realign the lettethd phones, using
the Viterbi algorithm to produce the best (Viterbi) alignméor each word, where
the probability of each alignment is just the product of b# individual phone/letter
alignments.

In this way we can produce a single good alignméfar each particular paiiP, L)
in our training set.

Choosing the best phone string for the test set

Given a new wordv, we now need to map its letters into a phone string. To do this,
we'll first train a machine learning classifier, like a degistree, on the aligned training
set. The job of the classifier will be to look at a letter of therd/and generate the most
probable phone.

What features should we use in this decision tree besideditiveed lettet; itself?
Obviously we can do a better job of predicting the phone if weklat a window
of surrounding letters; for example consider the leterin the wordcat, thea is
pronounceéAE. But in our wordcake a is pronouncedtY, because&akehas a finak;
thus knowing whether there is a finals a useful feature. Typically we look at thke
previous letters and thefollowing letters.

Another useful feature would be the correct identity of thevppus phone. Know-
ing this would allow us to get some phonotactic informatimeiour probability model.
Of course, we can't know the true identity of the previousmddut we can approxi-
mate this by looking at the previous phone that was predizyeslir model. In order to
do this, we’'ll need to run our decision tree left to right, geating phones one by one.

In summary, in the most common decision tree model, the fiibtysof each phone
pi is estimated from a window d&fprevious andk following letters, as well as the most
recentk phones that were previously produced.

Fig. 8.7 shows a sketch of this left-to-right process, iatitg the features that a
decision tree would use to decide the letter correspondiribé letters in the word
Jurafsky As this figure indicates, we can integrate stress predidtito phone pre-
diction by augmenting our set of phones with stress infoimnat\We can do this by



262 Chapter 8. Speech Synthesis

having two copies of each vowel (e.d\E andAEL), or possibly even the three levels
of stressAEQ, AE1, andAEZ2, that we saw in the CMU lexicon. We'll also want to add
other features into the decision tree, including the p&gpeech tag of the word (most
part-of-speech taggers provide an estimate of the paspeéch tag even for unknown
words) and facts such as whether the previous vowel wassties

In addition, grapheme-to-phoneme decision trees can atdode other more so-
phisticated features. For example, we can use classesarslétorresponding roughly
to consonants, vowels, liquids, and so on). In additionsfone languages, we need to
know features about the following word. For example Frerechdaphenomenon called

Liaison liaison, in which the realization of the final phone of some words dejseon whether
there is a next word, and whether it starts with a consonaatwamwel. For example
the French worgix can be pronounced [sis] (jfen veux six| want six’), [siz] (six
enfantssix children’), [si] (six filles'six girls’).

Finally, most synthesis systems build two separate grapkteaphoneme decision
trees, one for unknown personal names and one for other wrknords. For pro-
nouncing personal names it turns out to be helpful to usetiaddl features that in-
dicate which foreign language the names originally comenfr&uch features could
be the output of a foreign-language classifier based orr littguences (different lan-
guages have characteristic letiigram sequences).

l##|alulrlalfls|k|y|#|#]}

ba Lo Lo L Log Lol
LANG=Russian -3 i-2 -1 i I+j1 i+2 /|+3
POS=NNP S
Classifier
Pi-3 Pi2 Pi-1
<§ i JH | _ |AXR|AE1| F | ? 2

The process of converting graphemes to phonemes, showerlgftito-right pro-
cess making a decision for the let®IThe features used by the decision tree are shown in blue.
We have shown the context winddw= 3; in real TTS systems the window size is likely to be 5
or even larger.

The decision tree is a conditional classifier, computinggheneme string that
has the highest conditional probability given the grapheeguence. More recent
grapheme-to-phoneme conversion makes use of a joint fidsgi which the hidden
state is a combination of phone and grapheme callgchphone see the end of the
chapter for references.
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8.3 Prosodic Analysis

Prosody  The final stage of linguistic analysis is prosodic analysigoetry, the worgrosody
refers to the study of the metrical structure of verse. Iguistics and language pro-
cessing, however, we use the tepnosody to mean the study of the intonational and
rhythmic aspects of language. More technically, prosody lteen defined by Ladd
(1996) as the ‘use of suprasegmental features to convesrsmtevel pragmatic mean-

Suprasegmental  ings’. The termsuprasegmentalmeans above and beyond the level of the segment or
phone, and refers especially to the uses of acoustic featieFO duration, and
energyindependently of the phone string.

By sentence-level pragmatic meaningLadd is referring to a number of kinds
of meaning that have to do with the relation between a sestand its discourse
or external context. For example, prosody can be used to diastkurse structure
or function, like the difference between statements and questionfieoway that a
conversation is structured into segments or subdialogssdely is also used to mark
saliency, such as indicating that a particular word or phrase is ifgmior salient. Fi-
nally, prosody is heavily used for affective and emotionahming, such as expressing
happiness, surprise, or anger.

In the next sections we will introduce the three aspectsagquly, each of which is
important for speech synthesigrosodic prominence prosodic structure andtune.
Prosodic analysis generally proceeds in two parts. Firstc@mpute an abstract repre-
sentation of the prosodic prominence, structure and tutiesotext. For unit selection
synthesis, this is all we need to do in the text analysis carapt For diphone and
HMM synthesis, we have one further step, which is to prediication andF0 values
from these prosodic structures.

8.3.1 Prosodic Structure

Spoken sentences have prosodic structure in the sensethatvgords seem to group
naturally together and some words seem to have a noticesds& br disjuncture be-
Prosodic Phrasing  tween them. Often prosodic structure is described in terfmgrasodic phrasing,
meaning that an utterance has a prosodic phrase structargnmilar way to it having
a syntactic phrase structure. For example, in the sentemaeted to go to London, but
Intonation phrase  could only get tickets for Frandbere seems to be two mairtonation phrases their
boundary occurring at the comma. Furthermore, in the firshgd there seems to be
imem,;%?;a;g another set of lesser prosodic phrase boundaries (ofteddaiermediate phrases)
that split up the words as followsvanted| to go| to London
Prosodic phrasing has many implications for speech syistites final vowel of a
phrase is longer than usual, we often insert a pause aftet@mation phrases, and, as
we will discuss in Sec. 8.3.6, there is often a slight drop@rfilem the beginning of an
intonation phrase to its end, which resets at the beginrfiagh@w intonation phrase.
Practical phrase boundary prediction is generally treated binary classification
task, where we are given a word and we have to decide whetinet tw put a prosodic
boundary after it. A simple model for boundary prediction & based on determinis-
tic rules. A very high-precisionrule is the one we saw forteane segmentation: insert
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a boundary after punctuation. Another commonly used rideriis a phrase boundary
before a function word following a content word.

More sophisticated models are based on machine learnisgifides. To create
a training set for classifiers, we first choose a corpus, aed thark every prosodic
boundaries in the corpus. One way to do this prosodic boynldaeling is to use
an intonational model like ToBI or Tilt (see Sec. 8.3.4), didénuman labelers listen to
speech and label the transcript with the boundary eventsatefiy the theory. Because
prosodic labeling is extremely time-consuming, howeveaexa-only alternative is of-
ten used. In this method, a human labeler looks only at theofeke training corpus,
ignoring the speech. The labeler marks any juncture betweeds where they feel a
prosodic boundary might legitimately occur if the utterameere spoken.

