
Different “proofs” that the set of regular

languages is closed under union

Josh Alman

CS Theory - January 2024

In class, we proved that the set of regular languages is closed under union.
The idea behind the proof was that, given two DFAs D1, D2, we could make a
new DFA D3 which simultaneously keeps track of which state we’re at in each
DFA when processing a string. The formal theorem statement is:

Theorem 1. If L1, L2 are regular languages, then L1∪L2 is a regular language.

In this note, we give four or five different “proofs” of this using the strategy
from class. They vary in how much intuition they give and how formal they are.
The goal is to highlight some “good” proofs (2 and 4) and some “bad” proofs
(1 and 3). When proving something like this on the homework, we expect you
to write something between proof 2 and proof 4. Likely you want to choose
for yourself how formal to be depending on how much formality helps you to
convince yourself that your proof is correct. At a high level, a proof like proof
4 is longer and more tedious but less likely to have mistakes.

1 Proof 1: Too informal

This proof gives the high-level idea but is missing key nontrivial steps. In
other words, it is not clear that all the statements here are correct as written,
and a student who hasn’t seen the proof already probably wouldn’t be entirely
convinced by this. Even though it’s possible to fill in details here to make this
a correct proof, it would not receive much credit since it’s not convincing on its
own. A correct proof needs to give all the nontrivial details.

Proof. We need to show that, given two DFAs D1, D2, we can make a DFA D3

that accepts the strings accepted by either D1 or D2. D3 will have a state for
each pair of a state for D1 and a state for D2, and the transitions keep track of
what’s happening in both D1 and D2. We accept if either of D1 or D2 would
accept. Thus, we accept the union of their languages.

1



1.1 Proof 1b: Too informal and Wrong!

For comparison, here’s another “proof” at the same level of formality as Proof 1
above, which is totally wrong! In other words, the level of formality here wasn’t
enough to catch a serious bug in the proof approach.

Proof. We need to show that, given two DFAs D1, D2, we can make a DFA D3

that accepts the strings accepted by either D1 or D2. D3 will have a copy of
each state of D1 and a copy of each state of D2. The transitions are the same as
in D1 and D2. We accept if either of D1 or D2 would accept. Thus, we accept
the union of their languages.

2 Proof 2: Proof with Key Ideas

This proof is more formal, but still not as formal as possible. The goal is to give
all the ideas needed to prove the statement, and to explain why they suffice.
Many details are alluded to but not fully spelled out, so the reader may need
to pause for a moment on some sentences and think about why they’re true.
On the other hand, we are sure to be precise, and not leave ambiguity about
what the DFA D3 is or what sequences of states we’re talking about to prove
correctness, and we clearly explain everything needed to show our construction
is correct. When writing a proof like this, we’re implicitly saying that any
omitted steps or formalities are straightforward, and that any student in the
class would understand them without much trouble. A correct proof like this
would be given full marks, and we would be able to give partial credit to a wrong
proof like this since we’d understand the main ideas. That said, be careful about
any steps that you’re omitting. As an example, if we had made a typo in the
definition of δ3 below, the rest of the proof may not have caught this, since we
don’t write out details of how δ3 works every time it is used.

Proof. Since L1, L2 are regular languages, we know they have DFAs that rec-
ognize them. Call those D1, D2, respectively. These can each be written as a
5-tuple:

D1 = (Q1,Σ, q1, δ1, F1),

D2 = (Q2,Σ, q2, δ2, F2).

Let us define a DFA D3 that recognizes the language L1 ∪ L2. The goal is
that states of D3 will correspond to pairs of a state from D1 and a state from
D2, and will keep track of which state each of the two DFAs would be at if they
were separately processing the input string. Specifically:

• States will be pairs (q1, q2) ∈ Q1 ×Q2,

• The start state is (q1, q2),

• (q1, q2) is an accept state if q1 is an accept state of D1 or q2 is an accept
state of D2, and

2



• The transition at (q1, q2) will separately apply δ1 to q1 and δ2 to q2. More
precisely, the transition function δ3 is defined by

δ3((q
1, q2), σ) = (δ1(q

1, σ), δ2(q
2, σ)).

We can see that when a string w is processed by D3, it will visit states where
the first part of the state says where it would be in D1, and the second part
says where it would be in D2. More precisely,

• if r0, r1, . . . , rn is the sequence of states (from Q1) that w traverses in D1,
and

• if r′0, r
′
1, . . . , r

′
n is the sequence of states (from Q2) that w traverses in D2,

• then (r0, r
′
0), (r1, r

′
1), . . . , (rn, r

′
n) is the sequence of states from Q3 that w

traverses in D3 because of how we defined δ3.

