
CS Theory (Spring ’25) February 18, 2025

Lecture Note: Asymptotic Notation

Instructor: Josh Alman

We have been studying different models of computation, including DFAs, NFAs and regular expres-

sions. So far we focus on whether the model can solve a problem, and we haven’t talked about how

efficient the model can solve the problem. For example, we have seen the construction of a DFA from an

NFA. Although they recognize the same language, it has a huge (exponential) blow-up in the number of

states. Starting now, we will not only focus on whether a computation model can, but also how efficient

it can solve a problem.

1 Big-O Notation

The exact running time of an algorithm is often complicated, but we usually only care about an estimate.

We use big-O notation to capture estimates. It helps us to understand how a function behaves on

large inputs. We usually care more about large inputs, because even an inefficient algorithm can be fast

on small inputs.

Example 1. f(n) := 6n3 + 2n2 + 20n+ 45 = O(n3).

For polynomials, we consider only the highest order term and disregard coefficients to get an estimation

in big-O form.

Below we give a general definition for big-O notation.

Definition 2. Let f, g : N → R+ (positive integers to positive reals) be functions. We say f(n) = O(g(n))

if there exist constants c, n0 > 0, such that for every n ≥ n0, we have f(n) ≤ c · g(n).

In the definition, we have the coefficient c so that we don’t need to care about the coefficient, and we

have n ≥ n0 so that we only need to care about big enough inputs.

Recall Example 1. Let f(n) = 6n3 + 2n2 + 20n + 45, g(n) = n3. We can choose c = 9 and n0 = 45

to fit in the above definition.1 If n ≥ 45, then f(n) = 6n3 + 2n2 + 20n + 45. Since 2 ≤ n, 20 ≤ n and

45 ≤ n, we have

f(n) ≤ 6n3 + n · n2 + n · n+ n = 7n3 + n2 + n ≤ 7n3 + n3 + n3 = 9n3.

Example 3. f(n) := 6n3 + 2n2 + 20n+ 45 = O(n4). This is true because n4 is even bigger than n3.

Example 4. f(n) := 6n3 + 2n2 + 20n + 45 ̸= O(n2), because 6n3 grows much faster than n2 does.

Formally, no matter what n0 and c we pick, there is always an n ≥ n0 with f(n) > c · n2. For example,

if we choose n = 6c+ 1, then

f(n) ≥ 6n3

1Although c = 7 should work, picking a larger c makes the proof easier. There are a lot of possible choices of c and n0.

1



Example 5. f(n) = log2(n), g(n) = loge(n). Then, f(n) = O(g(n)), because

log2(n) =
loge(n)

loge(2)
.

For this reason, in big-O notation we usually don’t care about the base of logarithm, and hence the

notation O(log(n)) (where the base is not specified).

Example 6. log(n) ̸= O(log√n(n)). Note that log√n(n) = 2.

Example 7. log2(n) ̸= O(loge loge(n)). If we substitute k = loge(n), then this becomes k ̸= O(log k).

Example 8. n · log log n = O(n · log n). We know log logn = O(log n) and we multiply both sides by n.

Example 9. log n ̸= O((log logn)1000). If we substitute k = log n log n, this becomes 2k ̸= O(k1000).

Example 10. log n = O((log log n)n). This is because log n = O(2n) = O((log logn)n).

Example 11. 3n ̸= O(2n). Actually, (2n)log2 3 ≈ (2n)1.585. Another way to see this is 3n/2n = 1.5n → ∞
as n → ∞.

Below we use big-O notation for arithmetic expressions.

Example 12.
∑n

i=1 i =
n(n+1)

2 = 1
2n

2 + 1
2n = O(n2).

Example 13.
∑n

i=1 i ≤
∑n

i=1 n = n2 ≤ O(n2).

If we actually care about the leading constant and want a bound on the remaining terms, we can also

use big-O notation, in a way similar to the following.

Example 14.
∑n

i=1 i =
1
2n

2 + 1
2n = 1

2n
2 +O(n).

Example 15.
∑n

i=1 2
i =

∑n
i=1O(2n) ≤ O(n · 2n). But this is not tight. Actually,

∑n
i=1 2

i = 2n+1 − 2 =

O(2n).

Example 16. 3n = 2O(n). The reason is 3n = 2log2 3·n = 2O(n). O(n) here is replacing an “anonymous

function” that is bounded by O(n). Compare to Example 11.

Example 17. n3 = 2O(logn). In fact, n3 = 23 log2 n.