Given a labeled training corpus, we can train a decisiondreather classifier to
make a binary (boundary vs. no boundary) decision at everstjue between words
(Wang and Hirschberg, 1992; Ostendorf and Veilleux, 1994jar and Black, 1998).

Features that are commonly used in classification include:

e Length features phrases tend to be of roughly equal length, and so we can
use various feature that hint at phrase length (Bachenkd-amglatrick, 1990;
Grosjean et al., 1979; Gee and Grosjean, 1983).

— The total number of words and syllables in utterance

— The distance of the juncture from the beginning and end o$éiméence (in
words or syllables)

— The distance in words from the last punctuation mark

¢ Neighboring part-of-speech and punctuation

— The part-of-speech tags for a window of words around thetjuec Gen-
erally the two words before and after the juncture are used.
— The type of following punctuation

There is also a correlation between prosodic structure lamslyntactic structure
that will be introduced in Ch. 12, Ch. 13, and Ch. 14 (Priceletl®91). Thus robust
parsers like Collins (1997) can be used to label the sent&ithaough syntactic in-
formation, from which we can extract syntactic featurehsagthe size of the biggest
syntactic phrase that ends with this word (Ostendorf anteved, 1994; Koehn et al.,
2000).

8.3.2 Prosodic prominence

In any spoken utterance, some words sound rpooeninent than others. Prominent
words are perceptually more salient to the listener; speakake a word more salient
in English by saying it louder, saying it slower (so it has ader duration), or by
varying FO during the word, making it higher or more variable

We generally capture the core notion of prominence by aatingi a linguistic
marker with prominent words, a marker callgitch accent Words which are promi-
nent are said tbear (be associated with) a pitch accent. Pitch accent is thusptre
phonological description of a word in context in a spokeenaihce.

Pitch accent is related siress which we discussed in Ch. 7. The stressed syllable
of a word is where pitch accent is realized. In other words, #peaker decides to
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highlight a word by giving it a pitch accent, the accent wiipgar on the stressed
syllable of the word.

The following example shows accented words in capital igtteith the stressed
syllable bearing the accent (the louder, longer, syllaii&pldface:

(8.16) I'm a little SURPRISED to hear itCHARACTERIZED as UBEAT .

Note that the function words tend not to bear pitch accenitemhost of the content
words are accented. This is a special case of the more géaetrtiat very informative
words (content words, and especially those that are new expetted) tend to bear
accent (Ladd, 1996; Bolinger, 1972).

We've talked so far as if we only need to make a binary disitimcbetween ac-
cented and unaccented words. In fact we generally need te make fine-grained
distinctions. For example the last accent in a phrase giyné&aerceived as being
more prominent than the other accents. This prominent tzstrd is called theu-

Nuclear accent ~ Clear accent Emphatic accents like nuclear accent are generally useskefoantic
purposes, for example to indicate that a word is $emantic focusof the sentence
(see Ch. 21) or that a word is contrastive or otherwise ingmbrin some way. Such
emphatic words are the kind that are often written IN CAPITRETTERS or with
*STARS** around them in SMS or email olice in Wonderlanghere’s an example
from the latter:

(8.17) ‘I know SOMETHING interesting is sure to happen, she saiti¢oself,

Another way that accent can be more complex than just birsaityat some words
can belessprominent than usual. We introduced in Ch. 7 the idea thattfan words
are often phonetically vemeduced

A final complication is that accents can differ accordingtetune associated with
them; for example accents with particularly high pitch halfferent functions than
those with particularly low pitch; we’ll see how this is mdel@ in the ToBI model in
Sec. 8.3.4.

Ignoring tune for the moment, we can summarize by sayinggpeéch synthesis
systems can use as many as four levels of prominesraphatic accent pitch accent,
unaccented andreduced In practice, however, many implemented systems make do
with a subset of only two or three of these levels.

Let's see how a 2-level system would work. With two-levelsgipaccent predic-
tion is a binary classification task, where we are given a veord we have to decide
whether it is accented or not.

Since content words are very often accented, and functiodsvare very rarely
accented, the simplest accent prediction system is justderd all content words and
no function words. In most cases better models are necessary

In principle accent prediction requires sophisticated a®io knowledge, for ex-
ample to understand if a word is new or old in the discoursestidr it is being used
contrastively, and how much new information a word contalitesly models made use
of sophisticated linguistic models of all of this informati (Hirschberg, 1993). But
Hirschberg and others showed better prediction by usinglsinmobust features that
correlate with these sophisticated semantics.

For example, the fact that new or unpredictable informat@ds to be accented
can be modeled by using robust features lkgrams or TF*IDF (Pan and Hirschberg,
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2000; Pan and McKeown, 1999). The unigram probability of ada®(w;) and its
bigram probabilityP(w;|w;_1), both correlate with accent; the more probable a word,
the less likely it is to be accented. Similarly, an inforratiretrieval measure known as
TF*IDF (Term-Frequency/Inverse-DocumentFrequency; see Clis a3)seful accent
predictor. TF*IDF captures the semantic importance of admwoa particular document

d, by downgrading words that tend to appear in lots of diffedecuments in some
large background corpus witd documents. There are various versions of TF*IDF;
one version can be expressed formally as follows, assuhimg the frequency ofv

in the documend, andk is the total number of documents in the corpus that contain

(8.18) TF*IDF(w) = Nwx Iog(%)

For words which have been seen enough times in a trainingheegccent ratio
feature can be used, which models a word’s individual proibabf being accented.
The accent ratio of a word is equal to the estimated proliglofithe word being ac-
cented if this probability is significantly different from%) and equal to 0.5 otherwise.
More formally,

k .
. = if B(k,N,0.5) <0.05
AccentRatigw) = { (')\IS otherv(vise !

whereN is the total number of times the wovdoccurred in the training sekis the
number of times it was accented, alatk,n,0.5) is the probability (under a binomial
distribution) that there adesuccesses intrials if the probability of success and failure
is equal (Nenkova et al., 2007; Yuan et al., 2005).

Features like part-of-speedi;grams, TF*IDF, and accent ratio can then be com-
bined in a decision tree to predict accents. While thesestdieatures work relatively
well, a number of problems in accent prediction still renthim subject of research.

For example, it is difficult to predict which of the two wordsaild be accented
in adjective-noun or noun-noun compounds. Some regwarito exist; for example
adjective-noun combinations likeew truckare likely to have accent on the right word
(new TRUCK, while noun-noun compounds likEREE surgeotare likely to have ac-
cent on the left. But the many exceptions to these rules matend prediction in noun
compounds quite complex. For example the noun-noun compABR®PLE cakehas
the accent on the first word while the noun-noun compaoapyle PIEor city HALL
both have the accent on the second word (Liberman and SA@@2, Sproat, 1994,
1998a).

Another complication has to do with rhythm; in general speakavoid putting
accents too close together (a phenomenon knowleest) or too far apart lapse.
Thuscity HALL andPARKING lotcombine a<CITY hall PARKING lowvith the accent
on HALL shifting forward toCITY to avoid the clash with the accent ®#ARKING
(Liberman and Prince, 1977),

Some of these rhythmic constraints can be modeled by usirghime learning
techniques that are more appropriate for sequence modelihgs can be done by
running a decision tree classifier left to right through ateece, and using the output
of the previous word as a feature, or by using more sophtsticenachine learning
models like Conditional Random Fields (CRFs) (Gregory atidiA 2004).
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Question rise

Tune

Final fall

8.3.3 Tune

Two utterances with the same prominence and phrasing psitan still differ prosod-
ically by having differentunes Thetune of an utterance is the rise and fall of its
FO over time. A very obvious example of tune is the differeheeveen statements
and yes-no questions in English. The same sentence candbeittag final rise in FO
to indicate a yes-no-question, or a final fall in FO to indécatdeclarative intonation.
Fig. 8.8 shows the FO track of the same words spoken as a gu&stia statement.
Note that the question rises at the end; this is often callgaestion rise The falling
intonation of the statement is callediaal fall .