Because of this, we observe that D3 accepts if and only if D1 or D2 does.
This is because the final state (rn, r

′
n) is an accept state if and only if rn is an

accept state in D1 (meaning w ∈ L1) or r′n is an accept state in D2 (meaning
w ∈ L2).

3 Proof 3: Formal Proof with No Intuition

This proof will carefully use the formal definitions of DFA to prove the theorem.
This is a correct proof, although you may find it difficult to understand since
many symbolic definitions and arguments are given without any intuition for
where they’re coming from. On the other hand, each step here follows from the
previous steps and definitions, so it should be relatively easy to verify that each
individual step of this proof is correct. We generally do not recommend writing
proofs like this without giving some intuition (in English sentences) for what
you’re doing and why, and some ‘scaffolding’ where you explain the structure of
your proof at the beginning. A correct proof like this would receive full credit,
but an incorrect proof like this may receive little or no partial credit since we
may not understand what you were aiming to do.

Proof. Let D1, D2 be the DFAs for L1, L2, respectively. These can each be
written as a 5-tuple:

D1 = (Q1,Σ, q1, δ1, F1),

D2 = (Q2,Σ, q2, δ2, F2).

Define the DFA D3 as

D3 = (Q3,Σ, q3, δ3, F3),

where Q3 = Q1 × Q2, q3 = (q1, q2), F3 = (F1 × Q2) ∪ (Q1 × F2), and δ3 :
Q3 × Σ → Q3 is defined by (for q1 ∈ Q1 and q2 ∈ Q2 and σ ∈ Σ):

δ3((q
1, q2), σ) = (δ1(q

1, σ), δ2(q
2, σ)).

3



First, suppose w is accepted by D1. Let n be the length of w, and write out
w = w1w2 · · ·wn where each wi ∈ Σ. By definition of the DFA D1, there is a
sequence of states r0, r1, . . . , rn, where each ri ∈ Q1, such that:

• r0 = q1,

• rn ∈ F1, and

• for all i ∈ {0, 1, 2, . . . , n− 1} we have ri+1 = δ1(ri, wi).

Define the sequence of states r′0, . . . , r
′
n where each r′i ∈ Q2 recursively as

follows:

• r′0 = q2, and

• for all i ∈ {0, 1, 2, . . . , n− 1} we have r′i+1 = δ2(r
′
i, wi).

Now, consider the sequence of states s0, s1, . . . , sn, where each si ∈ Q3,
defined by si = (ri, r

′
i) for all i. We have δ3(si, wi) = (δ1(ri, wi), δ2(r

′
i, wi)) =

(ri+1, r
′
i+1) = si+1, and s0 = (r0, r

′
0) = (q1, q2) = q3, and sn = (rn, r

′
n) ∈ F3

since rn ∈ F1. These are the necessary conditions which show that D3 accepts
w.

Second, suppose w is accepted by D2. Similar to above, we also have that
D3 accepts w.

Finally, suppose w is accepted by D3 and again write w = w1w2 · · ·wn. This
means there is a sequence of states s0, s1, . . . , sn, where each si ∈ Q3, such that

• s0 = q3,

• sn ∈ F3, and

• for all i ∈ {0, 1, 2, . . . , n− 1} we have si+1 = δ3(si, wi).

By definition of Q3, for each i, we can write si = (ri, r
′
i) where ri ∈ Q1 and

r′i ∈ Q2. Since sn ∈ F3, we know that rn ∈ F1 or r′n ∈ F2. Suppose rn ∈ F1 is
true; the other case is nearly identical.

By definition of δ3, we have ri+1 = δ1(ri, wi) for all i. We know that r0 = q1
from definition of s0 and that rn ∈ F1 by supposition. Thus, the sequence
r0, . . . , rn shows D1 accepts w, so w ∈ L1.

All together, this means D3 recognizes w if and only if w ∈ L1 or w ∈ L2.

