
COMS W3261, Section 1, Spring 2024
Streaming Algorithms

Instructor : Josh Alman
Notes by : William Pires

1 Big-O Notation

When measuring the running some resource usage (such as space or time) of an algorithm, the real
answer is often a complicated function. It could be that your algorithm runs in time

5n3 + 7n2 − 4n+ 2 log10(n)− 3 log2(log2(n)) + 100

on inputs of length n. We don’t care so much about this, indeed as n → ∞ only the leading term
(5n3) matters. Also, we don’t care so much about constants, they often depend on the model of
computation you consider. In this case we ignore lower order terms, and constants and say the
algorithm runs in time O(n3).

Definition 1. Given two functions f, g : N → R+, we say that f(n) = O(g(n)) if there exists
constants c > 0, n0 such that :

∀n ≥ n0 : f(n) < c ∗ g(n)

This means that once n is large enough, f(n) is less than g(n), up to constant factors. Here are
some examples :

1. n = O(n2) .

2. 3n2 + log(n) = O(n2).

3. For any constants a, b ∈ N, we have loga(n) = O(logb(n)). So we will often ignore the base of
the logarithm, since it’s the same up to constants.

4. n3 = 2O(log(n)). Why ? n3 = 23 log(n) and 3 log(n) = O(log(n)).

You should know that when you have a polynomial f := akn
k + ak−1n

k−1 + . . . a1x+ a0, we have
f(n) = O(nk). This also means ank = O(nk).

While O notation, means ”f ≤ g asymptotically”, we can define o which says ”f < g asymptoti-
cally”.

Definition 2. Given two functions f, g : N → R+, we say that f(n) = o(g(n)) if for all constants
c > 0, there exists n0 such that :

∀n ≥ n0 : f(n) < c ∗ g(n)

Notice that the definition is slightly different. Here are some examples :

1.
√
n = o(n). Why ?

Given c, we set n0 = 1/c2. Then for n > n0, we have
√
n > 1/c, so

√
nc > 1. So,

c · n =
√
n · c

√
n >

√
n.

2. n = o(n log(n)). Why ?

Set n0 = 21/c. Then for n > n0, we have c · n log(n) > n · c log(21/c) = n.

3. 0.001n ̸= o(n).

We will also need some extra notation, to mention g ≥ f or f > g asymptotically :

Definition 3. Given two functions f, g : N → R+.

• We say that g(n) = Ω(f(n)) if and only if f(n) = O(g(n)).

• We say that g(n) = ω(f(n)) if and only if f(n) = o(g(n)).

Finally when f and g are the ”same up to constants” we use Θ.

Definition 4. Given two functions f, g : N → R+, we say f = Θ(g(n)) if and only if f(n) = O(g(n))
and g(n) = O(f(n)).

Again are some examples :

1. 0.1n3 = Ω(n3).

2. n+ log2(n) = Ω(n).

3. n2 log(n) = ω(n2 + log(n)).

4. 100n2 + 3n−
√
n = Θ(n2).

2

2 Streaming algorithms lower bounds

Remember the following languages from the previous lecture.

L1 := {w ∈ {0, 1}∗ | w has same # 0s and 1s}

We gave a 2⌈log2(n+ 1)⌉ = O(log(n)) space algorithm for L1.

L2 := {w′ | w′ = ww and w ∈ {0, 1}∗}

We gave a O(n) space algorithm for L2.

L3 := {w ∈ {0, 1}∗ | # of 1 in w is divisible by 8}

We have a O(1) (3 bits) space algorithm for L3. Note that we can’t hope to do better than constant
space, so this optimal (up to constant).

We will now show how to give lower bounds for streaming algorithms.

Definition 5 (Length-n distinguishable strings). Fix a language L over Σ = {0, 1}. Two strings
x, y ∈ Σ∗ are length-n distinguishable if there exists another string z such that :

• |xz| ≤ n.

• |yz| ≤ n.

• Exactly one of xz and yz is in L.

The idea is that an algorithm Amust put x and y into different memory configurations after reading
them. Why ? Since after reading x or y, A ends in the same memory configurations, it means it
also ends in the same memory configurations on inputs xz and yz. But in one case you must accept
and in the other you must reject. So A would have to make a mistake.

Definition 6 (Length-n distinguishing set). A length-n distinguishing set for L is a set Sn ⊆ {0, 1}∗
such that any two distinct x, y in Sn are length-n distinguishable.