Pitch (Hz)

50-

you

know what
w

mean

Pitch (Hz)

you Know what

50-

0

0922 [ 0912
Time (s) Time (s)

HEOICER: The same text read as the statem¥émi know what | mean(on the left) and as a questidfou know
what | mean?on the right). Notice that yes-no-question intonation ngish has a sharp final rise in FO.

Continuation rise

Boundary tone

ToBI

It turns out that English makes very wide use of tune to expmesaning. Besides
this well known rise for yes-no questions, an English phcasgaining a list of nouns
separated by commas often has a short rise caltethénuation rise after each noun.
English also has characteristic contours to express atioti@n, to express surprise,
and many more.

The mapping between meaning and tune in English is extreciyplex, and
linguistic theories of intonation like ToBl have only begtmdevelop sophisticated
models of this mapping. In practice, therefore, most sygithgystems just distinguish
two or three tunes, such as thentinuation rise (at commas), theguestion rise (at
question mark if the question is a yes-no question), afinkhfall otherwise.

8.3.4 More sophisticated models: ToBI

While current synthesis systems generally use simple rsadfgirosody like the ones
discussed above, recent research focuses on the develophmench more sophisti-
cated models. We'll very briefly discuss tfieBl, andTilt models here.

ToBI

One of the most widely used linguistic models of prosody &TibBI (Tone and Break
Indices) model (Silverman et al., 1992; Beckman and Hirectpdl 994; Pierrehumbert,
1980; Pitrelli et al., 1994). ToBlI is a phonological theofyirtonation which models
prominence, tune, and boundaries. ToBI's model of prongéeemd tunes is based on
the 5pitch accentsand 4boundary tonesshown in Fig. 8.3.4.

An utterance in ToBI consists of a sequence of intonatiohedges, each of which
ends in one of the fousoundary tones The boundary tones are used to represent the
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Pitch Accents Boundary Tones
H* peak accent L-L%  “final fall”: “declarative contour” of American
English”
L* low accent L-H%  continuation rise
L*+H scooped accent H-H%  “question rise”: cantonical yes-no question
contour
L+H*  rising peak accent H-L% final level plateau (plateau because H- causes

“upstep” of following)
H+!H*  step down
The accent and boundary tones labels from the ToBI trartsmmisystem for
American English intonation (Beckman and Ayers, 1997; Besk and Hirschberg, 1994).

utterance final aspects of tune discussed in Sec. 8.3.3.vizachin the utterances can
optionally be associated with one of the five types of pitateats.

Each intonational phrase consists of one or miatermediate phrase These
phrases can also be marked with kinds of boundary tone,dimauthe%H high ini-
tial boundary tone, which is used to mark a phrase which itiqudarly high in the
speakers’ pitch range, as well as final phrase acdg¢ngndL-.

In addition to accents and boundary tones, ToBI distinggdbur levels of phras-

Breakindex  ing, which are labeled on a separateak index tier. The largest levels of phrasing
are the intonational phrase (break indbxand the intermediate phrase (break index
3), and were discussed above. Break in@dg used to mark a disjuncture or pause
between words that is smaller than an intermediate phrdsiée fvis used for normal
phrase-medial word boundaries.

Tier Fig. 8.10 shows the tone, orthographic, and phrasarg of a ToBI transcription,
using thepraat program. We see the same sentence read with two differemiation
patterns. In (a), the worlllariannais spoken with a high H* accent, and the sentence
has the declarative boundary tone L-L%. In (b), the whtariannais spoken with
a low L* accent and the yes-no question boundary tone H-H%e @ual of ToBI is
to express different meanings to the different type of atscefhus, for example, the
L* accent adds a meaning eirpriseto the sentence (i.e., with a connotation like ‘Are
you really saying it was Marianna?’). (Hirschberg and Rieumbert, 1986; Steedman,
2003).

ToBI models have been proposed for many languages, sucle dStBBI system
for Japanese (Venditti, 2005); see Jun (2005).

Other Intonation models

Tit ~ The Tilt model (Taylor, 2000) resembles ToBI in using sequences tohational
events like accents and boundary tones. But Tilt does nofTaBé-style discrete
phonemic classes for accents. Instead, each event is nddoleleontinuous param-
eters that represent the FO shape of the accent.

Instead of giving each event a category label, as in ToBh &édtprosodic event is
characterized by a set of three acoustic parameters: théalyrthe amplitude, and the
tilt parameter. These acoustic parameters are trained on aseeizh has been hand-
labeled for pitch accentsa) and boundary tones). The human labeling specifies
the syllable which bears the accent or tone; the acousteEnpeters are then trained
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H* L-L L* H-H
| | | |
<BI> marianna made |the| marmalade <S> marianna made |the marmalade
T
1 11 4 1 11 4
| [ | | [ |
0 13 0 1.49
Time (s) Time (s)

HEOICERN The same sentence read by Mary Beckman with two differeahation patterns and transcribed in
ToBI. (a) shows an H* accent and the typical American Englisblarative final fall L-L%. (b) shows the L* accent,
with the typical American English yes-no question rise H-H%
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SEOICERE Schematic view of events in the Tilt model (Taylor, 2000)cEaitch accentd)
and boundary tondyj is aligned with a syllable nucleis

automatically from the wavefile. Fig. 8.11 shows a sample @fltarepresentation.
Each accent in Tilt is viewed as having a (possibly z&igg componentup to peak,
followed by a (possible zerdnll component. An automatic accent detector finds
the start, peak, and end point of each accent in the wavefiigghwdetermines the
duration and amplitude of the rise and fall components. ilygerameter is an abstract
description of the FO slope of an event, calculated by coimgahe relative sizes of
the rise and fall for an event. A tilt value of 1.0 indicatesser tilt of -1.0 a fall, O
equal rise and fall, -0.5 is an accent with a rise and a laajkrand so on:

tiltamp-+ tilt gy
—
(8.19) _ |Arise|_|AfaII|+Drise_ Drall
|Arisel + |Afalll  Drise+ Drall

tilt =
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Sum-of-products

See the end of the chapter for pointers to other intonatimaoalels.

8.3.5 Computing duration from prosodic labels

The results of the text analysis processes described s farstring of phonemes,
annotated with words, with pitch accent marked on relevasride; and appropriate
boundary tones marked. For thait selectionsynthesis approaches that we will de-
scribe in Sec. 8.5, this is a sufficient output from the textigsis component.

Fordiphone synthesis, as well as other approaches like formant syisthves also
need to specify thduration and theF0 values of each segment.

Phones vary quite a bit in duration. Some of the durationhigiiant to the identity
of the phone itself. Vowels, for example, are generally miactgyer than consonants;
in the Switchboard corpus of telephone speech, the phohayaeages 118 millisec-
onds, while [d] averages 68 milliseconds. But phone dunasoalso affected by a
wide variety of contextual factors, which can be modeleddlg-based or statistical
methods.

