COMS E6998-15: Fine-grained complexity (Spring’26) January 27, 2026

Lecture 2: Reductions & SETH

Instructor: Josh Alman Scribes: Innokentiy Kaurov, Pires William (2022)

1 Fine Grained Reductions

Last lecture we used two reductions, one to prove that SETH implies OVC, and another to show that OVC
implies that we can’t compute the diameter of a sparse undirected graph in time O(n?~¢) for any ¢ > 0.
Looking at the second reduction, we realize that it is important that the construction of the graph doesn’t
take quadratic time, otherwise this wouldn’t give an algorithm solving OV in time O(n?~¢). Therefore, we
can’t work with Cook nor Karp reductions, as they only require the reduction to take polynomial time in
the size of the input. We need a more refined definition, that is why we introduce fine grained reductions.

Definition 1.1. Let A,B be computational problems, let a(n), b(n) be two functions N — N. We say that
problem A (a,b)-reduces to B, written A <, B, if for every constant € > 0, there is a constant § > 0
such that there is an algorithm R for A with the following properties:

1=9) on inputs to A of length n.

e R runs in time O(a(n)
e R makes q calls to an oracle for B, where each query has size ni,na,...,ng, such that:

q

> (b(n:)'~* < O(a(n)'~)

i=1

This definition provides a framework for showing that if we had an algorithm for B running in time
O(b(n)'~¢), then we could solve A in time O(a(n)'~?). In particular, the second property of R guarantees
us that, if we were to replace the oracle calls in R by the algorithm for B, the running time would still be
O(a(n)'=?). Such a reduction shows that a polynomial speedup for B would give a polynomial speedup
for A.

Theorem 1.1. If A cannot be solved in time O(a(n)'=%) for any 6 > 0 and A <, B, then B cannot be
solved in time O(b(n)'=%) for any ¢ > 0.

Extensive work has been done, using fine grained reductions combined with OVC, to show similar
results for other problems, examples include problems motivated by applications in Computational Biol-
ogy (Longest Common Subsequence, Local Alignment, ...). Other types of problems whose hardness can
be based on OVC include Dynamic Programming problems, Nearest Neighbor Search, String problems,
and Machine Learning problems. Finally, OVC has also been used to show hardness of approximation for
different problems. For instance, the reduction from the Orthogonal Vectors problem to Graph Diameter
exhibits that, assuming OVC, we can’t distinguish graphs with diameter 2 from graphs with diameter 3
in time O(n?~¢) for any constant ¢ > 0.

Besides, during the course, we also employ two additional hardness assumptions, one for the 3SUM
problem and another for the APSP problem.

3SUM.
Given. A set of integers S of size n.
Task. Decide whether there exist x,y, z € S such that z +y 4+ z = 0.

The problem can easily be solved in time O(n?) by looking at all triples of numbers in S and verifying
whether or not they sum to 0. A more careful look, left as an exercise to the reader, shows that there is
an algorithm running in time O(n?) for the problem.

The 3SUM conjecture states that there is no algorithm for 3SUM running in time O(n?~¢) for any
constant € > 0. Assuming this conjecture, hardness results in the form of reductions from 3SUM have
been explored extensively in the literature. Key examples include several problems in Computational
Geometry, which find applications in robotics, as well as problems related to triangles in graphs.

The third main conjecture we are going to employ in the course relates to the APSP problem.

All-Pairs Shortest Path.
Given. A weighted directed graph with n vertices.

Task. Output the distances between all pairs of vertices.

The most basic algorithm (e.g. Floyd-Warshall) runs in time O(n®). There has been substantial
effort to improve this runtime by logarithmic factors, and a recent work by Williams [Will3| achieved a
complexity of 29("7\/%, which is the best result to date. Still, no algorithm with a polynomial improvement
has been found, which motivates the APSP conjecture.

Conjecture 1.1 (The APSP Conjecture). There is no algorithm for APSP running in time O(n3~¢) for
any constant € > 0.

