
COMS 6998: Algebraic Techniques in TCS (Fall’21) Oct 19, 2021

Lecture 6: HW1 Review, Fine-Grained Complexity

Instructor: Josh Alman Scribe notes by: Tsung-Ju Chiang, Chengyue He

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most

up-to-date version.

1 Topics

• HW1 Review (omitted here)

• Fine-Grained Complexity

2 Fine-Grained Complexity

2.1 SAT, ETH and SETH

In the history of complexity theory, one of the most common hardness assumption is P 6= NP . We

need this assumption for arguing there is no polynomial time algorithm for various problems. However,

people usually need stronger assumptions to show the hardness for problems even in P . We will show

the connections between several famous such assumptions using reductions.

First, we give the definition of the CNF-SAT problem (clausal normal form satisfiability), which is

the first one proven to be NP-complete.

A propositional logic formula is built by variables x1, x2, . . . , xn, operations AND (∧), OR (∨), NOT

(¬) and parentheses. A formula is said to be satisfiable if it can be made TRUE by assigning appropriate

logical values (i.e. TRUE, FALSE) to its variables. The Boolean satisfiability problem (SAT) is, given a

formula, to check whether it is satisfiable. A literal is either a variable xi, or its negation ¬xi. A clause

is a disjunction (∨) of literals (or a single literal). A formula is in clausal normal form (CNF) if it is a

conjunction (∧) of clauses (or a single clause). For example,

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x4) ∧ (¬x3)

is a CNF formula, and it is satisfiable by the input (x1, x2, x3, x4) = (T, F, F, T).

If every clause has exactly k literals, we call the corresponding SAT problem “k-SAT”. Denote the

number of variables by n, and the number of clauses by m. We assume m = poly(n). In the literature,

we have the following results:

Theorem 1. 2-SAT∈ P , but k-SAT is NP-hard for every k ≥ 3.

By this result, pick k = 3, then there is no polynomial time deterministic algorithm for solving 3-SAT

assuming P 6= NP . The best known upper bound for 3-SAT is due to Hansen et al. [HKZZ19], which

achieves O(1.307n). For general k-SAT, the best known upper bound is 2(1−
O(1)
k

)·n, by [PPSZ05].

On the opposite side, two hardness assumptions are proposed:

1

Conjecture 2 (Exponential Time Hypothesis). There exists s > 0 such that 3-SAT can not be solved in

O(2sn) time.

Conjecture 3 (Strong Exponential Time Hypothesis). ∀ε > 0, there exists k ∈ Z, such that k-SAT can

not be solved in time O(2(1−ε)n).

Showing SETH implies ETH is not trivial, we will give a road map about this reduction. A typical

trick to transform k-SAT to 3-SAT is that for each clause:

(x1 ∨ x2 ∨ · · · ∨ xk), (1)

we introduce auxiliary variables y1, y2, . . . , yk−3 and write a new formula:

(x1 ∨ x2 ∨ y1)∧ (¬y1 ∨ x3 ∨ y2)∧ (¬y2 ∨ x4 ∨ y3)∧ · · · ∧ (¬yk−4 ∨ xk−2 ∨ yk−3)∧ (¬yk−3 ∨ xk−1 ∨ xk). (2)

(1) and (2) are equisatisfiable, i.e., one is satisfiable if and only if the other is. However, for an n variables

k-SAT, by the above transform, we create a 3-SAT with N = n+m(k− 3) variables, which does not give

the correct reduction (SETH⇒ETH) when m = ω(n).

The following sparsification lemma overcomes the above issue:

Lemma 4 ([IP01]). ∀δ > 0 and ∀k, there is an algorithm that runs in time O(2δn), which takes a k-CNF

f as input, and outputs k-CNF formulas f1, f2, . . . , f2δn such that

f is satisfiable ⇐⇒ at least one of fi is satisfiable,

and each fi has at most cn clases, where c = (kδ)O(k).

Proposition 5. SETH⇒ETH.

Proof. Suppose we can solve 3-SAT in time O(2sn) for arbitrary small s > 0.

For any k, and any k-CNF f , we can transform f to f1, f2, . . . , f2δn by Lemma 4 such that each k-CNF

has at most cn clauses. Then, we further transform each fi to gi by the trick (2). Notice that each gi has

N ≤ n + cn(k − 3) variables, we can check if gi is satisfiable in time O(2sN), thus we can check if there

exists a satisfiable fi in time O(2δn+s(ck+1)n). Pick δ = 1
2 and then pick s < 1

2(ck+1) , then we can check if

f is satisfiable in time 2(1−ε)n for some ε > 0, which let SETH fail.

