
COMS W3261, Section 1, Spring 2024
Communication Complexity

Instructor : Josh Alman
Notes by : William Pires

1 Communication Complexity

We have two persons Alice and Bob. Alice has a string x ∈ {0, 1}n while Bob has y ∈ {0, 1}n. Alice
has no information about y and Bob no information about x. Their goal is to compute a function
f(x, y), for some function f : {0, 1}n × {0, 1}n → {0, 1} 1.

We will be interested in how much Alice and Bob need to communicate with each other to compute
f(x, y). Let’s start with some important examples for f :

Definition 1. The equality function EQUALITY : {0, 1}∗ × {0, 1}∗ → {0, 1} is defined as :

EQUALITY(x, y) =

{
1 if x = y

0 otherwise

Why is EQUALITY interesting ? Say you there is huge database (stored by Alice), and a backup
copy of it (stored by Bob). The goal is to check if the content of the databases are the same. But
how much information do we need to transmit to perform this check ? Here we can assume the
main bottleneck is the communication from one party to the other, especially since this might be
very slow, and there’s a lot of data involved.

Definition 2. The majority function MAJORITY : {0, 1}∗ × {0, 1}∗ → {0, 1} is defined as :

MAJORITY(x, y) =

{
1 if xy has more 1s than 0s

0 otherwise

Say we have an election with two voting stations across town. Both stations collected their votes
for candidates 0 and 1. So, you can view the votes at the first station as x ∈ {0, 1}∗, while at the
second station it’s y ∈ {0, 1}∗. To know who won the elections, we can compute Majority(x, y). Do
we have to send the list of all the votes from one location to the other ? Or can we do better ?

Definition 3. The majority function PARITY : {0, 1}∗ × {0, 1}∗ → {0, 1} defined as :

PARITY(x, y) =

{
1 if the number of 1s in xy is odd

0 otherwise

Let’s now introduce the formal notation needed to model this task. Note that for us, Alice and Bob
are always given strings of the same length.

1Note that we don’t need f ’s output to just be binary, but that’s what we will focus on.

Definition 4 (Communication protocol). A communication protocol P is specified by pair of
functions:

A,B : {0, 1}∗ × {0, 1}∗ → {0, 1,STOP}.

The protocol keeps track of a transcript t, which start as t := ϵ. Whenever Alice or Bob sends a
message b ∈ {0, 1,STOP} to the other, we set t = t ◦ b.

We view the protocol as a series of round, starting from r = 1. When r is odd, Alice sends A(x, t)
to Bob. When r is even turns Bob sends B(y, t) to Alice. When either party sends STOP, the
protocol stops, and the output is whatever bit that was sent last.

In particular, the first part of the input of A is Alice’s input x, while the first part of B’s input is
Bob’s input y. The second part is the transcript t.

Since the definition might be a bit odd here’s how a protocol works.

• Set the transcript t = ϵ.

• Set the round number r = 1

• While t doesn’t end with STOP :

– If r is odd : Set t = t ◦A(x, t).

– Else if r is even : Set t = t ◦B(y, t).

– Set r = r + 1. a

• Output the last non-STOP bit of t.

aThis corresponds to Alice sending a message to Bob on odd turns and Bob to Alice on even turns. And
then going to the next round.

Note that on every pair (x, y) ∈ {0, 1}n × {0, 1}n, the protocol outputs a bit b ∈ {0, 1}. So we can
view a protocol as function !

Definition 5 (Function computed by P). Any protocol P computes function fP : {0, 1}∗ ×
{0, 1}∗ → {0, 1}.

Where the functions is defined as

fP (x, y) := {The output bit of P when Alice is given x and Bob is given y}

We also need to understand how much communication a protocol takes.

2

Definition 6 (Cost of a protocol). Let P be a communication protocol. For a pair (x, y) ∈
{0, 1}n × {0, 1}n, the cost of P on the pair (x, y) is the length of the transcript t when P stops 2if
Alice is given x and Bob is given y.

The cost of P , denoted cost(P) is a function defined as :

cost(P)(n) := max
x,y∈{0,1}n

the cost of P on (x, y)

Note that Alice and Bob can compute any function of their inputs and the messages they received,
so A,B can be any function you want, no matter how much space / time it would take to compute
them. We only care about the number of bits they send each other.

Finally, we can consider the cost of computing a function f in the communication model. That is,
we want to know what is the ”best” protocol P that computes f when the inputs have length n.

Definition 7 (Communication complexity of a function). We say that a protocol P computes a
function f is for all (x, y) ∈ {0, 1}n × {0, 1}n we have Pf (x, y) = f(x, y). The communication
complexity of a f , denoted cc(f) is a function defined as :

cc(f)(n) := min
P that compute f

cost(P)(n)

2 Examples

Let’s do examples by giving protocols for the functions mentioned above. Note that when giving
protocols, we don’t use the formal definition as it would be cumbersome. You can give protocols
like these ones for the homework and exams.

You can turn these ”informal” protocols into formal one by increasing the communication com-
plexity by a constant factor.

