
COMS 6998: Algebraic Techniques in TCS (Fall’21) Nov.9, 2021

Lecture 8: Rigidity Lower and Upper Bounds

Instructor: Josh Alman Scribe notes by: Alex Lindenbaum, Yunya Zhao

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most

up-to-date version.

1 A random matrix is very likely to be rigid

Valiant-rigid (Recall from last lecture) A matrix M ∈ RN×N is Valiant-rigid if there is an ε > 0 such

that

RM

( N

log logN

)
> N1+ε.

A random 0/1 matrix is Valiant-rigid with high probability. This means most of the Boolean matrices

are in fact Valiant-rigid.

Proposition 1. If N is large enough, a random matrix M ∈ FN×N2 has RM (N4 ) ≥ N2

20 with high proba-

bility.

Proof. Suppose M ∈ FN×N2 has RM (N4 ) < N2

20 , then we can write M as a low-rank matrix plus a sparse

matrix: M = L + S, where rank(L) ≤ N
4 , sparsity(S) ≤ N2

20 . Now we count the total number of such L

and S.

• Since the rank of L is at most N
4 , we can write L = A×B> where A,B ∈ FN×N/42 , so

#(L) ≤ 22×N×(N/4) = 2N
2/2.

• Since the sparsity of S is at most N2

20 ,

#(S) =

N2/20∑
i=0

(
N2

i

)
≤ N2 ·

(
N2

N2

20

)
≤ N2 · (20e)N

2/20 ≤ 20.4N2
.

Therefore we know the number of such M is

#(M) ≤ #(L) ·#(S) ≤ 2(0.5+0.4)N2
= 20.9N2

.

Since there are in total 2N
2

matrices in FN×N2 , a random matrix M ∈ FN×N2 has RM (N4 ) ≥ N2

20 with

probability at least 1− 2−0.1N2
.
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2 Lower bound(s) for rigidity of Walsh-Hadamard Matrix Hn

Recall that the Walsh-Hadamard matrix is defined as

Hn =

[
1 1

1 −1

]⊗n

∈ {−1, 1}2n×2n .

Equivalently, we can view the columns and rows of Hn to be indexed by n-bit binary strings: for x, y ∈
{0, 1}n,

Hn[x, y] = (−1)〈x,y〉.

Naive Hn rigidity lower bound. Let N = 2n. We observe that Hn has full rank. For any matrix,

changing one of its entries can decrease its rank by at most 1. So a straightforward lower bound can be

given (when working over a ring where the characteristic of the ring 6= 2, e.g., the ring R or Fm)

RHn(r) ≥ N − r.

We will give better lower bounds below.

(Slightly better) Hn rigidity lower bound. Assume r is a power of 2.

RHn(r − 1) ≥ N2

r2
.

Proof. Divide Hn into blocks of size r × r, and there are N
r ×

N
r such blocks.

. . .

. . .

...
...

r

r

±Hlog r

Because of the recursive nature of Hn, each block is ±Hlog r. Since Hlog r is a full rank matrix, this means

each block has full rank. We need to change 1 entry in each block in order to reduce the rank of Hn to

r − 1. Thus the number of entries we need to change is at least N2

r2
.
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(Better than above) Hn rigidity lower bound.

RHn(r) ≥ N2

4r
.

Proof. We use a similar approach as above.

. . .

. . .

...
...

2r

2r

±Hlog 2r

This time, we divide Hn into blocks of size 2r×2r, and there are N
2r ×

N
2r such blocks. Again, all these

blocks are ±Hlog 2r, and they are all full-rank. We need to change r entries in each block to reduce the

rank of Hn to r. Thus the total number of entries changed is N2

4r2
× r = N2

4r .

This is the best lower bound we know so far.

3 Lower bound on rigidity of Discrete Fourier Transform Fp

Let p be a prime number. Recall that the discrete Fourier transform matrix Fp ∈ Cp×p is defined as

Fp[a, b] = ωa·bp , where ωp = e
− 2πi

p .

Not every submatrix of the Hadamard matrix has full rank, e.g., the middle 2 × 2 submatrix of

H2 ∈ {−1, 1}4×4 has rank 1. However, we will show that every submatrix of the discrete Fourier matrix

has full rank, and this will lead to a slightly stronger rigidity lower bound.

Lemma 2. For any r, any S ⊆ {0, 1, ..., p − 1} of size |S| = r, any 0 ≤ k < p − r, the submatrix

Fp|a∈S,b∈{k,k+1,...,k+r−1} has full rank.

Proof. Assume to the contrary that the submatrix is not full-rank, then there exist constants ck, · · · , ck+r−1

such that ∀a ∈ S,
k+r−1∑
b=k

cb · Fp[a, b] = 0 ⇐⇒
k+r−1∑
b=k

cb · (ωap)b = 0.
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We can rewrite this as a polynomial to which we would plug in ωap :

p(x) =
k+r−1∑
b=k

cb · xb.

Properties of p(x) include:

• p is non-zero.

• ωap is a root of p for all r choices of a ∈ S.

However, since the degree of p is (k+ r− 1), and 0 is a root with multiplicity k, there can only be (r− 1)

other roots, which is a contradiction with the second property of p(x).

What if b is not a continuous subset? Let b ∈ T , where T is an arbitrary size-r subset of {0, ..., p−1}.
The polynomial will become

p(x) =
∑
b∈T

cb · xb.

It turns out the lemma still holds because of the following theorem, which we state here without proof.