The most well-known of the rule-based methods is the methddait (1979),
which uses rules to model how the average or ‘context-nkdureation of a phonel
is lengthened or shortened by context, while staying aboueamum durationdin.
Each Klatt rule is associated with a duration multiplicatfactor; some examples:

Prepasual Lengthening: The vowel or syllabic consonant in the syllable before a
pause is lengthened by 1.4.

Non-phrase-final Shortening: Segments which are not phrase-final are shortened by 0.6.
Phrase-final postvocalic liquids and nasals are lengthkeyed
1.4.

Unstressed Shortening: Unstressed segments are more compressible, so their mini-
mum durationdy,, is halved, and are shortened by .7 for
most phone types.

Lengthening for Accent: A vowel which bears accent is lengthened by 1.4

Shortening in Clusters: A consonant followed by a consonant is shortened by 0.5.

Pre-voiceless shortening: Vowels are shortened before a voiceless plosive by 0.7

Given theN factor weightsf, the Klatt formula for the duration of a phone is:

N
(8.20) d = dmjn+ r! fi x (d — dmjn)
=

More recent machine-learning systems use the Klatt haittewrules as the basis
for defining features, for example using features such afotloeving:

identity of the left and right context phone

lexical stress and accent values of current phone
position in syllable, word, phrase

o following pause

We can then train machine learning classifiers like decitiees or thesum-of-
products model (van Santen, 1994, 1997, 1998), to combine the feataggredict the
final duration of the segment.
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8.3.6 Computing FO from prosodic labels

For diphone, articulatory, HMM, and formant synthesis waaleed to specify the FO
values of each segment. For the tone sequence models likeoTdit, this FO gener-
ation can be done by specifying Efrget points for each pitch accent and boundary
tone; the FO contour for the whole sentence can be createdtéspolating among
these targets (Anderson et al., 1984).

In order to specify a target point we need to describe wha {the FO value)
and when it occurs (the exact time at which this peak or troaggurs in the sylla-
ble). The FO values of the target points are generally natipd in absolute terms
of Hertz. Instead, they are defined relativepttch range. A speaker'gitch range is
the range between the lowest frequency they use in a patiatierance (thbaseline
frequency) and the highest frequency in the utterance (tpine). In some models,
target points are specified relative to a line in betweeredatereference line

For example, we might write a rule specifying that the vergibeing of an utter-
ance have a target point of 50% (halfway between the basefidetopline). In the
rule-based system of Jilka et al. (1999) the target poiréufo* accent is at 100% (the
topline) and for an L* accent at 0% (at the baseline). L+H*eads have two target
points, at 20% and 100%. Final boundary tones H-H% and L-Lé&eatra-high and
extra-low at 120% and -20% respectively.

Second, we must also specify exactly where in the accentéabkythe targets
apply; this is known as acceafignment. In the rule-based system of Jilka et al.
(1999), again, H* accents are aligned 60% of the way throhghvbiced part of the
accent syllable (although IP-initial accents are alignedewhat later in the syllable,
while IP-final accents are aligned somewhat earlier).

Instead of writing these rules by hand, the mapping fromhpétccent sequence
to FO value may be learned automatically. For example BlackHunt (1996) used
linear regression to assign target values to each syll&bleeach syllable with a pitch
accent or boundary tone, they predicted three target vafdbe beginning, middle,
and end of the syllable. They trained three separate lireggession models, one for
each of the three positions in the syllable. Features irzlud

e accent type on the current syllable as well as two previoustan following
syllables

o lexical stress of this syllable and surrounding syllables
e number of syllables to start of phrase and to end of phrase
e number of accented syllables to end of phrase

Such machine learning models require a training set thathisléd for accent; a
number of such prosodically-labeled corpora exist, aljtoit is not clear how well
these models generalize to unseen corpora.

Finally, FO computation models must model the fact thattptends to decline
through a sentence; this subtle drop in pitch across aramiteris calledieclination;
an example is shown in Fig. 8.12.

The exact nature of declination is a subject of much reseamckome models, it
is treated by allowing the baseline (or both baseline andita) to decrease slowly
over the utterance. In ToBl-like models, this downdrift i i modeled by two sepa-
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SEOICKEEY: FO declination in the sentence ‘I was pretty goofy for aboverity-four hours
afterwards’.

rate components; in addition to declination, certain higies are marked as carrying
downstep Each downstepped high accent causes the pitch range tonpEressed,
resulting in a lowered topline for each such accent.

8.3.7 Final result of text analysis: Internal Representain

The final output of text analysis is what we called theernal representation of the
input text sentence. For unit selection synthesis, thenateepresentation can be as
simple as a phone string together with indications of prasbdundaries and promi-
nent syllables, as shown in Fig. 8.1. For diphone synthasige#l as non-concatenative
synthesis algorithms the internal representation mustiatdude a duration and an FO
value for each phone.

Fig. 8.13 shows some sample TTS output from the FESTIVAL¢BIt al., 1999)
diphone speech synthesis system for the sentBucgou really want to see all of
it?. This output, together with the FO values shown in Fig. 8.buld be the input
to thewaveform synthesiscomponent described in Sec. 8.4. The durations here are
computed by a CART-style decision tree (Riley, 1992).

do
d
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H* L* L- H%
you really want to see all of
yluw| r| ih| lliy | w| ag n t s|iy |ao | |ah

‘ S(j 72

it
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47 46| 220

50| 50 | 75| 64| 57| 82|57 43 54| 130| 76| 90| 44

EEPICERE Output of the FESTIVAL (Black et al., 1999) generator for gamtencéo you really want to see all
of it?, together with the FO contour shown in Fig. 8.14. Figure ksao Paul Taylor.

As was suggested above, determining the proper prosodarpdbr a sentence is
difficult, as real-world knowledge and semantic informatie needed to know which
syllables to accent, and which tune to apply. This sort afrimfation is difficult to ex-
tract from the text and hence prosody modules often aim tdysre a “neutral declara-
tive” version of the input text, which assume the sentenceishbe spoken in a default
way with no reference to discourse history or real-worldseThis is one of the main
reasons why intonation in TTS often sounds “wooden”.
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H%

L*

do you really want to see all of it

SICERY. The FO contour for the sample sentence generated by the
FESTIVAL synthesis system in Fig. 8.13, thanks to Paul Taylo

8.4 Diphone Waveform synthesis

We are now ready to see how the internal representation cauried into a wave-
form. We will present two kinds o€oncatentativesynthesis:diphone synthesisin
this section, andnit selection synthesisn the next section.

Recall that for diphone synthesis, our internal represimté as shownin Fig. 8.13
and Fig. 8.14, consisting of a list of phones, each phonecgsged with a duration and
a set of FO targets.

The diphone concatenative synthesis model generates domaveom a sequence
of phones by selecting and concatenating units from a poetdled database dafi-

Diphone  phones A diphone is a phone-like unit going from roughly the middfeone phone to
the middle of the following phone. Diphone concatenativetsgsis can be character-
ized by the following steps:

Training:

1. Record a single speaker saying an example of each diphone.

2. Cut each diphone out from the speech and store all diphinreediphone
database.

Synthesis:

1. Take from the database a sequence of diphones that condsspo the
desired phone sequence.

2. Concatenate the diphones, doing some slight signal psowgat the bound-
aries

3. Use signal processing to change the prosody (fO, dudatiothe diphone
sequence to the desired prosody.

We tend to use diphones rather than phones for concatesgtitieesis because of
coarticulation  the phenomenon afoarticulation. In Ch. 7 we definedoarticulation as the move-
ment of articulators to anticipate the next sound, or pensging movement from the
last sound. Because of coarticulation, each phone diffeystly depending on the
previous and following phone. This if we just concatenatednes together, we would
have very large discontinuities at the boundaries.
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In a diphone, we model this coarticulation by including thensition to the next
phone inside the unit. The diphone [w-eh], for example,udek the transition from
the [w] phone to the [eh] phone. Because a diphone is defimed tihe middle of one
phone to the middle of the next, when we concatenate the dgshave are concate-
nating the middle of phones, and the middle of phones tene: tieds influenced by
the context. Fig. 10.11 shows the intuition that the begigrind end of the vowel [eh]
have much more movement than the center.