Example 1. A protocol to compute EQUALITY :

2That is the first time one of the party sends STOP, and we output the answer. We usually don’t count the STOP
in the length of the transcript, but this only changes the length by ±1, so it doesn’t really matter.

3

• Alice sends to Bob her input x.

• Bob accepts (outputs 1) if x = y.

• Otherwise Bob rejects (outputs 0).

Alice sends n bits to Bob when x ∈ {0, 1}n. Thus cc(EQUALITY)(n) = O(n). As an example, you
can turn this into a ”formal” protocol as follow :

• For i = 1 to n :

– Alice sends to Bob the ith bit x.

– If i < n Bob replies with 1.

– Otherwise Bob replies with 1 if x = y (now that he has received all the bits of x)
and 0 otherwise.

• Alice outputs STOP

You can see this only increases the communication by a constant factor. So that’s why it’s good
enough to use ”informal” protocols. You might wonder if one can do better to compute EQUALITY.
We will see that for this function this is essentially the best you can do.

Example 2. A protocol to compute MAJORITY :

• Alice sends to Bob the number of 1s in x.

• Bob accepts (outputs 1) if his number of 1s + Alice’s number of 1’s is at least n+ 1a.

• Otherwise Bob rejects (outputs 0).

aSince the string |xy| has length 2n

It takes Alice ⌈log2(n+ 1)⌉ many bits to send the number of 1s in x, since this number is between
0 and n. So cc(MAJORITY)(n) = O(log(n)).

Example 3. A protocol to compute PARITY :

• Alice sends to Bob the of 1s in x mod 2.

• Bob accepts (outputs 1) if (#1s in x mod 2 + #1s in y) is odd.

• Otherwise Bob rejects (outputs 0).

Alice sends a single bit to Bob. So cc(PARITY)(n) = O(1).

Note that you can’t get a protocol sending 0 bits to compute PARITY. Why ? If the protocol had
0 communication, Bob and Alice wouldn’t communicate at all. So, Alice would know PARITY(x, y)
without knowing anything about y. But this clearly isn’t possible, since the answer depends on y
3. And the same applies for Bob, who can’t know the answer without receiving any information.

3If you fix x, there’s some y1 such that PARITY(x, y1) = 1 but there also exists y2 with PARITY(x, y2) = 0

4

3 Lower bounds

We will now be interested in giving lower bounds for cc(f). To prove lower bounds, we will use
something similar to length-n distinguishing sets from streaming algorithms. I promise it’s the last
definitions. I deviate from what was said in class here, this is a way to generalize the lower bound
that was shown for EQUALITY. You don’t don’t have to use these definitions in the homework.
However, using them can make your communication lower bound proofs much shorter.

Definition 8 (Length-n fooling inputs). Fix a function f : {0, 1}∗×{0, 1}∗ → {0, 1}. Two different
pairs (a, b), (c, d) ∈ {0, 1}n are fooling if :

• f(a, b) = f(c, d) = o.

• f(a, d) ̸= o or f(c, b) ̸= o.

The main point is that all both pairs (a, b), (a, d) are mapped to same output by f but if you swap
the element in a pair for an element from a different pair this changes the output of the function !
We will later show that if P sends same transcript t on (a, b) and (c, d) it must also send t on (a, d)
and (c, b).

Definition 9 (Length-n fooling set). A length-n fooling set set for a function f : {0, 1}∗×{0, 1}∗ →
{0, 1} is a set Sn ⊆ {0, 1}n×{0, 1}n such that any two distinct (a, b), (c, d) in Sn are length-n fooling.

In particular there exists o ∈ {0, 1} such that f(a, b) = o for all (a, b) ∈ Sn.

All the pairs in length-n fooling set must be mapped to the same output since f(a, b) = f(c, d) for
all the pairs in the set. Here’s why we care about fooling sets :

Theorem 1. If f has a length-n fooling set Sn, then any protocol P that computes f must have
cost(P)(n) = Ω(log(|Sn|)). Which implies cc(f)(n) = Ω(log(|Sn|)).

So, to show that cc(f)(n) = Ω(k) , it suffices to give a length-n fooling set for f of size 2Ω(k). Josh
didn’t have time to prove this last lecture, but he gave the idea in the example for EQUALITY. So
let’s do the formal proof for a generic function, which as you’ll see is very similar.

Proof. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1} be a function with a fooling set Sn of size 2k. Assume for
contradiction that there a protocol P for f and with cost cost(P)(n) < log2(2

k) = k.

5

Let’s count how many transcript are possible on inputs of length n. The cost of the protocol is
< log2(|Sn|). So the transcript t has length at most k − 1, and there is

k−1∑
i=0

2i = 2k−1+1 − 1 = 2k − 1

different strings of length at most k − 1.

There are 2k many inputs in Sn, so by the pigeonhole principle 4, there are two different pairs in
Sn on which the same transcript t is sent when using P .

Let (a, b), (c, d) be two inputs that give the same transcript t. Since (a, b) and (c, d) are fooling, we
know f(a, b) ̸= f(a, d) or f(a, b) ̸= f(c, a). Wlog, let’s assume f(a, b) ̸= f(a, d). Our goal will be
to show that Alice and Bob also send t on input (a, d).

