Different "proofs" that the set of regular languages is closed under union

Josh Alman
CS Theory - January 2024

In class, we proved that the set of regular languages is closed under union. The idea behind the proof was that, given two DFAs D_{1}, D_{2}, we could make a new DFA D_{3} which simultaneously keeps track of which state we're at in each DFA when processing a string. The formal theorem statement is:

Theorem 1. If L_{1}, L_{2} are regular languages, then $L_{1} \cup L_{2}$ is a regular language.
In this note, we give four or five different "proofs" of this using the strategy from class. They vary in how much intuition they give and how formal they are. The goal is to highlight some "good" proofs (2 and 4) and some "bad" proofs (1 and 3). When proving something like this on the homework, we expect you to write something between proof 2 and proof 4 . Likely you want to choose for yourself how formal to be depending on how much formality helps you to convince yourself that your proof is correct. At a high level, a proof like proof 4 is longer and more tedious but less likely to have mistakes.

1 Proof 1: Too informal

This proof gives the high-level idea but is missing key nontrivial steps. In other words, it is not clear that all the statements here are correct as written, and a student who hasn't seen the proof already probably wouldn't be entirely convinced by this. Even though it's possible to fill in details here to make this a correct proof, it would not receive much credit since it's not convincing on its own. A correct proof needs to give all the nontrivial details.

Proof. We need to show that, given two DFAs D_{1}, D_{2}, we can make a DFA D_{3} that accepts the strings accepted by either D_{1} or $D_{2} . D_{3}$ will have a state for each pair of a state for D_{1} and a state for D_{2}, and the transitions keep track of what's happening in both D_{1} and D_{2}. We accept if either of D_{1} or D_{2} would accept. Thus, we accept the union of their languages.

1.1 Proof 1b: Too informal and Wrong!

For comparison, here's another "proof" at the same level of formality as Proof 1 above, which is totally wrong! In other words, the level of formality here wasn't enough to catch a serious bug in the proof approach.

Proof. We need to show that, given two DFAs D_{1}, D_{2}, we can make a DFA D_{3} that accepts the strings accepted by either D_{1} or $D_{2} . D_{3}$ will have a copy of each state of D_{1} and a copy of each state of D_{2}. The transitions are the same as in D_{1} and D_{2}. We accept if either of D_{1} or D_{2} would accept. Thus, we accept the union of their languages.

2 Proof 2: Proof with Key Ideas

This proof is more formal, but still not as formal as possible. The goal is to give all the ideas needed to prove the statement, and to explain why they suffice. Many details are alluded to but not fully spelled out, so the reader may need to pause for a moment on some sentences and think about why they're true. On the other hand, we are sure to be precise, and not leave ambiguity about what the DFA D_{3} is or what sequences of states we're talking about to prove correctness, and we clearly explain everything needed to show our construction is correct. When writing a proof like this, we're implicitly saying that any omitted steps or formalities are straightforward, and that any student in the class would understand them without much trouble. A correct proof like this would be given full marks, and we would be able to give partial credit to a wrong proof like this since we'd understand the main ideas. That said, be careful about any steps that you're omitting. As an example, if we had made a typo in the definition of δ_{3} below, the rest of the proof may not have caught this, since we don't write out details of how δ_{3} works every time it is used.

Proof. Since L_{1}, L_{2} are regular languages, we know they have DFAs that recognize them. Call those D_{1}, D_{2}, respectively. These can each be written as a 5 -tuple:

$$
\begin{aligned}
D_{1} & =\left(Q_{1}, \Sigma, q_{1}, \delta_{1}, F_{1}\right), \\
D_{2} & =\left(Q_{2}, \Sigma, q_{2}, \delta_{2}, F_{2}\right) .
\end{aligned}
$$

Let us define a DFA D_{3} that recognizes the language $L_{1} \cup L_{2}$. The goal is that states of D_{3} will correspond to pairs of a state from D_{1} and a state from D_{2}, and will keep track of which state each of the two DFAs would be at if they were separately processing the input string. Specifically:

- States will be pairs $\left(q^{1}, q^{2}\right) \in Q_{1} \times Q_{2}$,
- The start state is $\left(q_{1}, q_{2}\right)$,
- $\left(q^{1}, q^{2}\right)$ is an accept state if q^{1} is an accept state of D_{1} or q^{2} is an accept state of D_{2}, and
- The transition at $\left(q^{1}, q^{2}\right)$ will separately apply δ_{1} to q^{1} and δ_{2} to q^{2}. More precisely, the transition function δ_{3} is defined by

$$
\delta_{3}\left(\left(q^{1}, q^{2}\right), \sigma\right)=\left(\delta_{1}\left(q^{1}, \sigma\right), \delta_{2}\left(q^{2}, \sigma\right)\right)
$$