Time (s)
SEOIGEEE The vowel [eh] in different surrounding contexts, in the d®wed and Ben

Notice the differences in the second formants (F2) at thénbegy and end of the [eh], but
the relatively steady state portion in the middle at the tilue

8.4.1 Building a diphone database

There are six steps in building a diphone database:

1. Create aiphone inventory

Recruit a speaker

Create a text for the speaker to read for each diphone
Record the speaker reading each diphone

Segment, label, and pitch-mark the diphones

Excise the diphones

o0 ks WD

What is the inventory of diphones that we need for a system2 lfiave 43 phones

(like the AT&T system of Olive et al. (1998)), there are?43 1849 hypothetically
possible diphone combinations. Not all of these diphonesazdually occur. For
example, Englistphonotactic constraints rule out some combinations; phones like
[h], [y]l, and [w] can only occur before vowels. In additiorgrse diphone systems
don't bother storing diphones if there is no possible coatition between the phones,
such as across the silence between successive voicelpss Stoe 43-phone system
of Olive et al. (1998) thus has only 1162 diphones rather tharL849 hypothetically
possible set.

Voice talent Next we recruit our speaker, often calledace talent The database of diphones
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\Voice

Carrier phrase

Optimal coupling

for this speaker is calledwice commercial systems often have multiple voices, such
as one male and one female voice.

We'll now create a text for the voice talent to say, and reamadh diphone. The
most important thing in recording diphones is to keep therocesistent as possible;
if possible, they should have constant pitch, energy, amdtaun, so they are easy to
paste together without noticeable breaks. We do this byosimg each diphone to be
recorded in aarrier phrase. By putting the diphone in the middle of other phones,
we keep utterance-final lengthening or initial phone efféam making any diphone
louder or quieter than the others. We'll need differentieanphrases for consonant-
vowel, vowel-consonant, phone-silence, and silence-plsequences. For example, a
consonant vowel sequence like [b aa] or [b ae] could be endzktldtween the sylla-
bles [t aa] and [m aa]:

pause t aa b aa m aa pause
pause t aa b ae m aa pause
pause t aa b eh m aa pause

If we have an earlier synthesizer voice lying around, we Isuge that voice to
read the prompts out loud, and have our voice talent repéat e prompts. This
is another way to keep the pronunciation of each diphoneistems. It is also very
important to use a high quality microphone and a quiet rogrbetter, a studio sound
booth.

Once we have recorded the speech, we need to label and setpménd phones
that make up each diphone. This is usually done by runningeaciprecognizer in
forced alignment mode In forced alignment mode, a speech recognition is told ex-
actly what the phone sequence is; its job is just to find theteghone boundaries
in the waveform. Speech recognizers are not completelyrateat finding phone
boundaries, and so usually the automatic phone segmeantatiand-corrected.

We now have the two phones (for example [b aa]) with handeobed boundaries.
There are two ways we can create the /b-aa/ diphone for tabast¢. One method is to
use rules to decide how far into the phone to place the diphonredary. For example,
for stops, we put place the diphone boundary 30% of the wayth@ phone. For most
other phones, we place the diphone boundary 50% into thegphon

A more sophisticated way to find diphone boundaries is toesthe entire two
phones, and wait to excise the diphones until we are know phate we are about
to concatenate with. In this method, known@simal coupling, we take the two
(complete, uncut) diphones we need to concatenate, and @ok elvery possible cut-
ting point for each diphones, choosing the two cutting moih&it would make the final
frame of the first diphone acoustically most similar to thd #ame of the next diphone
(Taylor and Isard, 1991; Conkie and Isard, 1996). Acouksitailar can be measured
by usingcepstral similarity, to be defined in Sec. 9.3.

8.4.2 Diphone concatenation and TD-PSOLA for prosody

We are now ready to see the remaining steps for synthesiniimgévidual utterance.
Assume that we have completed text analysis for the utterarad hence arrived at a
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sequence of diphones and prosodic targets, and that we lsavgrabbed the appro-
priate sequence of diphones from the diphone database.wéemeed to concatenate
the diphones together and then adjust the prosody (pit@rggnand duration) of the
diphone sequence to match the prosodic requirements freinté&rmediate represen-
tation.

Given two diphones, what do we need to do to concatenate tieaessfully?
If the waveforms of the two diphones edges across the juace very different,
a perceptibleclick will result. Thus we need to apply a windowing function to the
edge of both diphones so that the samples at the juncturddava zero amplitude.
Furthermore, if both diphones are voiced, we need to indwaethe two diphones are
joined pitch-synchronously. This means that the pitch periods at the end of the first
diphone must line up with the pitch periods at the beginnihthe second diphone;
otherwise the resulting single irregular pitch period & phincture is perceptible as
well.

Now given our sequence of concatenated diphones, how do vééfyntbe pitch
and duration to meet our prosodic requirements? It turnstloere is a very sim-
ple algorithm for doing this calledD-PSOLA (Time-Domain Pitch-Synchronous
OverLap-and-Add).

As we just said, pitch-synchronousalgorithm is one in which we do something
at each pitch period @poch For such algorithms it is important to have very accurate
pitch markings: measurements of exactly where each pittdemrepochoccurs. An
epoch can be defined by the instant of maximum glottal pressurralternatively by
the instant of glottal closure. Note the distinction betavpéch marking or epoch
detectionandpitch tracking . Pitch tracking gives the value of FO (the average cycles
per second of the glottis) at each particular pointin tinveraged over a neighborhood.
Pitch marking finds the exact point in time at each vibratomgie at which the vocal
folds reach some specific point (epoch).

Epoch-labeling can be done in two ways. The traditional veang still the most
accurate, is to use alectroglottographor EGG (often also called éaryngograph
or Lx). An EGG is a device which straps onto the (outside of thejkpis neck near
the larynx and sends a small current through the Adam’s apgpkeansducer detects
whether the glottis is open or closed by measuring the impealacross the vocal
folds. Some modern synthesis databases are still recorile@mEGG. The problem
with using an EGG is that it must be attached to the speakdelgy are recording
the database. Although an EGG isn’t particularly invasités is still annoying, and
the EGG must be used during recording; it can’t be used tditark speech that
has already been collected. Modern epoch detectors are pmeaching a level of
accuracy that EGGs are no longer used in most commercial figides. Algorithms
for epoch detection include Brookes and Loke (1999), Vekli(2000).

