
COMS 6998: Algebraic Techniques in TCS (Fall’21) Oct 26, 2021

Lecture 7: Kronecker Products, DFT, and Matrix Rigidity

Instructor: Josh Alman Scribe notes by: Sandip Nair, Shengyue Guo

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most

up-to-date version.

1 Kronecker Product

Review of Homework 2. Recall in Problem 1 from Homework 2 we had a matrix R which was defined

recursively as follows:

R1 =

[
1 1

1 0

]
,

Rn =

[
Rn−1 Rn−1
Rn−1 0

]
∈ {0, 1}2n×2n .

We saw how we can compute Rn · v given a vector v ∈ {0, 1}2n in O(2n · n) operations. Here, computing

Rn ·v is equivalent to evaluating an n-variable multilinear polynomial on all inputs in {0, 1}n. This helped

us construct an algorithm for the orthogonal vectors problem.

Besides this matrix, there are many important matrices for which we would want to compute a matrix

vector product as efficiently as possible. For example, the Fourier Transform shows up in fast evaluation

of polynomials. We now define a matrix product which lets us express matrices like R above in a more

elegant way.

Definition 1 (Kronecker product ⊗). Consider two matrices A ∈ Fna×ma and B ∈ Fnb×mb over a

field F. The Kronecker product of these matrices is a matrix A ⊗ B ∈ Fnanb×mamb, and is defined as

∀i ∈ [na], j ∈ [nb], k ∈ [ma], l ∈ [mb],

(A⊗B)[(i, j), (k, l)] = A[i, k] ·B[j, l],

where the entries of A⊗B are indexed by pairs of indices from the original matrices.

This can be thought of as putting copies of the first matrix A in every position of matrix B multiplied

by the entry at that position (matrix-scalar multiplication).

Using the Kronecker product, we can define the matrix R as

R1 =

[
1 1

1 0

]
, Rn = Rn−1 ⊗R1, =⇒ Rn = R⊗n1 ,

where R⊗n1 = R1 ⊗R1 ⊗ · · · ⊗R1︸ ︷︷ ︸
n times

. This is a nice method to recursively define many important matrices.

1

For example, consider the following matrix:

H1 =

[
1 1

1 −1

]
, Hn = H⊗n1 .

This matrix, called the “Walsh Hadamard transform” differs from R in that H1 has a −1 where R1 has

a 0. Computing Hn · v for v ∈ {0, 1}2n is equivalent to evaluating an n-variable multilinear polynomial

on all inputs in {−1, 1}n. Note that by replacing the −1 in H1 by a, we can obtain a matrix for which

the same result holds for all inputs in {1, a}n.

Hence, we can efficiently compute any Kronecker product power times a vector using the same recursive

idea we have seen for the matrix R.

Theorem 2. If A1 ∈ F2×2, and An = A⊗n1 , then given V ∈ F2n, we can compute An · v in O(2n · n) field

operations.

Proof. Same proof as Problem 1 of Homework 2.

2 Discrete Fourier Transform

Next, we look at an important linear transformation called the Discrete Fourier Transform.

Let N = 2n. Let ωN = e−
2πi
N ∈ C. Note that ωN is an N -th root of unity, as it satisfies ωNN = e−2πi = 1.

The Discrete Fourier Transform is a matrix FN ∈ CN×N where

FN [a, b] = ωabN . (1)

There is an O(N logN) algorithm for computing the vector FN · v, popularly known as the Fast Fourier

Transform or FFT.

Theorem 3 (Discrete FFT). Let FN ∈ CN×N be the discrete Fourier transform matrix. Given any

v ∈ CN , we can compute the vector FN · v in O(N logN) operations.

This algorithm makes use of the following recursive structure of the matrix FN .

Claim 4. The discrete Fourier transform FN ∈ CN×N has the following structure:[
FN/2 D1 · FN/2
FN/2 D2 · FN/2

]
,

where the columns are rearranged as 0, 2, 4, · · · , (N −2); 1, 3, 5, · · · , (N −1), and the rows are still ordered

as 0, 1, 2, · · · , N − 1, and D1, D2 ∈ CN/2×N/2 are two diagonal matrices.

Proof. The left two block matrices consist of even numbered columns, and the right two block matrices

consist of odd numbered columns. We will use a to denote the index of the columns, and b to denote the

index of the rows.

1. Top-left matrix: Since the top-left matrix have columns a = 0, 2, 4, · · · , N − 2, and rows b =

0, 1, 2, · · · , N/2− 1, from the definition of FN in Eq. (1), the top-left matrix has the form:[
ωabN

]b∈{0,1,2,··· ,N/2−1}
a∈{0,2,4,··· ,N−2}

.