We can see that when a string w is processed by D_{3}, it will visit states where the first part of the state says where it would be in D_{1}, and the second part says where it would be in D_{2}. More precisely,

- if $r_{0}, r_{1}, \ldots, r_{n}$ is the sequence of states $\left(\right.$ from $\left.Q_{1}\right)$ that w traverses in D_{1}, and
- if $r_{0}^{\prime}, r_{1}^{\prime}, \ldots, r_{n}^{\prime}$ is the sequence of states (from Q_{2}) that w traverses in D_{2},
- then $\left(r_{0}, r_{0}^{\prime}\right),\left(r_{1}, r_{1}^{\prime}\right), \ldots,\left(r_{n}, r_{n}^{\prime}\right)$ is the sequence of states from Q_{3} that w traverses in D_{3} because of how we defined δ_{3}.

Because of this, we observe that D_{3} accepts if and only if D_{1} or D_{2} does. This is because the final state $\left(r_{n}, r_{n}^{\prime}\right)$ is an accept state if and only if r_{n} is an accept state in D_{1} (meaning $w \in L_{1}$) or r_{n}^{\prime} is an accept state in D_{2} (meaning $\left.w \in L_{2}\right)$.

3 Proof 3: Formal Proof with No Intuition

This proof will carefully use the formal definitions of DFA to prove the theorem. This is a correct proof, although you may find it difficult to understand since many symbolic definitions and arguments are given without any intuition for where they're coming from. On the other hand, each step here follows from the previous steps and definitions, so it should be relatively easy to verify that each individual step of this proof is correct. We generally do not recommend writing proofs like this without giving some intuition (in English sentences) for what you're doing and why, and some 'scaffolding' where you explain the structure of your proof at the beginning. A correct proof like this would receive full credit, but an incorrect proof like this may receive little or no partial credit since we may not understand what you were aiming to do.

Proof. Let D_{1}, D_{2} be the DFAs for L_{1}, L_{2}, respectively. These can each be written as a 5 -tuple:

$$
\begin{aligned}
& D_{1}=\left(Q_{1}, \Sigma, q_{1}, \delta_{1}, F_{1}\right), \\
& D_{2}=\left(Q_{2}, \Sigma, q_{2}, \delta_{2}, F_{2}\right)
\end{aligned}
$$

Define the DFA D_{3} as

$$
D_{3}=\left(Q_{3}, \Sigma, q_{3}, \delta_{3}, F_{3}\right)
$$

where $Q_{3}=Q_{1} \times Q_{2}, q_{3}=\left(q_{1}, q_{2}\right), F_{3}=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)$, and δ_{3} : $Q_{3} \times \Sigma \rightarrow Q_{3}$ is defined by (for $q^{1} \in Q_{1}$ and $q^{2} \in Q_{2}$ and $\sigma \in \Sigma$):

$$
\delta_{3}\left(\left(q^{1}, q^{2}\right), \sigma\right)=\left(\delta_{1}\left(q^{1}, \sigma\right), \delta_{2}\left(q^{2}, \sigma\right)\right)
$$

First, suppose w is accepted by D_{1}. Let n be the length of w, and write out $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$. By definition of the DFA D_{1}, there is a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$, where each $r_{i} \in Q_{1}$, such that:

- $r_{0}=q_{1}$,
- $r_{n} \in F_{1}$, and
- for all $i \in\{0,1,2, \ldots, n-1\}$ we have $r_{i+1}=\delta_{1}\left(r_{i}, w_{i}\right)$.

Define the sequence of states $r_{0}^{\prime}, \ldots, r_{n}^{\prime}$ where each $r_{i}^{\prime} \in Q_{2}$ recursively as follows:

- $r_{0}^{\prime}=q_{2}$, and
- for all $i \in\{0,1,2, \ldots, n-1\}$ we have $r_{i+1}^{\prime}=\delta_{2}\left(r_{i}^{\prime}, w_{i}\right)$.

