
COMS W3261, Section 1, Spring 2024
Lecture : Lower bounds review

Instructor : Josh Alman
Notes by : William Pires

We will consider that the alphabet is Σ = {a, b}.

Definition 1. A string w ∈ Σ∗ is ”nice” if it has even length and at least as many bs in the first
half as in the second half.

Let L := {w ∈ Σ∗ | w is nice}. We will show in 3 different ways that L isn’t regular.

Theorem 1. L isn’t regular.

1 Via Pumping Lemma

Recall the pumping lemma :

Theorem 2 (Pumping Lemma). Let L be a regular language over Σ. If L is regular, then there
exists a positive integer p such that for any s ∈ L with |s| ≥ p, there are x, y, z ∈ Σ∗ such that :

(1) s = xyz

(2) |y| > 0

(3) |xy| ≤ p

(4) For all i ≥ 0, xyiz ∈ L

Assume for contradiction that L is regular and let p be the pumping length 1 and consider s =
apbbap. 2

1In any pumping lemma proof DO NOT choose what p is. For instance if you show a contradiction by assuming
p = 4, then you show there’s no DFA with 4 states for the language. But since we want to show no DFA exists, you
need to let p be arbitrary.

2The most tricky part of pumping lemma proofs is picking the correct string s to pump. The string s must be in
L, and usually it should ”barely be in L”, so that changing things makes it not be in L.

By the pumping lemma, there are x, y, z with apbbap = xyz and condition (2), (3), (4).

What can y be ? 3 We must have y = am for some 0 < m ≤ p. Why ? By (3), |xy| ≤ p, so xy
consist of only as, so y is made of as only. We must have m > 0 by (2).

By (4) setting i = 3, we have xy3z = ap+2mbbap ∈ L. xy3z has length p+2m+2+ p = 2p+2m+2
so the first half is the first p+m+ 1 symbols. Since m ≥ 1, we have p+m+ 1 ≤ p+ 2m. So, the
first half of the string is in the ap+2m part (it contains only a’s) while the second half must contain
the two bs. So xy3z ̸∈ L. This contradicts the pumping lemma, hence L isn’t regular.

2 Via Streaming

Recall the following :

Theorem 3. A language L is regular if and only if it has a constant space streaming algorithm.

So, we can prove that L := {w ∈ Σ∗ | w is nice} isn’t regular by showing a streaming lower bound
for it. What’s the best upper bound for L ? Surely it has a O(n) space algorithm. It turns out
this is optimal, no algorithm uses o(n) space, but this really hard to prove. However, it’s enough
to prove a Ω(log(n)) space lower bound to show that L isn’t regular. Recall the following:

Definition 2 (Length n-distinguishing). Let L be a language over Σ∗. A length n-distinguishing
set Sn ⊆ Σ∗ is such that for any distinct x, y ∈ Sn we have :

• Exactly one of xz or yz is in L.

• |xz| ≤ n and |yz| ≤ n.

Theorem 4. If a language L has a length-n distinguishing set Sn, then any streaming algorithm
for L must use Ω(log(|Sn|)) space for inputs of length ≤ n.

Let
Sn := {bm | 0 ≤ m <

n

5
}

3It’s critical to consider all the possible cases for what y could be. Do not make assumptions besides what (2), (3)
tell you. For example saying x = ϵ, y = a would be wrong. And make sure you don’t forget any case.

2

We claim this is a length-n distinguishing set for L. Consider distinct x, y ∈ Sn. We have x = bk,
y = bℓ, wlog we have 0 ≤ k < ℓ ≤ n

5 .

Pick z = an−2ℓbℓ 4. Then
xz = bkan−2ℓbℓ and yz = bℓan−2ℓbℓ

Because ℓ < n/5, it’s easy to check that for both these of strings the middle of the string is in the
an−2ℓ part. So, xz has k bs on the left, ℓ bs on the right, so xz ̸∈ L. However, yz has ℓ bs on the
left, and ℓ bs on the right, so yz ∈ L.

We clearly have |xz|, |yz| ≤ n.

Since Sn is a distinguishing set of size n
5 any streaming algorithm for L needs space Ω(log(|Sn|)) =

Ω(log(n/5)) = Ω(log(n)). Thus, L isn’t regular.

3 Via Communication

In homework 3, you prove the following theorem.

Theorem 5. If L ⊆ Σ∗ is a regular language, then there is O(1) cost protocol for fL : Σ∗ × Σ∗ →
{0, 1} which is defined as

f(x, y) =

{
1 if xy ∈ L

0 otherwise

So to show that L isn’t regular, we can show cc(fL)(n) = ω(1)5.

Note that the other direction isn’t true. Some languages have cc(fL) = O(1) but L isn’t regular.
So this approach doesn’t work for all regular languages. We will need the following definition.
Again, you don’t have to use this definition in your proofs. You can use the same proof as Josh
did for EQUALITY, which also involves coming up with a set S, and then using the pigeonhole
principle arguing that for two pairs in the set Alice and Bob send the same transcript. But using
this definition would probably be easier.

Definition 3. A fooling set Sn ⊆ Σ ∈ Σn × Σn is a set such that such there is b ∈ {0, 1}:

• For all f(x, y) ∈ Sn we have f(x, y) = b.

That is, everything in the set is mapped to the same output b.

4If n is odd, pick z = an−2ℓ−1bℓ instead and the proof would still work.
5If you’re confused by the ω notation, this just means showing that cc(fL)(n) can’t be constant.

3

• For all distinct (x1, y2), (x2, y2) ∈ Sn then f(x1, y2) ̸= b or f(x2, y1) ̸= b (or both).

That is, if you pick two distinct pairs and swap their first elements, for one of the resulting
pairs, it’s not mapped to b.

Finally, we have the following :

Theorem 6. If f has a fooling set Sn, then any protocol P that computes f must have cost(P)(n) =
Ω(log(|Sn|)). This means cc(f)(n) = Ω(log(|Sn|)).

So it’s enough to give a size a fooling set Sn for fL of size cn for some constant c, this would imply
cc(fL)(n) = Ω(log(n)), and thus that L isn’t regular.

4

	Via Pumping Lemma
	Via Streaming
	Via Communication