2

Let a′ = a
2 since a is even. The top-left matrix is equivalent to[

ω2a′b
N

]b∈{0,1,2,··· ,N/2−1}
a′∈{0,1,2,··· ,N/2−1}

=

[
ωa
′b
N/2

]b∈{0,1,2,··· ,N/2−1}
a′∈{0,1,2,··· ,N/2−1}

(∵ ω2
N = ωN/2)

= FN/2.

2. Bottom-left matrix: The bottom-left matrix have columns a = 0, 2, 4, · · · , N − 2, and rows

b = N/2, N/2 + 1, · · · , N − 1, so it has the following form:[
ωabN

]b∈{N/2,N/2+1,··· ,N−1}

a∈{0,2,4,··· ,N−2}
=

[
ωa
′b
N/2

]b∈{N/2,N/2+1,··· ,N−1}

a′∈{0,1,2,··· ,N/2−1}
(by defining a′ = a/2)

=

[
ω
a′b′+N

2
a′

N/2

]b′∈{0,1,2,··· ,N/2−1}
a′∈{0,1,2,··· ,N/2−1}

(by defining b′ = b−N/2)

=

[
ωa
′b′

N/2

]b′∈{0,1,2,··· ,N/2−1}
a′∈{0,1,2,··· ,N/2−1}

(∵ (ωN/2)
N/2 = 1)

= FN/2.

3. Top-right matrix: The top-right matrix have columns a = 1, 3, 5, · · · , N − 1, and rows b =

0, 1, 2, · · · , N/2− 1, so it has the following form:[
ωabN

]b∈{0,1,2,··· ,N/2−1}
a∈{1,3,5,··· ,N−1}

=

[
ωbN · ωabN

]b∈{0,1,2,··· ,N/2−1}
a∈{0,2,4,··· ,N−2}

=

[
ωbN · ωa

′b
N/2

]b∈{0,1,2,··· ,N/2−1}
a′∈{0,1,2··· ,N/2−1}

(by defining a′ = a/2)

= D1 · FN/2,

where D1 ∈ CN/2×N/2 is a diagonal matrix defined as

D1[b, b] = ωbN .

4. Bottom-right matrix: Carrying out a similar transformation, we can define D2 = −D1 (since

ω
N/2
N = −1), and the bottom-right matrix is exactly D2 · FN/2.

Once we have written FN like this, we can cosntruct a recursive algorithm to compute FN · v for a

given vector v.

Proof of Theorem 3. Fast Fourier Transform: Given v ∈ CN , to compute FN · v, the algorithm works

as follows:

1. Write v =

[
v1
v2

]
where v1, v2 ∈ CN/2.

2. Compute u1 = FN/2 · v1 and u2 = FN/2 · v2 recursively.

3

3. Compute D1 · u2 and D2 · u2.

4. Output

[
u1 + D1u2
u1 + D2u2

]
.

The correctness of this algorithm directly follows from Claim 4.

Running time: Since each computation of input dimension N requires two recursive computations of

dimensions N/2 along with matrix-vector multiplications and vector additions, which take O(N) time

each, we have the following recurrence for the running time:

T (N) = 2 · T (N/2) + O(N)

= O(N logN).

Notice how this algorithm is almost the same as computing R⊗n ·v, with the exception of the diagonal

matrices D1, D2. There are a few more matrices which can be multiplied by a vector efficiently, and they

follow a similar procedure.

Question: Is this algorithm optimal? It is conjectured that O(N logN) time is necessary.

Next, we introduce the concepts of matrix rigidity in order to prove lower bounds on these kinds of

matrix-vector computations. If we can show that a given matrix is ”rigid”, then we cannot multiply it

by a vector in linear time. For this, we have to first introduce the model in which we shall be working

in, which is the model of linear circuits.

3 Linear Circuit

We first define linear circuits over field F.

Definition 5 (Linear circuits over F). There are N inputs and N outputs from F. Each gate has fan-in

2, and computes a F-linear combination of inputs.

See Figure 1a for an illustration of a F-linear combination, and see Figure 1b for an illustration of a

linear circuit.

a b

3a + 0.5b

3 0.5

(a) Example of a F-linear combination.

x1 x2 · · · xN

y1 y2 · · · yn

(b) Example of a linear circuit.

4

Parameters. Any circuit C corresponds to matrix M ∈ FN×N , and C outputs y = Mx on input

x ∈ FN . We characterize a circuit using the following parameters:

• Size: # of wires

• Depth: length of the longest path from input to output

Question: For a given matrix M , what size of the circuit is needed to compute M?

We have the following three known facts about the size of the circuit.

Fact 6. Every M ∈ FN×N can be computed by a circuit of size O(N2).

We can construct an O(N2)-size circuit by naively transforming M · v into a circuit.

Fact 7. Every M ∈ FN×N has a circuit of size O(N2/ logN).

(Not proved in class.)

