COMS E6998: Fine-grained complexity (Spring’26) January 20, 2026

Lecture 1: Introduction

Instructor: Josh Alman Scribes: Baitian Li, Yuval Efron (2022)

1 Introduction

Administrative details:

e Instructor: Prof. Josh Alman (josh@cs.columbia.edu), CSB 504

Course site: josh/fine-grained-complexity

Josh’s office hours: TBD.

e TA: Baitian Li (b13052@columbia.edu), OH: 3-4PM Fridays CSB 506

Assignments:

1. Problem sets: 3 in total.
2. Scribe notes: Each student (probably in pairs) scribes a single lecture.

3. Final Project: Survey / Research. The final outcomes of the project are both a write-up and
a presentation of the work.

2 DMotivation for fine-grained complexity

Let’s start with a problem called the Graph Diameter.

Graph diameter.

Given. G = (V,E), a simple (unweighted, undirected) graph with n vertices and m
edges.

Task. Compute the maximum of d(u,v) over all pairs u,v € V, where d(u,v) is the
length of the shortest path in G between u and v.

This algorithmic problem has some intriguing applications in the real world. For example, the con-
nections of network routers can be regarded as a graph, and the diameter of this graph in some sense
measures how efficiently nodes can communicate with each other. Perhaps one interesting fact is that, in
1999, the diameter of the WWW was found to be 19.

One simple solution to the problem takes O(nm) time: For each vertex u, take u as the starting vertex
and run BFS to get all distances d(u,v). Each BFS takes O(m) time, so it takes O(nm) time in total.

https://www.cs.columbia.edu/~josh/fine-grained-complexity/

In the dense graph regime, i.e., m = O(n?), the above algorithm only provides an upper bound of
O(n?). There are some better algorithms in the dense regime: Seidel’s algorithm [Sei95] employs a clever
way to use fast matrix multiplication, and can even compute the whole distance table on a simple graph.
It runs in O(n“ logn), where w is the matrix multiplication exponent (the current bound is w < 2.372).

But now let’s look at the sparse regime, which one may think of as m = O(n). In this regime, Seidel’s
algorithm has no advantage — the fundamental reason is that Seidel’s algorithm computes the entire
distance table!, so the output inherently has size n?. Moreover, the trivial BFS solution already runs in
O(n?) time. But since we only care about one number, the diameter, a priori it might be possible to do
better than O(n?).

Since the O(nm) algorithm is so simple and this problem is so fundamental, experts in graph algorithms
have sought better algorithms. But decades later, a better algorithm remains elusive.

Our goal for today’s lecture is to prove something along these lines.

This motivates people to consider the possibility in the opposite direction, i.e., we will try to prove
that the graph diameter problem is hard:

There is no algorithm running in o(n?) time that solves the diameter problem in the sparse
regime m = O(n).

2.1 Attempts to prove hardness

But how can we prove that some problem is hard? If we want to prove that the graph diameter problem is
hard, we probably want to first identify some known examples for which we know how to prove hardness.

Attempt 1. If we are asked to output all n? entries of the distance table, then it requires n? time,
right?

Answer. Yes, as mentioned before, this is the APSP problem. However, since you are required to
output n? values, the n? lower bound becomes less interesting — it is simply n? bounding your total input
and output size! That said, the n? lower bound for APSP didn’t show a gap between the time complexity
of the algorithm and the size of the input/output, so it didn’t actually tell us the true hardness.

Attempt 2. We do know some hardness results, right? A Turing machine requires 2(n?) time to decide
whether a string is a palindrome. Another example is that sorting requires Q(nlogn) time.

Answer. That’s true, but caveats apply. To be more precise, the (n?) lower bound for palindrome
[Maa84]| is a strongly model-dependent result — it is a lower bound on the single-tape Turing machine
model. But if you write Python code to decide a palindrome, you will likely obtain a “linear-time” Python
algorithm. Indeed, if we slightly change the model of computation to a multi-tape Turing machine,
palindrome also admits a linear-time algorithm. For the sorting problem, the famous (nlogn) lower
bound is for the comparison model: It restricts how you access the input data.?

These examples actually reveal a serious problem: The concept of time complexity itself is also model-
dependent! Because of this issue, we will mainly focus on the RAM model. Although we are not going to
define it formally now, broadly speaking, you don’t need to worry about memory locality in this model
— the time to reach specific memory addresses can be neglected. It captures our intuition of real-world
computation and can efficiently simulate most natural computational models that people care about. So

!This is called the all-pairs shortest path (APSP) problem, which we will study in later lectures.
2Indeed, for the sorting problem, there are some algorithms faster than O(nlogn): Under a reasonable RAM model, you
can sort n word-bit integers in O(n+/loglogn) time [HT02].

if we really obtain a lower bound on the RAM model, it arguably tells a reasonable lower bound that is
not restricted by the model specifics.

