CS Theory (Spring '25)

February 25, 2025

Lecture Note: Streaming Lower Bounds

Instructor: Josh Alman

Recall that last time we learnt that every regular language can be recognized by streaming algorithms using O(1) space, and O(1)-space streaming algorithms only recognize regular languages.

We also studied two examples. We showed that

$$L_1 := \{w \in \{0,1\}^* \mid w \text{ has more 0's than 1's}\}$$

has an $O(\log n)$ -space streaming algorithm, and

$$L_2 := \{w \in \{0,1\}^* \mid w \text{ is a palindrome}\}\$$

has an O(n)-space algorithm.

This time, we will prove lower bounds on the space usage of streaming algorithms. In particular, we will prove that there is no possible streaming algorithm for L_1 that uses fewer than $O(\log n)$ space, and there is no possible streaming algorithm for L_2 that uses fewer than O(n) space.

1 Streaming lower bounds

Let's first recall algorithm for L_1 :

- Variable: a.
- Initialization: set a = 0.
- Update rule: on input $\sigma \in \{0,1\}$, if $\sigma = 0$ then set a := a+1, if $\sigma = 1$ then set a := a-1.
- Stopping rule: if a > 0 then accept, else reject.

This streaming algorithm takes $O(\log n)$ space because the variable a can take on values from $-n, -n+1, \ldots, n-1, n$ on an input of length n.

The key idea for proving a lower bound on space usage is to identify some input strings which would give different values of a in our algorithm, and moreover prove that not just our algorithm, but any streaming algorithm for the language must have different memory states for those strings.

Let us pick $\{0,00,000,0000,\ldots,0^n\}$, and show the following.

Lemma 1. For any streaming algorithm for L_1 and integers $p \neq q$, the strings 0^p and 0^q must result in different memory states.

Proof. Without loss of generality, suppose p < q. Suppose after reading in either 0^p or 0^q , we then read in 1^p . That is, the whole input string is 0^p1^p or 0^q1^p . If the algorithm was in the same memory state after reading 0^p versus 0^q , then it must also be in the same memory state after reading 0^p1^p versus 0^q1^p .

This is because the update rule depends only on the current memory state and the next symbol we read in. That means the streaming algorithm either accepts both 0^p1^p and 0^q1^p , or rejects both. This is a contradiction since $0^p1^p \notin L_1$, but $0^q1^p \in L_1$ (as we assumed p < q).

We are ready to prove the space usage lower bound with Lemma 1.

Theorem 2. Any streaming algorithm for L_1 must use at least $\log_2(n)/100$ space for inputs of length up to n.

Proof. Assume to the contrary we have an algorithm for L_1 that uses less than $(1/100) \log_2(n)$ space. Consider the set of inputs $S = \{0, 00, 000, 0000, \dots, 0^n\}$.

Since A uses less than $(1/100)\log_2(n)$ space, the number of possible memory configurations of A is at most¹

$$\sum_{i=0}^{\log_2(n)/100} 2^i = 2^{\log_2(n)/100+1} - 1 \le 2n^{1/100}.$$

This is much less than |S| = n. Therefore, by the pigeonhole principle, there must be two different strings in S that leads to the same memory configuration of A. This contradicts Lemma 1.

Below we state the general form of the above method for proving streaming lower bounds.

Definition 3. Fix a language L over alphabet Σ . We say two strings $x, y \in \Sigma^*$ are distinguishable if there is a string $z \in \Sigma^*$ such that exactly one of xz and yz is in L.

Definition 4. We call $S_n \subset \Sigma^*$ a length-n distinguishing set if

- 1. all strings in S_n has length at most n;
- 2. all pairs of strings in S_n are distinguishable.

Theorem 5. If a language L has a length-n distinguishing set S_n , then any streaming algorithm for L must use at least $(1/100) \log_2 |S_n|$ space on inputs of length at most n.

Proof. The proof is similar to Theorem 2. Assume to the contrary we have an algorithm A for L that uses less than $(1/100) \log_2 |S_n|$ space. The number of possible memory configurations of A is thus at most

$$\sum_{i=1}^{(1/100)\log_2|S_n|} 2^i = 2^{(1/100)\log_2|S_n|+1} - 1 \le 2|S_n|^{1/100}.$$

This is much less than $|S_n|$. Therefore, by the pigeonhole principle, there must be two different strings x, y in S_n that lead to the same memory configuration of A. Since S_n is a distinguishing set, x, y is distinguishable. Therefore, there is a string $z \in \Sigma^*$ such that exactly one of xz and yz is in L.

However, since x and y lead to the same memory configuration of A, xz and yz should also lead to the same memory configuration of A (as the update rule depends only on the current memory state

¹The exact number depends on our model of memory usage. In the model we use, the algorithm can use up to m bits of memory for some m, so if m=2 for example, the memory content can be $\varepsilon,0,1,00,01,10$, or 11 and there will be 7 possibilities. If we instead required the streaming algorithm to use exactly m bits of memory, then when m=2 for example, the memory content could be 00,01,10, or 11 and there would be 4 possibilities. However, there will only be a constant factor of different between different models, and this is one of the reasons we use big-O notation: a factor of constant does not matter under big-O notation.

and the next symbol). Therefore, xz and yz are either both accepted by A or both rejected by A. This contradicts that only one of xz and yz is in L.

Now we use Theorem 5 to show the following.

Theorem 6. Streaming algorithms for $L_2 := \{w \in \{0,1\}^n \mid w \text{ is a palindrome}\}$ need at least n/100 space.

Proof. Let $S_n = \{0,1\}^n$. This is a distinguishing set because for any distinct $x,y \in \{0,1\}^n$, x,y can be distinguished with z = reverse(x), where reverse(x) is the string x flipped backward (for example, reverse(00111) = 11100). Actually, $xz \in L_2$, while $yz \notin L_2$. By Theorem 5, streaming algorithms for L_2 need at least $(1/100) \log_2 |S_n| = n/100$ space.

To summarize, today we proved that the space usage of the algorithms we discussed in the last lecture for L_1 and L_2 are optimal (up to constant factor).

Theorem 5 also has the following corollary. (Recall that every regular language has O(1)-space streaming algorithms.)

Corollary 7. If L has superconstant-sized length-n distinguishing sets, then L is not a regular language.

Here superconstant means not O(1). Formally, f(n) is superconstant if $\forall c > 0, \exists n > 0$ such that f(n) > c.