2.2 SETH and OVC

We now give some problems in P that we can derive hardness results using SETH. The first such problem,

which has been introduced before, is Orthogonal Vectors (OV). Here is the hardness result we have:

Conjecture 6 (Orthogonal Vectors Conjecture). For ∀ε > 0, when d = ω(log n), there is no O(n2−ε)

time algorithm for OV with 2n vectors of dimension d.

OVC can be shown assuming SETH:

Proposition 7. SETH⇒OVC. More specifically, if OV can be solved in time O(n2−ε), then k-SAT can

be solved in time O(2(1−ε/2)n · poly(n)).

2

Proof. The idea is to reduce k-SAT to OV and use the hardness assumption for k-SAT. Fix k, for a

k-SAT instance with n variables x1, x2, . . . , xn, we split them into

S1 = {x1, . . . , xn
2
}, S2 = {xn

2
+1, . . . , xn}.

Denote the clauses by C1, C2, . . . , Cm, then there are 2n/2 different assignments for each subset:

a : S1 → {True, False}n/2,

b : S2 → {True, False}n/2.

For each assignment, we make vectors va, ub ∈ {0, 1}m such that

va[i] =

{
0, if a satisfies Ci no matter how S2 is assigned,

1, otherwise.
.

ub[i] =

{
0, if b satisfies Ci no matter how S1 is assigned,

1, otherwise.
.

Then we obtain

< va, ub >= 0 ⇐⇒ The assignment a→ S1 and b→ S2 is satisfiable.

In fact, < va, ub >= 0 if and only if for every i, at least one of va[i] and ub[i] is 0. That is to say, for

every clause Ci, at least one of a and b makes Ci satisfiable, this means the whole formula is satisfiable.

Now suppose OV can be solved in time (2n/2)2−ε = 2n−(nε/2), then k-SAT can be solved in time

O(m · 2
n
2 + 2n−(nε/2)) = O(2(1−ε/2)n · poly(n)),

which contradicts with SETH.

In fact, the current best algorithm for SAT is achieved by reducing to OV, and its running time is

2
(1− 1

O(logMN)
)N

for instances with N variables and M clauses.

2.3 Closest Pair and Nearest Neighbor Search

We introduce another two problems whose hardness are related to SETH.

Closest Pair: Given x1, x2, . . . , xn, y1, y2, . . . , yn ∈ {0, 1}d, and given k ∈ Z+, find i, j ∈ [n] such that

||xi − yj ||1 ≤ k.

Nearest Neighbor Search: Given x1, x2, . . . , xn, y1, y2, . . . , yn ∈ {0, 1}d, and given k ∈ Z+, for

every i ∈ [n], find a j ∈ [n] such that ||xi − yj ||1 ≤ k.

Intuitively, NNS is harder than CP since solving NNS in particular solves CP. In the last lecture, we

have seen that, assuming SETH, CP can not be solved in time O(n2−ε), thus NNS can not be solved in

this time either. In fact, the following proposition tells us exactly the same hardness will happen in NNS:

Proposition 8. If one can solve CP in time O(n2−ε) for some ε > 0, then one can also solve NNS in

time O(n2−ε/2).

3

Proof. Partition the inputs into
√
n groups of size

√
n:

y1, . . . , y√n y√n+1,...,y2
√
n

. . . yn−
√
n+1, . . . , yn

x1, . . . , x√n M11 M12 . . . M1,
√
n

x√n+1, . . . , x2
√
n M21 M22 . . . M2,

√
n

. . .

xn−
√
n+1, . . . , xn M√n,1 M√n,2 . . . M√n,

√
n

Fix k, and start from M11, call the oracle of CP to find the closest pair from the first two groups. If

there exists such pairs (xi, yj), we output the nearest neighbor (xi, yj) and remove xi from the first

group. After we remove all such x from the first group, we move to M12 and call the oracle of CP,

and so on. This procedure terminates when we find the nearest neighbor to xi for all i ∈ [n]. Notice

that we use the CP oracle 2n times, thus if each oracle costs
√
n
2−ε

= n1−
ε
2 , we can solve NNS in time

2n · n1−ε/2 = 2n2−ε/2.

References

[HKZZ19] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-sat algorithms

using biased-ppsz. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory

of Computing, pages 578–589, 2019.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer

and System Sciences, 62(2):367–375, 2001.

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved

exponential-time algorithm for k-sat. Journal of the ACM (JACM), 52(3):337–364, 2005.

4

	Topics
	Fine-Grained Complexity
	SAT, ETH and SETH
	SETH and OVC
	Closest Pair and Nearest Neighbor Search

	References

