
CS Theory (Spring ’25) February 25, 2025

Lecture Note: Streaming Lower Bounds

Instructor: Josh Alman

Recall that last time we learnt that every regular language can be recognized by streaming algorithms

using O(1) space, and O(1)-space streaming algorithms only recognize regular languages.

We also studied two examples. We showed that

L1 := {w ∈ {0, 1}∗ | w has more 0’s than 1’s}

has an O(log n)-space streaming algorithm, and

L2 := {w ∈ {0, 1}∗ | w is a palindrome}

has an O(n)-space algorithm.

This time, we will prove lower bounds on the space usage of streaming algorithms. In particular, we

will prove that there is no possible streaming algorithm for L1 that uses fewer than O(log n) space, and

there is no possible streaming algorithm for L2 that uses fewer than O(n) space.

1 Streaming lower bounds

Let’s first recall algorithm for L1:

• Variable: a.

• Initialization: set a = 0.

• Update rule: on input σ ∈ {0, 1}, if σ = 0 then set a := a+ 1, if σ = 1 then set a := a− 1.

• Stopping rule: if a > 0 then accept, else reject.

This streaming algorithm takes O(log n) space because the variable a can take on values from −n,−n+

1, . . . , n− 1, n on an input of length n.

The key idea for proving a lower bound on space usage is to identify some input strings which would

give different values of a in our algorithm, and moreover prove that not just our algorithm, but any

streaming algorithm for the language must have different memory states for those strings.

Let us pick {0, 00, 000, 0000, . . . , 0n}, and show the following.

Lemma 1. For any streaming algorithm for L1 and integers p ̸= q, the strings 0p and 0q must result in

different memory states.

Proof. Without loss of generality, suppose p < q. Suppose after reading in either 0p or 0q, we then read

in 1p. That is, the whole input string is 0p1p or 0q1p. If the algorithm was in the same memory state

after reading 0p versus 0q, then it must also be in the same memory state after reading 0p1p versus 0q1p.

1

This is because the update rule depends only on the current memory state and the next symbol we read

in. That means the streaming algorithm either accepts both 0p1p and 0q1p, or rejects both. This is a

contradiction since 0p1p /∈ L1, but 0
q1p ∈ L1 (as we assumed p < q).

We are ready to prove the space usage lower bound with Lemma 1.

Theorem 2. Any streaming algorithm for L1 must use at least log2(n)/100 space for inputs of length up

to n.

Proof. Assume to the contrary we have an algorithm for L1 that uses less than (1/100) log2(n) space.

Consider the set of inputs S = {0, 00, 000, 0000, . . . , 0n}.
Since A uses less than (1/100) log2(n) space, the number of possible memory configurations of A is

at most1
log2(n)/100∑

i=0

2i = 2log2(n)/100+1 − 1 ≤ 2n1/100.

This is much less than |S| = n. Therefore, by the pigeonhole principle, there must be two different strings

in S that leads to the same memory configuration of A. This contradicts Lemma 1.

Below we state the general form of the above method for proving streaming lower bounds.

Definition 3. Fix a language L over alphabet Σ. We say two strings x, y ∈ Σ∗ are distinguishable if

there is a string z ∈ Σ∗ such that exactly one of xz and yz is in L.

Definition 4. We call Sn ⊂ Σ∗ a length-n distinguishing set if

1. all strings in Sn has length at most n;

2. all pairs of strings in Sn are distinguishable.

Theorem 5. If a language L has a length-n distinguishing set Sn, then any streaming algorithm for L

must use at least (1/100) log2 |Sn| space on inputs of length at most n.

Proof. The proof is similar to Theorem 2. Assume to the contrary we have an algorithm A for L that

uses less than (1/100) log2 |Sn| space. The number of possible memory configurations of A is thus at most

(1/100) log2 |Sn|∑
i=

2i = 2(1/100) log2 |Sn|+1 − 1 ≤ 2|Sn|1/100.

This is much less than |Sn|. Therefore, by the pigeonhole principle, there must be two different strings

x, y in Sn that lead to the same memory configuration of A. Since Sn is a distinguishing set, x, y is

distinguishable. Therefore, there is a string z ∈ Σ∗ such that exactly one of xz and yz is in L.

However, since x and y lead to the same memory configuration of A, xz and yz should also lead

to the same memory configuration of A (as the update rule depends only on the current memory state

1The exact number depends on our model of memory usage. In the model we use, the algorithm can use up to m bits
of memory for some m, so if m = 2 for example, the memory content can be ε, 0, 1, 00, 01, 10, or 11 and there will be 7
possibilities. If we instead required the streaming algorithm to use exactly m bits of memory, then when m = 2 for example,
the memory content could be 00, 01, 10, or 11 and there would be 4 possibilities. However, there will only be a constant
factor of different between different models, and this is one of the reasons we use big-O notation: a factor of constant does
not matter under big-O notation.

2

and the next symbol). Therefore, xz and yz are either both accepted by A or both rejected by A. This

contradicts that only one of xz and yz is in L.

Now we use Theorem 5 to show the following.

Theorem 6. Streaming algorithms for L2 := {w ∈ {0, 1}n | w is a palindrome} need at least n/100 space.

Proof. Let Sn = {0, 1}n. This is a distinguishing set because for any distinct x, y ∈ {0, 1}n, x, y can

be distinguished with z = reverse(x), where reverse(x) is the string x flipped backward (for example,

reverse(00111) = 11100). Actually, xz ∈ L2, while yz /∈ L2. By Theorem 5, streaming algorithms for L2

need at least (1/100) log2 |Sn| = n/100 space.

To summarize, today we proved that the space usage of the algorithms we discussed in the last lecture

for L1 and L2 are optimal (up to constant factor).

Theorem 5 also has the following corollary. (Recall that every regular language has O(1)-space

streaming algorithms.)

Corollary 7. If L has superconstant-sized length-n distinguishing sets, then L is not a regular language.

Here superconstant means not O(1). Formally, f(n) is superconstant if ∀c > 0, ∃n > 0 such that

f(n) > c.

3

	Streaming lower bounds

