CS Theory (Spring "25) February 18, 2025

Lecture Note: Asymptotic Notation

Instructor: Josh Alman

We have been studying different models of computation, including DFAs, NFAs and regular expres-
sions. So far we focus on whether the model can solve a problem, and we haven’t talked about how
efficient the model can solve the problem. For example, we have seen the construction of a DFA from an
NFA. Although they recognize the same language, it has a huge (exponential) blow-up in the number of
states. Starting now, we will not only focus on whether a computation model can, but also how efficient
it can solve a problem.

1 Big-O Notation

The exact running time of an algorithm is often complicated, but we usually only care about an estimate.

We use big-O notation to capture estimates. It helps us to understand how a function behaves on
large inputs. We usually care more about large inputs, because even an inefficient algorithm can be fast
on small inputs.

Example 1. f(n) = 6n3 + 2n? 4+ 20n + 45 = O(n?).

For polynomials, we consider only the highest order term and disregard coefficients to get an estimation
in big-O form.
Below we give a general definition for big-O notation.

Definition 2. Let f,g: N — RT (positive integers to positive reals) be functions. We say f(n) = O(g(n))
if there exist constants ¢, ng > 0, such that for every n > ng, we have f(n) < c-g(n).

In the definition, we have the coefficient ¢ so that we don’t need to care about the coefficient, and we
have n > ng so that we only need to care about big enough inputs.

Recall Example 1. Let f(n) = 6n® + 2n? + 20n + 45, g(n) = n3. We can choose ¢ = 9 and ng = 45
to fit in the above definition.! If n > 45, then f(n) = 6n3 + 2n? + 20n + 45. Since 2 < n, 20 < n and
45 < n, we have

fr)y<6n®+n-n*+n-n+n="%+n*>+n<m3+n3+nd =903
Example 3. f(n) = 6n> + 2n? 4+ 20n + 45 = O(n*). This is true because n* is even bigger than n3.

Example 4. f(n) = 6n® + 2n2 + 20n + 45 # O(n?), because 6n® grows much faster than n? does.
Formally, no matter what ng and ¢ we pick, there is always an n > ny with f(n) > c- n?. For example,
if we choose n = 6¢c+ 1, then

f(n) > 6n°

! Although ¢ = 7 should work, picking a larger ¢ makes the proof easier. There are a lot of possible choices of ¢ and nq.



Example 5. f(n) =logy(n), g(n) =log.(n). Then, f(n) = 0O(g(n)), because

_ log,(n)
log,(2)

For this reason, in big-O notation we usually don’t care about the base of logarithm, and hence the

logy(n)

notation O(log(n)) (where the base is not specified).

Example 6. log(n) # O(log, 5 (n)). Note that log, /(n) = 2.

Example 7. logy(n) # O(log, log.(n)). If we substitute k = log,(n), then this becomes k # O(logk).
Example 8. n-loglogn = O(n -logn). We know loglogn = O(logn) and we multiply both sides by n.
Example 9. logn # O((loglogn)'%%). If we substitute k = lognlogn, this becomes 2% # O(k'900).
Example 10. logn = O((loglogn)™). This is because logn = O(2") = O((loglogn)™).

Example 11. 3" # O(2"). Actually, (27)1°823 ~ (21585 Another way to see this is 3" /2" = 1.5" — oo
as n — 0o.

Below we use big-O notation for arithmetic expressions.

Example 12. " i = n(";l) = in®+ In=0(n?).
Example 13. > i <> " n=n?<O0(n?).

If we actually care about the leading constant and want a bound on the remaining terms, we can also
use big-O notation, in a way similar to the following.

Example 14. Y7 ;i = 1n? + in = 1n? 4+ O(n).
Example 15. > 20 =3"" , O(2") < O(n-2"). But this is not tight. Actually, > 1 ;2" = 2"+ — 2 =
o(2m).

Example 16. 3" = 29("). The reason is 3" = 2'°823" = 20(") O (n) here is replacing an “anonymous
function” that is bounded by O(n). Compare to Example 11.