Now, consider the sequence of states $s_{0}, s_{1}, \ldots, s_{n}$, where each $s_{i} \in Q_{3}$, defined by $s_{i}=\left(r_{i}, r_{i}^{\prime}\right)$ for all i. We have $\delta_{3}\left(s_{i}, w_{i}\right)=\left(\delta_{1}\left(r_{i}, w_{i}\right), \delta_{2}\left(r_{i}^{\prime}, w_{i}\right)\right)=$ $\left(r_{i+1}, r_{i+1}^{\prime}\right)=s_{i+1}$, and $s_{0}=\left(r_{0}, r_{0}^{\prime}\right)=\left(q_{1}, q_{2}\right)=q_{3}$, and $s_{n}=\left(r_{n}, r_{n}^{\prime}\right) \in F_{3}$ since $r_{n} \in F_{1}$. These are the necessary conditions which show that D_{3} accepts w.

Second, suppose w is accepted by D_{2}. Similar to above, we also have that D_{3} accepts w.

Finally, suppose w is accepted by D_{3} and again write $w=w_{1} w_{2} \cdots w_{n}$. This means there is a sequence of states $s_{0}, s_{1}, \ldots, s_{n}$, where each $s_{i} \in Q_{3}$, such that

- $s_{0}=q_{3}$,
- $s_{n} \in F_{3}$, and
- for all $i \in\{0,1,2, \ldots, n-1\}$ we have $s_{i+1}=\delta_{3}\left(s_{i}, w_{i}\right)$.

By definition of Q_{3}, for each i, we can write $s_{i}=\left(r_{i}, r_{i}^{\prime}\right)$ where $r_{i} \in Q_{1}$ and $r_{i}^{\prime} \in Q_{2}$. Since $s_{n} \in F_{3}$, we know that $r_{n} \in F_{1}$ or $r_{n}^{\prime} \in F_{2}$. Suppose $r_{n} \in F_{1}$ is true; the other case is nearly identical.

By definition of δ_{3}, we have $r_{i+1}=\delta_{1}\left(r_{i}, w_{i}\right)$ for all i. We know that $r_{0}=q_{1}$ from definition of s_{0} and that $r_{n} \in F_{1}$ by supposition. Thus, the sequence r_{0}, \ldots, r_{n} shows D_{1} accepts w, so $w \in L_{1}$.

All together, this means D_{3} recognizes w if and only if $w \in L_{1}$ or $w \in L_{2}$.

4 Proof 4: Formal Proof

This proof will carefully use the formal definitions of DFA to prove the theorem. With this proof, we should be able to see that each step follows easily from the previous claims we've made, so there should be little confusion about whether it's correct. We also (aim to) do a better job of explaining why we're doing what we're doing, and what the overall structure of the proof is. With a proof like this, we have more confidence that we're not missing a critical detail like
specifying the start or accept states appropriately. Furthermore, if you submit a proof like this, if there are small mistakes, we would be able to understand the idea of your argument and give partial credit. On the other hand, this proof is probably longer and more notation-heavy than is really needed to convince a student in the class that the statement is true.

Proof. Since L_{1}, L_{2} are regular languages, we know they have DFAs that recognize them. Call those D_{1}, D_{2}, respectively. These can each be written as a 5 -tuple:

$$
\begin{aligned}
& D_{1}=\left(Q_{1}, \Sigma, q_{1}, \delta_{1}, F_{1}\right), \\
& D_{2}=\left(Q_{2}, \Sigma, q_{2}, \delta_{2}, F_{2}\right) .
\end{aligned}
$$

Let us define a DFA D_{3} that recognizes the language $L_{1} \cup L_{2}$. The goal is that states of D_{3} will correspond to pairs of a state from D_{1} and a state from D_{2}, and will keep track of which state each of the two DFAs would be at if they were separately processing the input string.

We formally define D_{3} as

$$
D_{3}=\left(Q_{3}, \Sigma, q_{3}, \delta_{3}, F_{3}\right)
$$

where $Q_{3}=Q_{1} \times Q_{2}, q_{3}=\left(q_{1}, q_{2}\right)$ is the pair of start states, $F_{3}=\left(F_{1} \times Q_{2}\right) \cup$ $\left(Q_{1} \times F_{2}\right)$ is the set of pairs where either the first or second part is an accept state, and $\delta_{3}: Q_{3} \times \Sigma \rightarrow Q_{3}$ is defined by separately applying the transition function for D_{1} to the first part and D_{2} for the second part, i.e., (for $q^{1} \in Q_{1}$ and $q^{2} \in Q_{2}$ and $\left.\sigma \in \Sigma\right)$:

$$
\delta_{3}\left(\left(q^{1}, q^{2}\right), \sigma\right)=\left(\delta_{1}\left(q^{1}, \sigma\right), \delta_{2}\left(q^{2}, \sigma\right)\right)
$$