Given an epoch-labeled corpus, the intuition of TD-PSOLAh&t we can mod-
ify the pitch and duration of a waveform by extracting a frafoeeach pitch period
(windowed so that the frame doesn’t have sharp edges) amdréz®mbining these
frames in various ways by simply overlapping and adding thdewed pitch period
frames (we will introduce the idea of windows in Sec. 9.3T3)e idea that we modify
a signal by extracting frames, manipulating them in some amg then recombin-
ing them by adding up the overlapped signals is calledbilerlap-and-addor OLA
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algorithm; TD-PSOLA is a special case of overlap-and-addfich the frames are
pitch-synchronous, and the whole process takes place tmtieedomain.

For example, in order to assign a specific duration to a diphae might want to
lengthen the recorded master diphone. To lengthen a sigtial®-PSOLA, we sim-
ply insert extra copies of some of the pitch-synchronounés, essentially duplicating
a piece of the signal. Fig. 8.16 shows the intuition.
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SEOIGEEEE TD-PSOLA for duration modification. Individual pitch-symonous frames can
be duplicated to lengthen the signal (as shown here), otegtete shorten the signal.

TD-PSOLA can also be used to change the FO value of a recoigkdree to give
a higher or lower value. To increase the FO, we extract each-gynchronous frame
from the original recorded diphone signal, place the fraoleser together (overlap-
ping them), with the amount of overlap determined by therdesperiod and hence
frequency, and then add up the overlapping signals to pethe final signal. But
note that by moving all the frames closer together, we madesidnal shorter in time!
Thus in order to change the pitch while holding the durationstant, we need to add
duplicate frames.

Fig. 8.17 shows the intuition; in this figure we have explycithown the extracted
pitch-synchronous frames which are overlapped and addee fimat the frames moved
closer together (increasing the pitch) while extra framegelbeen added to hold the
duration constant.

8.5 Unit Selection (Waveform) Synthesis

Diphone waveform synthesis suffers from two main problemsst, the stored di-
phone database must be modified by signal process methed83®LA to produce
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TD-PSOLA for pitch (FO) modification. In order to increase tpitch, the indi-
vidual pitch-synchronous frames are extracted, Hanninglawed, moved closer together and
then added up. To decrease the pitch, we move the frame®ffiatart. Increasing the pitch
will result in a shorter signal (since the frames are closgether), so we also need to duplicate
frames if we want to change the pitch while holding the deratonstant.

the desired prosody. Any kind of signal processing of theestgpeech leaves artifacts
in the speech which can make the speech sound unnaturahd&etiphone synthesis

only captures the coarticulation due to a single neighlgguimone. But there are many
more global effects on phonetic realization, including endistant phones, syllable

structure, the stress patterns of nearby phones, and eveRleue| effects.

For this reason, modern commercial synthesizers are basadyeneralization of
diphone synthesis callathit selection synthesis Like diphone synthesis, unit selec-
tion synthesis is a kind of concatenative synthesis aligarit It differs from classic
diphone synthesis in two ways:

1. Indiphone synthesis the database stores exactly oneoéepgh diphone, while
in unit selection, the unit database is many hours long,aning many copies
of each diphone.
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Target cost

Join cost

2. Indiphone synthesis, the prosody of the concatenateslismodified by PSOLA
or similar algorithms, while in unit selection no (or minifhaignal processing
is applied to the concatenated units.

The strengths of unit selection are due to the large unitda In a sufficiently
large database, entire words or phrases of the utteranceawetavsynthesize may be
already present in the database, resulting in an extrenalyral waveform for these
words or phrases. In addition, in cases where we can'’t findge lehunk and have to
back off to individual diphones, the fact that there are sayr@pies of each diphone
makes it more likely that we will find one that will fit in very haally.

The architecture of unit selection can be summarized asvisll We are given a
large database of units; let's assume these are diphotiesygh it's also possible to do
unit selection with other kinds of units such half-phongdiables, or half-syllables).
We are also given a characterization of the target ‘inteneyalesentation’, i.e. a phone
string together with features such as stress values, wemtitg, FO information, as
described in Fig. 8.1.

The goal of the synthesizer is to select from the databasédbesequence of
diphone units that corresponds to the target representdfithat do we mean by the
‘best’ sequence? Intuitively, the best sequence would ledrowhich:

e each diphone unit we select exactly meets the specificatithe target diphone
(in terms of FO, stress level, phonetic neighbors, etc)

e each diphone unit concatenates smoothly with its neighigaunits, with no
perceptible break.

Of course, in practice, we can't guarantee that there wil lb@iawhich exactly
meets our specifications, and we are unlikely to find a sequefgnits in which every
single join is imperceptible. Thus in practice unit seleatalgorithms implement a
gradient version of these constraints, and attempt to fiadé#guence of unit which at
least minimizes théarget costand thgoin cost:

Target costT (w,s): how well the target specificatiog matches the potential
unit

Join costJ(u;,u11):  how well (perceptually) the potential unit joins with its
potential neighbou; 1

TheT andJ values are expressed esstsmeaning that high values indicate bad
matches and bad joins (Hunt and Black, 1996a).

Formally, then, the task of unit selection synthesis, gaesequenc& of T target
specifications, is to find the sequené®f T units from the database which minimizes
the sum of these costs:

T T1
(8.21) U =argminy T(s,u)+ S I(U, 1)
u t; t; i

Let's now define the target cost and the join cost in more bieé&dore we turn to
the decoding and training tasks.

The target cost measures how well the unit matches the tdigiedone specifica-
tion. We can think of the specification for each diphone thagea feature vector; here
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are three sample vectors for three target diphone spe@fisatising dimensions (fea-
tures) likeshould the syllable be stressedhdwhere in the intonational phrase should
the diphone come from

fih-t/, +stress, phrase internal, high FO, content word
In-t/, -stress, phrase final, high FO, function word
/dh-ax/, -stress, phrase initial, low FO, word ‘the’

We'd like the distance between the target specificati@md the unit to be some
function of the how different the unit is on each of these disiens from the specifi-
cation. Let's assume that for each dimensmrwe can come up with sonmgubcost
To(s[p],u;j[p]). The subcost for a binary feature likressmight be 1 or 0. The sub-
cost for a continuous feature like FO might be the differgiocéog difference) between
the specification FO and unit FO. Since some dimensions are important to speech
perceptions than others, we’ll also want to weight each dsim. The simplest way
to combine all these subcosts is just to assume that thep@depéndent and additive.
Using this model, the total target cost for a given target/oair is the weighted sum
over all these subcosts for each feature/dimension:

P
(822) T(s,u)) = lepr(st[p],uj[p])
&

The target cost is a function of the desired diphone spetiditand a unit from
the database. THein cost, by contrast, is a function of two units from the database.
The goal of the join cost is to be low (0) when the join is conglienatural, and high
when the join would be perceptible or jarring. We do this byameing the acoustic
similarity of the edges of the two units that we will be joiginif the two units have
very similar energy, FO, and spectral features, they witbably join well. Thus as
with the target cost, we compute a join cost by summing weigistibcosts:

P
(8:23) It Ur) = 5 Wpdp(Ue[p], U1 [P])
p=1

The three subcosts used in the classic Hunt and Black (1986bjithm are the
cepstral distanceat the point of concatenation, and the absolute differeircéeg
power and FO. We will introduce the cepstrum in Sec. 9.3.

In addition, if the two unitax andu 1 to be concatenated were consecutive di-
phones in the unit database (i.e. they followed each oth#érdroriginal utterance),
then we set the join cost to Ql(u;,Ww1) = 0. This is an important feature of unit
selection synthesis, since it encourages large naturaksegs of units to be selected
from the database.