Hardness results assuming the APSP conjecture have been demonstrated for several problems. FEx-
amples include finding the radius of a dense graph and detecting the existence of a negative triangle in
a weighted graph. Interestingly, for many problems it has been shown that not only does APSP reduce
to them, but they reduce to APSP too, such as the radius problem. This defines a family of problems
such that either all of them have an algorithm running in time O(n®~¢) for some constant ¢ > 0, or none do.

A problem worth noting is the Triangle Collection problem, whose hardness can be deduced assuming
any of SETH, 3SUM conjecture or APSP conjecture, as shown in [AWY15].

Triangle Collection.
Given. An undirected graph with n vertices and a coloring of its vertices with < n colors.

Task. Determine whether there exists a triplet of colors a, b, ¢ such that no triangle is colored
with these colors.

A holy grail of fine-grained complexity would be to show that one can actually rely on a singular
hardness conjecture in order to show the hardness of all the above interesting problems, and many more.
For example, showing a fine-grained reduction between APSP and 3SUM would be a very significant step
towards that goal. Alas, at this point, not only are such reductions unknown, but there is some evidence
to support the claim that coming up with such reductions might be a hard task.

2 SETH

As many of the reductions we shall see in the course assume SETH, there is merit in discussing the
plausibility of SETH and it is important to note that there is no consensus in the research community on
whether the hypothesis should be true or not.

Note that SETH is formulated in terms of k, instead of just e, because k-SAT problems are in fact
solvable in time exponentially better than O(2"). For example, 3-SAT has an exact algorithm running in
time O(1.32793") [Liul§].

In exploring whether or not SETH is true, we might first ask ourselves why it is called the Strong
Exponential Time Hypothesis. It turns out SETH is a strengthening of the following hardness conjecture:

Conjecture 2.1 (Exponential Time Hypothesis, ETH). There ezists a constant 6 > 0 such that 3-SAT
requires time (207).

In particular, ETH rules out the possibilities of 3-SAT being solved in times like poly(n) or 200V,

At first, it’s not straightforward to see whether or not SETH implies ETH, but in turns out that the
answer to this question is positive, as was shown in [IP01]. Before proving that SETH implies ETH, we
present two results of interest for the proof:

Since SETH deals with k-SAT and ETH with 3-SAT, we require the following reduction from k-SAT
to 3-SAT. Let 9 be a k-CNF over n variables with m clauses, we show how to turn % into an 3-CNF ¢
over n + m(k — 3) variables and m(k — 2) clauses, such that 1 is satisfiable if and only ¢ is satisfiable.

We pick a clause Cj of ¥ and we turn Cj into a 3-CNF. Say

Cr=(x1 Voo V...Vxp)

We introduce new variables y1 1,42, ..., Ykx—3,;, which are unique for each clause C;. We then rewrite Cj
as the CNF

(x1Vx2\/y1)/\(gj1\/:1:3\/y2)/\...A(gjk_3\/a:k_1\/xk)

It’s easy to see that if a truth assignment o : {z1,...,2,} — {T, F'} satisfies Cj, we can obtain a truth
assignment (3 : {x1,..., oY1, .., Yk—3,} —> {7, F'} that satisfies the new CNF. In particular, o must
set some x; to T, so in B we set §(y;;) =T for all j < i, and B(y;;) = F otherwise.

To obtain ¢, we thus replace each clause C; of 9 by the corresponding CNF. One can check that ¢
is satisfiable if and only if 4 is satisfiable. Since ¢ has n + m(k — 3) variables, if we assume that ETH is
false, we could solve k-SAT in time o(20(*+7(k=3)) for any constant 6 > 0. But this doesn’t contradict
SETH, as there is no guarantee that m = O(n).

To circumvent this issue we use the Sparsification Lemma of [IP01]:

Lemma 2.1. Foralle > 0 and k > 3, there is a constant ¢ > 0 such that there is an algorithm that takes a
k-CNF formula f on n variables, and outputs 2°™ k-CNF formulas fi, fa, ... faen in time O(2°™ - poly(n))
such that:

e Fach f; has n variables and < c-n clauses.
o f is satisfiable if and only if there is an i such that f; is satisfiable.
Theorem 2.1. SETH implies ETH.