Another possible attempt is to start with some source of hardness we know, and reduce such a known-
hard problem to the diameter problem.

Well, actually we indeed know some hardness theorems — the time hierarchy theorem: P # EXP, i.e.,
there are some problems solvable in exponential time but do not have a polynomial-time algorithm. The
statement P =% EXP itself is just made model-independent. Under concrete models, there are some more
fine-grained results: TIME[o(n?/logn)] € TIME[n?], which means that there are some problems solvable
in O(n?) time but not solvable in o(n?/logn) time; this applies to both the multi-tape Turing model and
the RAM model.

Can we hope to prove the hardness of the diameter problem from a known hard problem in TIME[n?]?
Unfortunately, this is not the case. The time hierarchy theorem is proved via a diagonalization argument
(a scaled-down version of Turing’s proof of the undecidability of the halting problem). So it only shows the
hardness of some universal problems in TIME[n?]: The problem is simulating a given program in n?/logn
steps and outputting the result. We don’t think computing the diameter of a graph with O(n) edges can
really simulate such a computational process.

Indeed, proving unconditional hardness results beyond the hierarchy theorem is perhaps one of the
biggest open questions in computational complexity theory. Not only does the P # NP conjecture remain
elusive, but people currently do not even know how to unconditionally exclude the possibility that any
natural NP-complete problem has an O(n) time algorithm.

2.2 Basing hardness on the hardness of SAT

Alas, it seems that we won’t be able to prove the hardness of the diameter problem unconditionally, thus
we seek some weaker goals: Can we base the hardness of Graph Diameter on some more well-studied
problem that is more plausibly hard?

If we are allowed to use the hypothesis P # NP, can we now prove that graph diameter requires £2(n?)
time? A natural idea would be to try and design a reduction from an NP-complete problem, e.g., SAT, to
graph diameter. But note that this reduction must be very different from what we did in polynomial-time
reductions to prove the NP-completeness of problems. Because we already know that graph diameter can
be solved in O(n?) time. If one can solve diameter in 7' time, the reduction should let the SAT algorithm
suddenly change from super-polynomial time to polynomial time when 7' changes from n? to, say, n'?.
For example, if the reduction implied that one can solve SAT in time 271%9 -poly(n), this would yield that
T has to be w(n'?), assuming P # NP (otherwise, SAT would be solvable in polynomial time).

However, such a reduction seems unnatural and is out of reach of current techniques at the very least.

It seems that the assumption that P #% NP is simply too coarse. A more fine-grained assumption on
the hardness of NP-complete problems might allow us to design appropriate reductions. For this, we first
review the most fundamental problem in NP — the k-SAT problem.

k-SAT.
Given. A k-CNF formula ¢ on n variables and m clauses.

Task. Decide whether there exists an assignment z satisfying ¢.

The P # NP assumption implies that for any k& > 3, there is no polynomial-time algorithm solving
k-SAT. However, this lower bound is still very far from the current best-known upper bounds. The state
of the art for solving 3-SAT stands at O(1.31") by a recent work of [HKZZ19], and for general k-SAT, the
state of the art stands at O(20~¢/%)") where ¢ = 72/6, given by [PPSZ05]. (We will learn this in later
lectures.) Note that for k-SAT, as k approaches infinity, this algorithm essentially boils down to the naive
brute force algorithm for solving SAT.

For this reason, people formulated the following hypothesis, conjecturing that not only does k-SAT
require exponential time, but the exponent is essentially not improvable.

Conjecture 2.1 (Strong Exponential Time Hypothesis, SETH). For every € > 0, there exists a k > 3,
such that k-SAT cannot be solved in O(2(179)") time.

We are now ready to state a formal, concrete statement regarding the hardness of graph diameter, one
we can actually hope to prove.

Theorem 2.1. Assuming SETH, for any constant ¢ > 0, there is no O((n-+m)?~¢) time algorithm solving
the diameter on simple graphs.

In order to prove the above theorem, we are going to employ an intermediate problem, which we will
encounter often throughout the course.

3 Orthogonal vectors

Orthogonal vectors.
Given. Two sets X,Y C {0,1}¢, each of size N.

Task. Decide whether there exist x € X,y € Y such that (z,y) = 0, i.e., 2,y are disjoint
as subsets of [d].

Let’s first look at two simple ideas to solve the OV problem. The first one is to brute-force check all
pairs, so this takes O(N2d) time. Another one is to somehow go over all 2¢ possible vectors, which takes
O(N + 2. d) time.

If d is very small, say d < Ig N, then the second algorithm runs in nearly linear time. But it quickly
becomes inefficient when d > 21g N.

The OV conjecture asserts that the brute-force algorithm cannot be significantly improved. Actually
there are some improvements, but the current state of the art is still far from refuting the OV conjecture.