Theorem 3. Any polynomial p : C→ C with r monomials has < r roots of unity as roots.

Using this theorem and a similar proof as that of the lemma, we can show that any submatrix of Fp
has full rank.

Lower bound on rigidity of Fp. We have shown that any submatrix of Fp has full rank, therefore,

in order to hit all of the (r + 1)× (r + 1) submatrices, the number of entries we need to change is

RFp(r) ≥
N(N − r)
2(r + 1)

log
N

r
, (where N = p).

Plug in r = N
log logN , we have

RFp(
N

log logN
) ≥ N · log logN · log log logN.

Note that this still does not reach the Valiant rigidity of RM ( N
log logN ) ≥ N1+ε. This is the best known

lower bound for any explicit matrix family. If we were to push this bound, we would need to exploit other

properties of the matrices than just the full-rank submatrices, this is because there is an explicit family

for which this bound is already tight.

4 Upper bound on rigidity for Rn

Recall that in Homework 2 we defined the family of matrices Rn ∈ {0, 1}2
n×2n by

Rn[x, y] = 1⇐⇒ 〈x, y〉 = 0.

We can show that Rn is not Valiant-rigid.
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Lemma 4. ∀δ > 0, we can change ≤ 2δn entries per row or column of Rn to make its rank ≤ 2n(1−Θ(δ2)).

Since 2δn = N δ, this means we can change N1+δ entries of Rn to decrease its rank to N1−cδ2 , so Rn
is not Valiant-rigid.

Proof. The idea is to repeatedly apply low-rank updates until the resulting matrix is very sparse. Let k

be a number whose value will be determined at the end of the proof. The procedure goes as follows:

• For each x ∈ {0, 1}n, if |x| ≤ k then set row x of Rn to all zeros.

• For each y ∈ {0, 1}n, if |y| ≤ k then set column y of Rn to all zeros.

Changing one row (column) corresponds to decreasing the rank of the matrix by at most one. Thus, the

total rank change was at most twice the number of n-bit strings with at most k ones:

rank changes by ≤ 2 ·
k∑
i=0

(
n

i

)
.

How many rows did our procedure not zero out? Any such row x would satisfy |x| > k. How many

non-zero entries remain in a fixed row x? y must satisfy

1. Rn[x, y] = 1, i.e. 〈x, y〉 = 0, and

2. |y| > k, otherwise we would have set that entry to 0.

y must have at least |x| zeros in order for property 1 to hold. Therefore, k + 1 ≤ |y| ≤ n − |x|. The

number of such y’s is
n−|x|∑
i=k+1

(
n− |x|
i

)
.

Let k = (1
2 − ε)n. Then the rank change is at most

2 ·
(1/2−ε)n∑
i=0

(
n

i

)
≤ 2 · n ·

(
n

(1/2− ε)n

)
≤ 2n(1−Θ(ε2/ log 1

ε
)),

and the number of non-zero entries per row is at most

(1/2+ε)n∑
i=(1/2−ε)n

(
(1/2 + ε)n

i

)
=

(1/2+ε)n∑
i=(1/2−ε)n

(
(1/2 + ε)n

(1/2 + ε)n− i

)

=

2εn∑
i=0

(
(1/2 + ε)n

i

)
≤ n ·

(
(1/2 + ε)n

2εn

)
≤ 2O(ε)n.

Picking ε such that δ = O(ε), the lemma is proven.
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5 Upper bound on rigidity for Walsh-Hadamard transform

The Walsh-Hadamard Matrix Hn is also not Valiant-rigid. The proof relies on this fact:

Lemma 5. There is a diagonal matrix D ∈ F2n×2n

2 such that

Hn = Rn ×D ×Rn.

To see how this implies that Hn is not rigid, observe that Rn = L+ S for some low-rank and sparse

matrices L and S, respectively. More specifically,

rank(L) = r ≤ 2n(1−Θ(ε2)),

and the row-column sparsity of S is

rc-sparse(S) = s ≤ 2εn.

Expanding the formula for Hn, we get that

Hn = LD(L+ S) + SDL+ SDS.

The rank of LD(L+ S) is the minimum rank between L, D, and L+ S, which is at most r. The rank of

SDL is also at most r. And the row-column sparsity of SDS is at most s2. So Hn is a sum of a low-rank

and low-sparsity matrix!

Proof of Lemma 5. We let D be an arbitrary diagonal matrix and try to characterize RnDRn. For any

x, y ∈ {0, 1}n,

RnDRn[x, y] =
∑

z∈{0,1}n
Rn[x, z] ·D[z, z] ·Rn[z, y]

=
∑

z∈{0,1}n
〈z,x〉=〈z,y〉=0

D[z, z]

=
∑

z∈{0,1}n
〈z,x∨y〉=0

D[z, z] =
∑

z∈{0,1}n
Rn[x ∨ y, z] ·D[z, z].

Say D = diag(d) for some d ∈ F2n
2 . Then this is equal to∑

z∈{0,1}n
Rn[x ∨ y, z] · d[z] = (Rn × d)[x ∨ y].

If we pick d such that (Rd × d)[z] = (−1)|z|, then

(Rn × d)[x ∨ y] = (−1)|x∨y| = (−1)n−|x̄∧ȳ| = (−1)n ·Hn[x̄, ȳ],

where x̄ denotes the complement of x, i.e., x̄i = 1− xi.
Since Hn[x, y] = (−1)|x∧y|, RnDRn is just a scaled permutation of Hn.
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