How do we find the best sequence of units which minimizes the slithe target
and join costs as expressed in Eq. 8.21? The standard mettmthink of the unit se-
lection problem as a Hidden Markov Model. The target unitsthe observed outputs,
and the units in the database are the hidden states. Our fobiil the best hidden
state sequence. We will use the Viterbi algorithm to soli® pinoblem, just as we saw
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itin Ch. 5 and Ch. 6, and will see it again in Ch. 9. Fig. 8.18veha sketch of the
search space as well as the best (Viterbi) path that detestiire best unit sequence.

TARGETS | # s-ih ih-k k-s s-# #

NN

' ; ““Jarget Costs

UNITS

___-Join Cost

The process of decoding in unit selection. The figure shoe/séluence of target
(specification) diphones for the wosik, and the set of possible database diphone units that we
must search through. The best (Viterbi) path that minimihessum of the target and join costs

is shown in bold.

The weights for join and target costs are often set by hamdesihe number of
weights is small (on the order of 20) and machine learningritlyms don't always
achieve human performance. The system designer listemgite sentences produced
by the system, and chooses values for weights that reswdasonable sounding utter-
ances. Various automatic weight-setting algorithms dstekiowever. Many of these
assume we have some sort of distance function between thetaof two sentences,
perhaps based on cepstral distance. The method of Hunt ackl B1996b), for exam-
ple, holds out a test set of sentences from the unit seledtitabase. For each of these
test sentences, we take the word sequence and synthesizieacsewaveform (using
units from the other sentences in the training databasey.\Wscompare the acoustics
of the synthesized sentence with the acoustics of the troehisentence. Now we
have a sequence of synthesized sentences, each one a&sbafttiata distance function
to its human counterpart. Now we use linear regression bas¢itese distances to set
the target cost weights so as to minimize the distance.

There are also more advanced methods of assigning both targgoin costs. For
example, above we computed target costs between two unit®king at the features
of the two units, doing a weighted sum of feature costs, arabsing the lowest-
cost unit. An alternative approach (which the new readehimged to come back to
after learning the speech recognition techniques intreduic the next chapters) is to
map the target unit into some acoustic space, and then findt avhich is near the
target in that acoustic space. In the method of Donovan atel @998), Donovan and
Woodland (1995), for example, all the training units arestdued using the decision
tree algorithm of speech recognition described in Sec.. Th8 decision tree is based
on the same features described above, but here for eachfsatures, we follow a path
down the decision tree to a leaf node which contains a cledtenits that have those
features. This cluster of units can be parameterized by &$&aumodel, just as for
speech recognition, so that we can map a set of features primbability distribution
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over cepstral values, and hence easily compute a distarieedre the target and a
unit in the database. As for join costs, more sophisticatettios make use of how
perceivable a particular join might be (Wouters and Mac@98t Syrdal and Conkie,
2004; Bulyko and Ostendorf, 2001).

8.6 Evaluation

Speech synthesis systems are evaluated by human listeflesdevelopment of a
good automatic metric for synthesis evaluation, that walilshinate the need for ex-
pensive and time-consuming human listening experimegrtsams an open and exiting
research topic.
Intelligibility The minimal evaluation metric for speech synthesis sysisrimelligibility : the
ability of a human listener to correctly interpret the woesh&l meaning of the synthe-
Quality  sized utterance. A further metric ¢uality; an abstract measure of the naturalness,
fluency, or clarity of the speech.
The most local measures of intelligibility test the abilitiya listener to discriminate
Diagnostic Riyme  hetween two phones. THaiagnostic Rhyme Test(DRT) (Voiers et al., 1975) tests
DRT the intelligibility of initial consonants. It is based on 9&airs of confusable rhyming
words which differ only in a single phonetic feature, sucldense/tenger bond/pond
(differing in voicing) ormean/beabr neck/decKdiffering in nasality), and so on. For
each pair, listeners hear one member of the pair, and irdighich they think it is.
The percentage of right answers is then used as an intdiligitnetric. TheModified
Modified Riyme  Rhyme Test(MRT) (House et al., 1965) is a similar test based on a differenofe
MRT 300 words, consisting of 50 sets of 6 words. Each 6-word g$tgrdiin either initial
or final consonants (e.guent sent bent dent tent, rentor bat, bad, back bass ban
bath). Listeners are again given a single word and must identifgnfa closed list of
six words; the percentage of correct identifications is mgaied as an intelligibility
metric.
Since context effects are very important, both DRT and MRTds@re embedded
carrierphrase  in carrier phrases like the following:

Now we will say <word> again.

In order to test larger units than single phones, we cansasgantically unpre-
sus dictable sentencegSUS (Benoit et al., 1996). These are sentences constructed by
taking a simple POS template likeeT ADJ NOUN VERB DET NOUNand inserting
random English words in the slots, to produce sentences like

The unsure steaks closed the fish.

Measures of intelligibility like DRT/MRT and SUS are desgghto factor out the
role of context in measuring intelligibility. While thislalvs us to get a carefully
controlled measure of a system’s intelligibility, such amxtual or semantically un-
predictable sentences aren’t a good fit to how TTS is used &t smwnmercial appli-
cations. Thus in commercial applications instead of DRT d6Swe generally test
intelligibility using situations that mimic the desired@igations; reading addresses
out loud, reading lines of news text, and so on.
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To further evaluate thguality of the synthesized utterances, we can play a sentence
mos  for a listener and ask them to givareean opinion scorg(MOS), a rating of how good
the synthesized utterances are, usually on a scale from W .can then compare
systems by comparing their MOS scores on the same sentarsieg,(e.g., t-tests to
test for significant differences).
If we are comparing exactly two systems (perhaps to see ifracpkar change
ABtests  actually improved the system), we can usB tests In AB tests, we play the same
sentence synthesized by two different systems (an A and astermy. The human
listener chooses which of the two utterances they like betf¢e can do this for 50
sentences and compare the number of sentences preferreacfosystems. In order
to avoid ordering preferences, for each sentence we mustmpiréhe two synthesized
waveforms in random order.

Bibliographical and Historical Notes

As we noted at the beginning of the chapter, speech syntisesig of the earliest fields
of speech and language processing. The 18th century sawlzenofrphysical models
of the articulation process, including the von Kempelen etadentioned above, as
well as the 1773 vowel model of Kratzenstein in Copenhagemgusgan pipes.

But the modern era of speech synthesis can clearly be saiavdrrived by the
early 1950’s, when all three of the major paradigms of warafeynthesis had been
proposed (formant synthesis, articulatory synthesis camdatenative synthesis).

Concatenative synthesis seems to have been first proposéarbiy (1953) at Bell
Laboratories, who literally spliced together pieces of netg tape corresponding to
phones. Harris’s proposal was actually more like unit g@lasynthesis than diphone
synthesis, in that he proposed storing multiple copies ohegzhone, and proposed
the use of a join cost (choosing the unit with the smoothesh&mt transitions with
the neighboring unit). Harris's model was based on the phmtber than diphone,
resulting in problems due to coarticulation. Peterson .etl&58) added many of the
basic ideas of unit selection synthesis, including the disBphones, a database with
multiple copies of each diphone with differing prosody, a&aeh unit labeled with in-
tonational features including FO, stress, and duratiod,tha use of join costs based
on FO and formant distant between neighboring units. They pfoposed microcon-
catenation techniques like windowing the waveforms. TheiBen et al. (1958) model
was purely theoretical, however, and concatenative sgigheas not implemented un-
til the 1960’s and 1970’s, when diphone synthesis was firgpiémented (Dixon and
Maxey, 1968; Olive, 1977). Later diphone systems inclu@egddr units such as con-
sonant clusters (Olive and Liberman, 1979). Modern uné@n, including the idea
of large units of non-uniform length, and the use of a targst,ovas invented by Sag-
isaka (1988), Sagisaka et al. (1992). Hunt and Black (19¢@malized the model,
and putitin the form in which we have presented it in this ¢bajm the context of the
ATR CHATR system (Black and Taylor, 1994). The idea of auttcadly generating
synthesis units by clustering was first invented by Nakajmd Hamada (1988), but
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was developed mainly by (Donovan, 1996) by incorporatirgigien tree clustering al-
gorithms from speech recognition. Many unit selection watmns took place as part
of the ATT NextGen synthesizer (Syrdal et al., 2000; Syrdal @onkie, 2004).