Using length-n distinguishing sets is the main way we will be showing lower bounds. In particular,
we have the following :

3

Theorem 1. If L has a length-n distinguishing set Sn, then any streaming algorithm for L must
use Ω(log(|Sn|)) space for inputs of length ≤ n.

Proof. The main idea is that the algorithm must put all the string x in Sn into different memory
states after reading them. Let’s assume to the contrary that L has a streaming algorithm A that
decides it, and on inputs of length ≤ n the algorithm uses p = ⌊log(|Sn|)⌋ − 1 space. There are

p∑
i=0

2i = 2p+1 − 1 = 2⌊log(|Sn|)⌋ − 1 < Sn

possible memory configurations for A on inputs of length ≤ n.

By the pigeonhole principle 1, there must be two distinct strings x, y ∈ Sn, such that they are
mapped to the same memory configuration M after running A on them.

If from M the algorithm reads in z, it reaches a new memory configuration M ′. Thus on input xz
and yz, A ends in memory configuration M ′. But if the input was xz, the algorithm must reject,
and if it was yz it must accept (or vice versa). But the stop rule of A can only map M ′ to one of
Accept or Reject. So it must make a mistake on one of xy or yz.

Note that by the definition of a length-n distinguishing set, xz and yz both have length ≤ n. So
this implies that if S(n) ≤ ⌊log(|Sn|)⌋ − 1, A must make a mistake on some input of length ≤ n.
This contradicts that this is an algorithm that decides L.

3 Lower bound examples

We will now show space lower bounds for L1 and L2, in particular we will show we can’t do better
than the algorithms we gave last lecture (up to constant factors).

Theorem 2. Any streaming algorithm for L1 := {w ∈ {0, 1}∗ | whassame#0sand1s} must use
Ω(log2(n)) space on inputs of length ≤ n.

Proof. We want to give a length-n distinguishing set for L. It suffices to give a set of size Ω(n). 2

In particular, we will give a set of size ⌊n/2⌋, consider

Sn := {1a | 0 ≤ ⌊n/2⌋}.

Note that the algorithm from the previous lecture we gave for L1 mapped all the strings in Sn to
different memories. Indeed, on input 1a, the algorithm would store that the number of 1s was a,
and the number of 0s was 0.

1Here the pigeons are the strings in Sn, the holes are the memory configurations. There’s |Sn| strings, and < |Sn|
configurations.

2Even a set of size n0.001/100 would be enough since log2(n
0.001/100) = 0.001 log(n)− log(100) = O(log(n)).

4

We claim the above is a length n distinguishing set. Given x = 1a, y = 1b ∈ Sn (a ̸= b), we set
z = 0a. We then have that xz = 1a0a must be accepted while yx = 1b0a must be rejected. Also
since a, b ≤ n/2 by the definition of Sn, we have that |x|, |y|, |z| ≤ n/2 so |xz|, |yz| ≤ n.

So since this is a size ⌊n/2⌋ length-n distinguishing set for L1, we have by Theorem 1 that S(n) =
Ω(log(n)).

In particular, from our upper bound of O(log2(n)) on the space needed by an algorithm for L1, we
can conclude the space needed for a streaming algorithm that decides this language is Θ(log(n)).

Theorem 3. Any streaming algorithm for L2 := {w′ | w′ = ww and w ∈ {0, 1}∗} must use Ω(n)
space on inputs of length ≤ n.

Proof. To prove this, we will construct a length-n distinguishing set of size 2⌊n/2⌋, so let k = ⌊n/2⌋
and pick

Sn = {x ∈ {0, 1}k | |x| ≤ k}.

This set has size 2k. So assuming this is a length-n distinguishing set, by Theorem 1 we get our
Ω(⌊n/2⌋) = Ω(n) space lower bound for L2. So we now show this is indeed a length-n distinguishing
set.

Given x, y ∈ Sn (x ̸= y), we set z = x. We then have that xz = xx must be accepted, while yz = yx
must be rejected (since x ̸= y and |x| = |y|). Also note that size |x|, |y| = ⌊n/2⌋ by the definition
of Sn, so we have |xz| = |yz| ≤ n. Hence, this is indeed a length-n distinguishing set.

5

	Big-O Notation
	Streaming algorithms lower bounds
	Lower bound examples