4 Proof 4: Formal Proof

This proof will carefully use the formal definitions of DFA to prove the theorem.
With this proof, we should be able to see that each step follows easily from the
previous claims we’ve made, so there should be little confusion about whether
it’s correct. We also (aim to) do a better job of explaining why we’re doing
what we’re doing, and what the overall structure of the proof is. With a proof
like this, we have more confidence that we’re not missing a critical detail like

4



specifying the start or accept states appropriately. Furthermore, if you submit
a proof like this, if there are small mistakes, we would be able to understand
the idea of your argument and give partial credit. On the other hand, this proof
is probably longer and more notation-heavy than is really needed to convince a
student in the class that the statement is true.

Proof. Since L1, L2 are regular languages, we know they have DFAs that rec-
ognize them. Call those D1, D2, respectively. These can each be written as a
5-tuple:

D1 = (Q1,Σ, q1, δ1, F1),

D2 = (Q2,Σ, q2, δ2, F2).

Let us define a DFA D3 that recognizes the language L1 ∪ L2. The goal is
that states of D3 will correspond to pairs of a state from D1 and a state from
D2, and will keep track of which state each of the two DFAs would be at if they
were separately processing the input string.

We formally define D3 as

D3 = (Q3,Σ, q3, δ3, F3),

where Q3 = Q1 ×Q2, q3 = (q1, q2) is the pair of start states, F3 = (F1 ×Q2) ∪
(Q1 × F2) is the set of pairs where either the first or second part is an accept
state, and δ3 : Q3 × Σ → Q3 is defined by separately applying the transition
function for D1 to the first part and D2 for the second part, i.e., (for q1 ∈ Q1

and q2 ∈ Q2 and σ ∈ Σ):

δ3((q
1, q2), σ) = (δ1(q

1, σ), δ2(q
2, σ)).

We will now prove that the language of D3 is exactly L1∪L2. We will prove
it in three steps:

1. If w ∈ L1, then w is accepted by D3,

2. If w ∈ L2, then w is accepted by D3, and

3. If w is accepted by D3, then w ∈ L1 or w ∈ L2.

These three together imply that D3 accepts all the strings in L1 ∪ L2 and no
other strings.

Step 1: Suppose w ∈ L1, which means that w is accepted by D1. Let n
be the length of w, and write out w = w1w2 · · ·wn where each wi ∈ Σ. By
definition of the DFA D1, there is a sequence of states r0, r1, . . . , rn, where each
ri ∈ Q1, such that:

• r0 = q1,

• rn ∈ F1, and

• for all i ∈ {0, 1, 2, . . . , n− 1} we have ri+1 = δ1(ri, wi).

5



(This is the sequence of states that w traverses in D1, and it arrives at an accept
state.)

Now, define the sequence of states r′0, . . . , r
′
n where each r′i ∈ Q2 recursively

as follows:

• r′0 = q2, and

• for all i ∈ {0, 1, 2, . . . , n− 1} we have r′i+1 = δ2(r
′
i, wi).

(This is the sequence of states that w traverses in D2.)
Now, consider the sequence of states s0, s1, . . . , sn, where each si ∈ Q3,

defined by si = (ri, r
′
i) for all i. This is the sequence of states that w traverses

in D3 by our definition of δ3 above. Moreover, s0 = (r0, r
′
0) = (q1, q2) = q3 is

the start state of D3, and sn = (rn, r
′
n) ∈ F3 is an accept state because rn ∈ F1.

Therefore, D3 accepts w. This concludes step 1.
Step 2: This is nearly identical, just switching the roles of D1 and D2 above.
Step 3: Suppose w is accepted by D3 and again write w = w1w2 · · ·wn.

This means there is a sequence of states s0, s1, . . . , sn, where each si ∈ Q3, such
that

• s0 = q3,

• sn ∈ F3, and

• for all i ∈ {0, 1, 2, . . . , n− 1} we have si+1 = δ3(si, wi).

Since Q3 = Q1 × Q2, for each i, we can write si = (ri, r
′
i) where ri ∈ Q1 and

r′i ∈ Q2. Since we have sn ∈ F3, we know by definition of F3 that rn ∈ F1 or
r′n ∈ F2. Suppose rn ∈ F1 is true; the other case is nearly identical. Let us
show D1 accepts w.

By definition of δ3, we know that we have ri+1 = δ1(ri, wi) for all i, i.e., the
sequence of states that w traverses in D1 is r0, r1, . . . , rn. We know that r0 = q1
is the start state since s0 = (q1, q2) is the start state of D3. Furthermore, we
just assumed rn ∈ F1. Thus, D1 accepts w, so w ∈ L1 as desired.

We have proved all three parts, and thus concluded the proof.

6