Assuming this is true, the transcript t is sent on both (a, b) and (a, d) so the protocol outputs the
same bit on both pairs ! But this can’t correctly compute f for on one of them. This gives us our
contradiction. So, any protocol P that computes f must have cost(P)(n) ≥ log2(2

k) = k.

So let’s prove the claim, we will proceed by induction. We will show that at each round of the
protocol, Alice and Bob send the same bit on (a, d) as they would on (a, b).

• Let ti be the the transcript at the beginning of round i when the input is (a, b).

• Base case r = 1. At this point t1 = ϵ. So on input (a, b) and (a, d) Alice sends A(a, ϵ). So
the same bit is sent.

• Inductive step. Assume that for round 1 to i, Alice and Bob sent the same bits (a, d) as they
would on (a, b), that is the transcript so far on (a, d) is also ti. Wlog, let’s asume it’s Bob’s
turn to speak.

We know Alice and Bob send the same transcript t on input (a, b) and (c, d). So at round
i Bob must send the same bit on both pairs, thus we must have B(b, ti) = B(d, ti). So we
know ti+1 = ti ◦B(d, ti)

By the induction hypothesis we know that the transcript at the beginning of the ith round,
when the input is (a, d) is also ti. Now Bob will send B(d, ti), so the transcript becomes
ti ◦ B(d, ti). So at the round i + 1, the transcript sent on (a, d) is ti+1 too. This proves the
inductive step.

• Conclusion : By the end of the protocol, the transcript of the communication between Alice
and Bob on input (a, d) is the same as it is on input (a, b). So this proves our claim.

In particular, we proved something a bit stronger than what the theorem says. If we have a length-
n fooling set of size 2k for a function f , we have cc(f)(n) ≥ k. Finally, we show can prove the
EQUALITY lower bound, using length-n fooling sets this will be easy.

4There are 2k pairs in Sn (pigeons) and 2k−1 transcripts in P (holes) for inputs of length n.

6

Theorem 2.
cc(EQUALITY)(n) = Θ(n).

Proof. We already gave a protocol for EQUALITY with cost O(n) which shows cc(EQUALITY)(n) =
O(n). So we need to show that cc(EQUALITY)(n) = Ω(n).

By Theorem 1, it’s enough to give a length-n fooling set of size 2n for EQUALITY.

Consider the set Sn := {(a, a) | a ∈ {0, 1}n } which has size 2n.

We claim this is a valid fooling set. First note that all the pairs in Sn are of the form (a, a) so we
always have EQUALITY(a, a) = 1. Now consider two distinct pairs (a, a) and (b, b) in Sn. Since
a ̸= b, we have EQUALITY(a, b) = 0.

Since Sn is a length n-fooling set for EQUALITY, we get that cc(EQUALITY)(n) ≥ n

More generally here’s how to prove a communication complexity lower bound. Again, this wasn’t
mentioned in class, so you don’t have to do things like this. But this might help you have
a very short proof.

Proof Template 1 (Show that cc(f)(n) = Ω(k)).

1. Give a set Sn ⊆ {0, 1}n × {0, 1}n, of size 2Ω(k) a.

2. Show that there exists o ∈ {0, 1} with f(a, b) = o for all pairs in Sn. That is, all pairs
are mapped to the same output.

3. For any distinct pairs (a, b) and (c, d) in Sn :

• f(a, d) ̸= o or f(c, b) ̸= o.

aA set of size 2c·k, for any constant c is good enough.

Here’s the example for MAJORITY :

Theorem 3.
cc(MAJORITY)(n) = Θ(log(n))).

Proof. We already gave a protocol forMAJORITY with costO(log(n)) which shows cc(MAJORITY)(n) =
O(log(n)). So, we need to show that cc(MAJORITY) = Ω(log(n)).

By Theorem 1, it’s enough to give a length-n fooling set of size n for MAJORITY.

7

Consider the following set of size n

Sn := {(a, b) | a = 1k0n−k and b = 1n−k+10k−1 where 1 ≤ k ≤ n}.

We claim this is a valid fooling set. First, for a pair (a, b) ∈ Sn, a will have k many 1s and b will
have n− k + 1 many 1s, so the string ab has n+ 1 many 1s. Thus, MAJORITY(a, b) = 1.

Now consider two distinct pairs (a, b) and (c, d) in Sn. Say that a = 1k0n−k and c = 1k0n−ℓ (so
d = 1n−ℓ+10ℓ−1) where ℓ ̸= k. Wlog, we can assume k < ℓ. We have that

ad = 1k0n−k1n−ℓ+10ℓ−1.

The string ad has k+ n− ℓ+1 many 1, but k− ℓ < 0, so k− ℓ+ n+1 < 0. Thus, ad doesn’t have
more than half its bits being 1 and we can conclude MAJORITY(a, d) = 0.

Since Sn is a length n-fooling set for MAJORITY of size Ω(n), we get that cc(EQUALITY)(n) =
Ω(log(n))

8

	Communication Complexity
	Examples
	Lower bounds