We will now prove that the language of D_{3} is exactly $L_{1} \cup L_{2}$. We will prove it in three steps:

1. If $w \in L_{1}$, then w is accepted by D_{3},
2. If $w \in L_{2}$, then w is accepted by D_{3}, and
3. If w is accepted by D_{3}, then $w \in L_{1}$ or $w \in L_{2}$.

These three together imply that D_{3} accepts all the strings in $L_{1} \cup L_{2}$ and no other strings.

Step 1: Suppose $w \in L_{1}$, which means that w is accepted by D_{1}. Let n be the length of w, and write out $w=w_{1} w_{2} \cdots w_{n}$ where each $w_{i} \in \Sigma$. By definition of the DFA D_{1}, there is a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$, where each $r_{i} \in Q_{1}$, such that:

- $r_{0}=q_{1}$,
- $r_{n} \in F_{1}$, and
- for all $i \in\{0,1,2, \ldots, n-1\}$ we have $r_{i+1}=\delta_{1}\left(r_{i}, w_{i}\right)$.
(This is the sequence of states that w traverses in D_{1}, and it arrives at an accept state.)

Now, define the sequence of states $r_{0}^{\prime}, \ldots, r_{n}^{\prime}$ where each $r_{i}^{\prime} \in Q_{2}$ recursively as follows:

- $r_{0}^{\prime}=q_{2}$, and
- for all $i \in\{0,1,2, \ldots, n-1\}$ we have $r_{i+1}^{\prime}=\delta_{2}\left(r_{i}^{\prime}, w_{i}\right)$.
(This is the sequence of states that w traverses in D_{2}.)
Now, consider the sequence of states $s_{0}, s_{1}, \ldots, s_{n}$, where each $s_{i} \in Q_{3}$, defined by $s_{i}=\left(r_{i}, r_{i}^{\prime}\right)$ for all i. This is the sequence of states that w traverses in D_{3} by our definition of δ_{3} above. Moreover, $s_{0}=\left(r_{0}, r_{0}^{\prime}\right)=\left(q_{1}, q_{2}\right)=q_{3}$ is the start state of D_{3}, and $s_{n}=\left(r_{n}, r_{n}^{\prime}\right) \in F_{3}$ is an accept state because $r_{n} \in F_{1}$. Therefore, D_{3} accepts w. This concludes step 1.

Step 2: This is nearly identical, just switching the roles of D_{1} and D_{2} above.
Step 3: Suppose w is accepted by D_{3} and again write $w=w_{1} w_{2} \cdots w_{n}$. This means there is a sequence of states $s_{0}, s_{1}, \ldots, s_{n}$, where each $s_{i} \in Q_{3}$, such that

- $s_{0}=q_{3}$,
- $s_{n} \in F_{3}$, and
- for all $i \in\{0,1,2, \ldots, n-1\}$ we have $s_{i+1}=\delta_{3}\left(s_{i}, w_{i}\right)$.

Since $Q_{3}=Q_{1} \times Q_{2}$, for each i, we can write $s_{i}=\left(r_{i}, r_{i}^{\prime}\right)$ where $r_{i} \in Q_{1}$ and $r_{i}^{\prime} \in Q_{2}$. Since we have $s_{n} \in F_{3}$, we know by definition of F_{3} that $r_{n} \in F_{1}$ or $r_{n}^{\prime} \in F_{2}$. Suppose $r_{n} \in F_{1}$ is true; the other case is nearly identical. Let us show D_{1} accepts w.

By definition of δ_{3}, we know that we have $r_{i+1}=\delta_{1}\left(r_{i}, w_{i}\right)$ for all i, i.e., the sequence of states that w traverses in D_{1} is $r_{0}, r_{1}, \ldots, r_{n}$. We know that $r_{0}=q_{1}$ is the start state since $s_{0}=\left(q_{1}, q_{2}\right)$ is the start state of D_{3}. Furthermore, we just assumed $r_{n} \in F_{1}$. Thus, D_{1} accepts w, so $w \in L_{1}$ as desired.

We have proved all three parts, and thus concluded the proof.