We have focused in this chapter on concatenative synttegithere are two other
paradigms for synthesigormant synthesis in which we attempt to build rules which
generate artificial spectra, including especially forrsaahdarticulatory synthesis,
in which we attempt to directly model the physics of the vdcatt and articulatory
process.

Formant synthesizersoriginally were inspired by attempts to mimic human speech
by generating artificial spectrograms. The Haskins Lalovied Pattern Playback Ma-
chine generated a sound wave by painting spectrogram psitbér a moving trans-
parent belt, and using reflectance to filter the harmonicsvedvaeform (Cooper et al.,
1951); other very early formant synthesizers include Laweg1953) and Fant (3951).
Perhaps the most well-known of the formant synthesizers wWeKlatt formant syn-
thesizerand its successor systems, including the MITalk systene(Adt al., 1987),
and the Klattalk software used in Digital Equipment Corpiords DECtalk (Klatt,
1982). See Klatt (1975) for details.

Articulatory synthesizers attempt to synthesize speech by modeling the physics
of the vocal tract as an open tube. Representative models,daoly and somewhat
more recent include Stevens et al. (1953), Flanagan et®5)1Fant (1986) See Klatt
(1975) and Flanagan (1972) for more details.

Development of the text analysis components of TTS camewsbatdater, as tech-
niques were borrowed from other areas of natural languageepsing. The input to
early synthesis systems was not text, but rather phonegpei(in on punched cards).
The first text-to-speech system to take text as input seemau® been the system of
Umeda and Teranishi (Umeda et al., 1968; Teranishi and Uni&é8; Umeda, 1976).
The system included a lexicalized parser which was useddigragrosodic bound-
aries, as well as accent and stress; the extensions in Cokér(€973) added addi-
tional rules, for example for deaccenting light verbs anpl@sed articulatory models
as well. These early TTS systems used a pronunciation darydfor word pronuncia-
tions. In order to expand to larger vocabularies, early tontrbased TTS systems such
as MITlak (Allen et al., 1987) used letter-to-sound rulestéad of a dictionary, since
computer memory was far too expensive to store large diaties.

Modern grapheme-to-phoneme models derive from the inflalezdrly probabilis-
tic grapheme-to-phoneme model of Lucassen and Mercer [1884ch was originally
proposed in the context of speech recognition. The widesbuse of such machine
learning models was delayed, however, because early afaedidence suggested
that hand-written rules worked better than e.g., the nengiorks of Sejnowski and
Rosenberg (1987). The careful comparisons of Damper et299) showed that ma-
chine learning methods were in generally superior. A nurobsuch models make use
of pronunciation by analogy (Byrd and Chodorow, 1985; ?; IBaans and van den
Bosch, 1997; Marchand and Damper, 2000) or latent analogjlgdarda, 2005);
HMMs (Taylor, 2005) have also been proposed. The most reserk makes use

Graphone  Of joint graphonemodels, in which the hidden variables are phoneme-grappaime
and the probabilistic model is based on joint rather thamitamal likelihood (Deligne
et al., 1995; Luk and Damper, 1996; Galescu and Allen, 20@dgr8 and Ney, 2002;
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Chen, 2003).
There is a vast literature on prosody. Besides the ToBI ahd firlodels described
Fuisaki  above, other important computational models include Rbgsaki model (Fujisaki
and Ohno, 1997). IViE (Grabe, 2001) is an extension of ToBt fhcuses on labelling
different varieties of English (Grabe et al., 2000). Theralso much debate on the
units of intonational structurantonational phrases (Beckman and Pierrehumbert,
Intonation unit  1986),intonation units (Du Bois et al., 1983) atone units (Crystal, 1969)), and their
Toneunit  relation to clauses and other syntactic units (Chomsky aaiteH1968; Langendoen,
1975; Streeter, 1978; Hirschberg and Pierrehumbert, 1S8&irk, 1986; Nespor and
Vogel, 1986; Croft, 1995; Ladd, 1996; Ford and Thompsong198rd et al., 1996).
HMM synthesis One of the most exciting new paradigms for speech synthebiMiM synthesis,
first proposed by Tokuda et al. (1995b) and elaborated indalet al. (1995a), Tokuda
et al. (2000), and Tokuda et al. (2003). See also the textbonimary of HMM syn-
thesis in Taylor (2008).
More details on TTS evaluation can be found in Huang et al012@nd Gibbon
et al. (2000). Other descriptions of evaluation can be fdartle annual speech syn-
cf‘?a'liﬁezﬁg% thesis competition called thglizzard Challenge (Black and Tokuda, 2005; Bennett,
2005).
Much recent work on speech synthesis has focused on gergeeatiotional speech
(Cahn, 1990; Bulutl et al., 2002; Hamza et al., 2004; Eidé €£2@04; Lee et al., 2006;
Schroder, 2006, inter alia)
Two classic text-to-speech synthesis systems are dedarib&llen et al. (1987)
(the MITalk system) and Sproat (1998b) (the Bell Labs system). Recatlideks
include Dutoit (1997), Huang et al. (2001), Taylor (2008)d &lan Black’s online lec-
ture notes afittp://festvox.org/festtut/notes/festtut_toc.html
Influential collections of papers include van Santen etl®9¢), Sagisaka et al. (1997)
Narayanan and Alwan (2004). Conference publications appé#ae main speech engi-
neering conferences (INTERSPEEQHEE ICASSP and theSpeech Synthesis Work-
shops Journals includ&peech Communicatip@omputer Speech and Languagtee
IEEE Transactions on Audio, Speech, and Language Proagsail theACM Trans-
actions on Speech and Language Processing

Exercises

8.1 Implement the text normalization routine that deals withNEY, i.e. mapping
strings of dollar amounts lik§45, $320, and$4100to words (either writing code
directly or designing an FST). If there are multiple ways torpunce a number
you may pick your favorite way.

8.2 Implement the text normalization routine that deals WtteL, i.e. seven-digit
phone numbers lik655-1212555-1300and so on. You should use a combina-
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tion of the paired andtrailing unit methods of pronunciation for the last four
digits. (Again you may either write code or design an FST).

8.3 Implement the text normalization routine that deals withetpATE in Fig. 8.1.2

8.4 Implementthe text normalization routine that deals witrety TIME in Fig. 8.1.2.

8.5 (Suggested by Alan Black). Download the free Festival spegnthesizer. Aug-
ment the lexicon to correctly pronounce the names of everymgour class.

8.6 Download the Festival synthesizer. Record and train a diplsgnthesizer using

your own voice.
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