2O(logn) captures all polynomials in n (with positive leading coefficient). For example, 2100·log2 n =

n100, 210000000·log2 n = n10000000. Similarly, nO(1) also captures all polynomials in n. We use the notation

poly(n) for all polynomials in n.

Definition 18. poly(n) := nO(1)

Thus, f(n) = poly(n) if and only if f(n) = nO(1), which is equivalent to f(n) = 2O(logn).

Example 19. n · log2(n) = nO(1). This is because n · log(n) = O(n2) is a polynomial in n.

Example 20. (log n)100 = poly(n). Actually (log n)100 = O(n).

Example 21. (log n)log log(n) = poly(n). Note that log n = 2log logn, so (log n)log logn = 2(log logn)
2
=

2O(logn) = poly(n).

2



Example 22.
(
n
4

)
= poly(n). This is because

(
n
4

)
= n(n−1)(n−2)(n−3)

24 = O(n4).

Example 23. It is not true that for all 0 ≤ k ≤ n,
(
n
k

)
≤ poly(n). Although

(
n
k

)
= O(nk), k may depend

on n and is not necessarily a constant here. When k = n/2,(
n

n/2

)
=

n!

((n/2)!)2
≈ 2n ·

√
2

πn
.

However, if k is a fixed constant, then
(
n
k

)
is a polynomial in n.

Here we formally prove it is false that
(
n
k

)
≤ poly(n) for all 0 ≤ k ≤ n.

Proof. Assume to the contrary that
(
n
k

)
≤ poly(n) for all k. Then,

n∑
k=0

(
n

k

)
≤

n∑
k=0

poly(n) ≤ n · poly(n) ≤ poly(n).

On the other hand,
∑n

k=0

(
n
k

)
= 2n.2 This is not a poly(n), so there is a contradiction.

2 Big-Θ notation

Definition 24. Let f, g : N → R+ be functions. We say f(n) = Θ(g(n)) if f(n) = O(g(n)) and

g(n) = O(f(n)).

Roughly speaking, using Θ means “we have found the best big-O bound”.

Example 25. f(n) := 6n3 + 2n2 + 20n+ 45, g(n) = n3, then f(n) = Θ(g(n)).

However, if h(n) = n4, then f(n) ̸= Θ(h(n)), although it is true that f(n) = O(h(n)).

Example 26. log2(n) = Θ(loge(n)).

Example 27.
∑n

i=1 i = Θ(n2).

Example 28. 3n = 2Θ(n).

Example 29. n3 = 2Θ(logn) = nΘ(1). In general, poly(n) = nΘ(1).

3 Additional notations (not required material)

There are some other similar notations used in computer science.

Definition 30 (Small-o notation). Let f, g : N → R+ be functions. We say f(n) = o(g(n)) if for all

c > 0, there exists n0 > 0 such that for all n ≥ n0, f(n) < c · g(n).

Example 31. f(n) := 6n3 + 2n2 + 20n+ 45, then f(n) = o(n4) but f(n) ̸= o(n3). We can see the latter

by choosing c = 1 in the definition.

2This can be proved by using two ways to count the number of subsets of a size-n set. On one hand, for each element,
there are two possible choices: to be in the subset or not in the subset, so the total number of subsets is 2n. On the other
hand, the number of subsets of size k is

(
n
k

)
, so the total number is

∑n
k=0

(
n
k

)
.

3



Example 32. f(n) := 6n3 + 2n2 + 20n+ 45, then f(n) = 6n3 + o(n3) = 6n3(1 + o(1)).

Example 33. n2/ log n = o(n2).

If f(n) = o(g(n)), then it always holds that f(n) = O(g(n)), and it cannot hold that f(n) = Θ(g(n)).

However, it is not true that if f(n) = O(g(n)), then either f(n) = o(g(n)) or f(n) = Θ(g(n)).

Example 34. If

f(n) =

{
n3 n is even

n4 n is odd
,

then f(n) = O(n4), but f(n) ̸= o(n4) and f(n) ̸= Θ(n4).

Example 35. log n = o(n).

Definition 36 (Big-Ω notation). Let f, g : N → R+ be functions. We say f(n) = Ω(g(n)) if g(n) =

O(f(n)).

Definition 37 (Small-ω notation). Let f, g : N → R+ be functions. We say f(n) = Ω(g(n)) if g(n) =

o(f(n)).

Ω and ω are similar to O and o, except that they are for lower bounds instead of upper bounds.

Example 38. f(n) := 6n3 + 2n2 + 20n + 45, then f(n) = Ω(n3), f(n) = Ω(n2), f(n) = ω(n2), f(n) ̸=
ω(n3).

4


	Big-O Notation
	Big- notation
	Additional notations (not required material)