Proof. Assume to the contrary that we can solve 3-SAT in 0(2°") for some very small constant § > 0.
Consider an instance of the k-SAT problem where we are given the k-CNF) over n variables and m
clauses. We first apply the Sparsification Lemma to ¢ with a small enough €. We then turn each of the
2°" f; into a 3-CNF f/ using the reduction described above. Since f; is over n variables and at most cn
clauses, f/ is over at most n+ cn(k — 3) variables. By assumption, we can verify if f/ is satisfiable in time
0(25(”+C”(k_3))). We repeat this for all the f/, and if any f/ is satisfiable, we output SAT. Otherwise we
output UNSAT, as by property 1 is satisfiable if and only if some f/ is satisfiable. This procedure takes
time O(20(n+en(k=3)) . 257 . 1roly(n)). By fixing k, then choosing a small ¢, and finally a small enough 4,
we can show that k-SAT is solvable in time O(201=Y") for some constant A > 0 independent on k, which
contradicts SETH. O

Now, let’s look at why we might believe that SETH is true. What algorithms have been proposed to
solve k-SAT?
We start with a simple algorithm that only does marginally better than brute force.

Algorithm 2.1 A simple recursive algorithm for k-SAT

Input: A CNF ¢ with at most k literals per clause.

if 1 is empty then > First base case
Return SAT.

end if

if v has an empty clause then > Second base case
Return UNSAT.

end if

Pick a clause C in 1. There are at most 2¥ — 1 assignments to the variables in C that make it true.

for each of these truth assignments a do
Apply a to ¥ and recurse on the simplified CNF.
end for

Correctness follows from the behaviour of the algorithm. We thus turn our attention to the running
time. Due to the recursive elimination of variables from v, clause C' might contain fewer than k variables.
However, removing exactly k variables is the worst-case. Thus, the running time is given by:

T(n) = (2¥ — 1)T'(n — k) + poly(n)

Solving the recurrence, we get:

T(n) = O((2" = 1)"* - poly(n)) = O([(2* =)'/"]" - poly(n)) = O((ex)")

Where ¢, = ZI_W is a constant that depends only on k. We can however improve this result by
removing the exponential factor in k£ from the denominator in the exponent. This leads us to another
algorithm for k-SAT, Schoning’s Algorithm [Sch99|, running in time (’)(2(1_%)”). While the algorithm we
present is randomized, it is possible to turn it into a deterministic algorithm for k-SAT.

We first start with a subroutine:

Algorithm 2.2 A randomized algorithm for k-SAT
Input: A k-CNF .
Pick a random assignment « : {x1,z9,...,2,} — {T, F'} to the variables of 9.

for i =1 to poly(n) do
if all clauses in v are satisfied then
Return SAT.
else
Pick a random clause C' that is not satisfied by a.
Pick a random variable x; in C, flip the value of a(z;).
end if
end for
Return UNSAT.

We make the following observations about this algorithm :

e It runs in poly(n) time.

o If ¢ is unsatisfiable, the algorithm always returns UNSAT.

o If ¢ is satisfiable, the algorithm returns SAT, with some probability p.

As we will see next lecture, p is exponentially small. Therefore, we would like to improve the algorithm so
that on any satisfiable k-CNF 1, it outputs SAT with probability at least 2/3. To achieve this result, we
can run the algorithm [times and if the algorithm outputs SAT at any of these trial, we output SAT, since
we know the algorithm never ouputs SAT on an unsatisfiable). We output UNSAT if for all the trials
the algorithm says UNSAT. A simple probabilistic argument shows that choosing [= O(%) guarantees
that for any satisfiable k-CNF the probability of erroneously outputting UNSAT is at most 1/3.

References

[AWY15] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and basing
hardness on an extremely popular conjecture. Proceedings of the forty-seventh annual ACM
symposium on Theory of Computing, 2015.

[IPO1] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer
and System Sciences, 62(2):367-375, 2001.

[Liul8] Sixue Liu. Chain, generalization of covering code, and deterministic algorithm for k-sat. CoRR,
abs/1804.07901, 2018.

[Sch99] T. Schoning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In 40th
Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), pages 410-414,
1999.

[Will3] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. CoRR, abs/1312.6680,
2013.

	Fine Grained Reductions
	SETH