Example 17. n3 = 90(ogn) 1, fact, n3 = 23logan

20(00gn) captures all polynomials in n (with positive leading coefficient). For example, 2100-logy . —

n 100 910000000-logz n — 110000000 Gimj]arly, nPW also captures all polynomials in n. We use the notation

poly(n) for all polynomials in n.
Definition 18. poly(n) = n©M)
Thus, f(n) = poly(n) if and only if f(n) = n°M), which is equivalent to f(n) = 20Ucen),

OM) . This is because n - log(n) = O(n?) is a polynomial in n.

Example 19. n -logy(n) =n
Example 20. (logn)'%’ = poly(n). Actually (logn)!® = O(n).

Example 21. (logn)'°8°8(™) = poly(n). Note that logn = 2198181 5o (logn)lslosn — glloglogn)®
20(ogn) — poly(n).



Example 22. (’}) = poly(n). This is because (}) = "(”71)(322)("73) = O(n%).

Example 23. It is not true that for all 0 < k < n, (Z) < poly(n). Although (Z) = O(n¥), k may depend
on n and is not necessarily a constant here. When k =n/2,

However, if k is a fized constant, then (2) s a polynomial in n.
Here we formally prove it is false that (Z) < poly(n) for all 0 < k < n.

Proof. Assume to the contrary that (Z) < poly(n) for all k. Then,

n n

2 @ < 2 poly(n) < n-poly(n) < poly(n).

k=0 k=0

On the other hand, Y>";_ (}) = 2™.2 This is not a poly(n), so there is a contradiction. O

2 Big-0 notation

Definition 24. Let f,g : N — RT be functions. We say f(n) = O(g(n)) if f(n) = O(g(n)) and
g9(n) = O(f(n)).

Roughly speaking, using © means “we have found the best big-O bound”.

Example 25. f(n) = 6n3 + 2n% + 20n + 45, g(n) = n3, then f(n) = O(g(n)).
Howewver, if h(n) = n*, then f(n) # ©(h(n)), although it is true that f(n) = O(h(n)).

Example 26. log,(n) = O(log.(n)).
Example 27. > i = O(n?).
Example 28. 3" = 20",

Example 29. n? = 2090027 — ,00) " In general, poly(n) = n®W.

3 Additional notations (not required material)

There are some other similar notations used in computer science.

Definition 30 (Small-o notation). Let f,g : N — R™ be functions. We say f(n) = o(g(n)) if for all
¢ > 0, there exists ng > 0 such that for all n > ng, f(n) < c-g(n).

Example 31. f(n) = 6n3 + 2n? + 20n + 45, then f(n) = o(n*) but f(n) # o(n®). We can see the latter
by choosing ¢ = 1 in the definition.

2This can be proved by using two ways to count the number of subsets of a size-n set. On one hand, for each element,
there are two possible choices: to be in the subset or not in the subset, so the total number of subsets is 2". On the other

hand, the number of subsets of size k is (}), so the total number is >y _, (7).



Example 32. f(n) = 6n3 + 2n? + 20n + 45, then f(n) = 6n + o(n?) = 6n3(1 + o(1)).
Example 33. n?/logn = o(n?).

If f(n) = o(g(n)), then it always holds that f(n) = O(g(n)), and it cannot hold that f(n) = ©(g(n)).
However, it is not true that if f(n) = O(g(n)), then either f(n) = o(g(n)) or f(n) = O(g(n)).

Example 34. If

n® n is even
flm) = {n4 n is odd
then f(n) = O(n*), but f(n) # o(n?) and f(n) # O(n*).
Example 35. logn = o(n).

Definition 36 (Big-Q notation). Let f,g : N — RT be functions. We say f(n) = Q(g(n)) if g(n) =
O(f(n)).

Definition 37 (Small-w notation). Let f,g : N — R™ be functions. We say f(n) = Q(g(n)) if g(n) =
o(f(n)).

Q) and w are similar to O and o, except that they are for lower bounds instead of upper bounds.

Example 38. f(n) := 6n3 4 2n2 + 20n + 45, then f(n) = Q(n3), f(n) = Q(n?), f(n) = w(n?), f(n) #
w(n?).



	Big-O Notation
	Big- notation
	Additional notations (not required material)