Conjecture 3.1 (OV Conjecture?®). There is no algorithm for OV that runs in O(N?~¢ - poly(d)) for any
constant € > 0.

Now we are going to prove this very fundamental lemma. It was initially proved by Williams [Wil05],
and it turned out to be the starting point of fine-grained complexity.

Lemma 3.1. SETH implies the OV conjecture.

3The precise definition of the OV conjecture is actually slightly different from what we introduced in this lecture, but the
current definition is sufficient for our purpose (basing the hardness of graph diameter on SETH, where the OV conjecture
plays the role of a springboard).

We will prove this by giving a fine-grained reduction from k-SAT to OV: We will reduce an n-variable
k-SAT problem to sets of size N = 2%/2. This is very different from traditional reductions that are
polynomial time. In fine-grained reductions, the reductions might not be polynomial, but we need to
carefully keep track of the blow-up.

Proof. Consider the k-CNF formula ¢ = 11 A - - - A), in n variables. It should have at most m = O(n*)
essentially different clauses because every clause has at most &k variables.

Denote the variables of ¢ by z1,...,z, and let S; = {z1,..., 2,2} and Sp = {x%H, ..., xp}. For each
i € {1,2}, let A; be the set of assignments to all variables in S;. Namely A; = {a : S; — {True,False}}.
Note that |4;] = 2/2.

For each a € A;, regarded as a partial assignment of ¢, it might or might not satisfy each clause ;.
Construct a vector v, € {0,1}™ such that v,[j] = 0 if « satisfies the clause v, and 1 otherwise. Denote
X={va|ac A1} C{0,1}" and Y = {vg | B € A2} C {0,1}"™. It is not too hard to see that there exist
x € X and y € Y that are disjoint as subsets of [m] iff ¢ is satisfiable.

Assume the OV conjecture is false, i.e., that we can solve OV in time O(N2~¢ - poly(d)) for some
constant ¢ > 0. Since N = 2%/2 and m = poly(n), our reduction solves k-SAT with time complexity
bounded by O(20:=¢/2" poly(n)) ¢ O(2(1=5/3)"). This falsifies SETH. O

Lemma 3.2. Under the OV conjecture, there is no O((n + m)?~¢) time algorithm solving the diameter
problem for any constant € > 0.

’
]
\

@_\\ B &)+

@
-
&

—— always present
---- present iff bit =1

— ab

Proof. We prove this by presenting a reduction from OV to Graph Diameter. Given an instance of OV,
denoted by X,Y C {0,1}4,|X| = |Y| = n, where X = {x1,...,2,},Y = {v1,...,yn}. We construct a
graph G = (V, E) in the following way.

V={z;|zie X} {yi |y € Y}U{v1,...,va} U{a,b}
The edges of the graph are given as follows:

e Connect (x;,v;) if z;[j] = 1, and similarly for (y;,v;) for all possible pairs.

e Connect a to all of vy,...,vq and z1,....,z,, and similarly b to all of v1,...,vq and y1,...,Yn.

e Finally, we connect a to b.

One can then check the following facts:

e The diameter of the graph is at most 3.

e If z,y is not an X x Y pair (up to swapping), then their distance d(z,y) < 2.

o If z,y is an X X Y pair, then d(x,y) = 2 if they are not an orthogonal pair (path through where
they intersect); otherwise, d(x,y) = 3 (path through a,b).

In conclusion, (X,Y) is an OV yes-instance iff the graph diameter is 3.
Assume graph diameter can be solved in O((|V'|+|E|)?7¢) time. The above reduction has |V| = O(n+
d) and |E| = O((n + d)d). This solves OV in O(n?~¢ poly(d)) time, thus refuting the OV conjecture. [

Thus we can conclude from Lemmas 3.1 and 3.2 the desired Theorem 2.1.

References

[HKZZ19] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-sat algorithms

[HT02]

[Maa84]

[PPSZ05)

[Sei95]

[Wilo5)

using biased-ppsz. In STOC, pages 578-589. ACM, 2019.

Yijie Han and Mikkel Thorup. Integer sorting in 0(n sqrt (log log n)) expected time and linear
space. In 43rd Symposium on Foundations of Computer Science, FOCS 2002, Vancouver, BC,
Canada, November 16-19, 2002, Proceedings, pages 135-144. IEEE Computer Society, 2002.

Wolfgang Maass. Quadratic lower bounds for deterministic and nondeterministic one-tape tur-
ing machines. In Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 401408, 1984.

Ramamohan Paturi, Pavel Pudlak, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337-364, 2005.

Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J.
Comput. Syst. Sci., 51(3):400-403, 1995.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoret. Comput. Sci., 348(2-3):357-365, 2005.

	Introduction
	Motivation for fine-grained complexity
	Attempts to prove hardness
	Basing hardness on the hardness of SAT

	Orthogonal vectors