Fact 8. RN , HN , FN has circuits size O(N logN), depth O(logN).

This follows from the arguments in Section 1 and 2.

Open Question: Find an explicit family of matrices which do not have O(N) size and O(logN) depth.

Here “explicit family” means a family of matrices {M1,M2,M3, · · · } such that for any MN ∈ FN×N

there is a deterministic poly(N) time algorithm which outputs MN .

• Why depth O(logN)?

Most matrices cannot be computed by o(logN)-depth. The fan-in of a gate is 2, so when the depth

is d, a circuit has at most 2d inputs, in order to allow N inputs, we need at least O(logN) depth.

• Why deterministic?

A random 0/1 matrix needs Ω(N)-size and Ω(logN)-depth with high probability.

• Why poly(N) time?

The problem is still open even if we relax it to either 2o(N) time, or poly(N) non-deterministic time.

4 Rigidity

The notion of matrix rigidity was introduced to address the previous open question.

Definition 9 (Rigidity). Given a matrix M ∈ FN×N and a positive integer r, we define the rank r

rigidity of M as RM (r) := min #of entries of M one must change to make its rank ≤ r.

Valiant’s Approach. In the 70’s, Valiant proposed a possible approach to find an explicit family of

matrices that do not have O(N)-size and O(logN)-depth circuits. His approach consists of two steps:

1. Show that if a matrix can be computed by a O(N)-size O(logN)-depth circuit, then it is non-rigid.

2. Show that there exist some explicit family of matrices that are rigid.

Together these two steps will construct the explicit family that we aim for. Valiant proved Step 1, which

we will show shortly. However, Step 2 (finding an explicit family of rigid matrices) is still a big open

problem today!

5

4.1 Proof of Valiant’s Step 1

Next we show the proof of Step 1. We first prove a helpful lemma.

Lemma 10. Let G be a directed acyclic graph with s edges and depth d = 2k − 1. Then there is a set of
s
k edges whose removal makes G have depth ≤ d−1

2 = 2k−1 − 1.

Proof. Since G is a directed acyclic G, there exists a depth function D : V (G)→ {0, 1, 2, · · · } such that

for any edge (a, b) ∈ E(G), D(a) < D(b). G has depth ≤ d is equivalent to say that the range of the

depth function is {0, 1, · · · , d}. So in our case the depth function is

D : V (G)→ {0, 1, · · · , 2k − 1}.

We partition the edges of G to E(G) = E1 ∪ E2 ∪ · · ·Ek such that (a, b) ∈ Ei if D(a) and D(b) first

differ in the i-th bit. There must exist an i∗ such that

|Ei∗ | ≤ s/k.

We remove the edges in Ei∗ .

Consider the new depth function D′ : V (G)→ {0, 1, · · · , 2k−1−1} such that D′(a) is D(a) without the

i∗-th bit, e.g., if D(a) = (c1, c2, · · · , ck) ∈ {0, 1}k, then D′(a) = (c1, c2, · · · ci∗−1, ci∗+1, · · · ck) ∈ {0, 1}k−1.
D′ is a valid depth function since for any edge (a, b) ∈ Ej for j 6= i∗, D(a) and D(b) first differed in

the j-th bit, and D′(a) and D′(b) still first differ there. Thus after removing Ei∗ , the graph G has depth

2k−1 − 1.

Now we are ready to prove the main theorem of Valiant’s Step 1.

Theorem 11. For any s, d, t, if M ∈ FN×N has circuit size s, depth d, then one can change N · 2d/t
entries of M to make its rank ≤ s log t

log d−log t .

Proof. W.l.o.g. assume s, d, t, N are all powers of 2. Let C be the circuit for M . Apply Lemma 10 to the

circuit C for log t times. In this way we can find a set T of |T | ≤ s log t
log d−log t edges such that the removal

of T makes C have depth ≤ d/t.

Since C has low depth, each output depends on at most 2d/t inputs, so the corresponding matrix of C

has ≤ 2d/t non-zero entries per row, and in total it has ≤ N · 2d/t non-zero entries. Each edge in T that

we remove was computing some linear combinations of the inputs, thus removing one edge corresponds

to a rank-1 update to M .

Plug in d = c · logN , s = O(N), and set t = c
ε , we get that if the matrix M can be computed by a

size-s depth-d circuit, then RM (O(N
log logN)) ≤ N1+ε.

We say a matrix A is “Valiant-rigid” if RA(O(N
log logN)) > N1+ε. Thus we have shown that if a matrix

can be computed by a O(N)-size O(logN)-depth circuit, then it is not Valiant-rigid. This finishes the

proof of Step 1 of Valiant’s approach.

6

	Kronecker Product
	Discrete Fourier Transform
	Linear Circuit
	Rigidity
	Proof of Valiant's Step 1

