
COMS 6998: Algebraic Techniques in TCS (Fall’21) Oct 12, 2021

Lecture 5: OV and Closest Pair problems, Prob Poly for MAJ

Instructor: Josh Alman Scribe notes by: Dean Hirsch, Elena Gribelyuk

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most

up-to-date version.

1 Useful Bounds

Last lecture we used a Chernoff bound for the direction that’s the reverse of the usual one used. We

mention here the bounds we’ll be using for reference.

Two-sided Chernoff bound. Suppose x1, ..., xn are independent Bernoulli(p) random variables,

meaning xi = 1 with probability p, and xi = 0 with probability 1− p. Then:

e−9δ
2pn ≤ Pr

[∣∣∣∣∣
n∑
i=1

xi − np

∣∣∣∣∣ > δpn

]
≤ e−δ2pn/3.

A bound on binomial coefficients. For any 0 < k < n the following inequalities hold:(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

In particular, it follows that
(
n
k

)
=
(
Θ
(
n
k

))k
.

2 Orthogonal Vectors Problem

Definition 1 (Orthogonal Vectors Problem). Given x1, ..., xn, y1, ..., yn ∈ {0, 1}d, determine whether

there exist i, j such that 〈xi, yj〉 = 0. Note that the dot product is taken over Z.

Note that asking whether 〈xi, yj〉 = 0 is the same as asking if in every coordinate, at least one of xi
and yj is zero.

We focus on the case where d = c log n for some constant c. Our goal is to show that we can solve

the problem in time n
2− 1

O(log c) . Compare this with the naive algorithm, that iterates over all n2 pairs of

vectors and computes their dot product in time O(d) each. This algorithm requires O(n2d) = O(cn2 log n)

time.

We start by trying the matrix multiplication technique. We form the matrix X ∈ {0, 1}n×d whose

rows are the xi’s, and a corresponding matrix Y ∈ {0, 1}n×d whose rows are the yj ’s. Compute the

n × n matrix XY T . This computes all inner products by the definition of matrix multiplication. If the

dimensions of X and Y were n × n, this would produce an O(n2.373)-time algorithm, but we’re aiming

for a even smaller time bound. To this end, we’ll rely on the fact that the matrices are rectangular, and

in this case there are better known algorithm for the matrix multiplication.

1

Theorem 2 (Fast rectangular matrix multiplication [Cop82]). There is an algorithm to multiply an

n× n0.17 matrix with an n0.17 × n matrix in O(n2 log2 n) operations.

This is close to as quickly as we can hope, as the output is of size n2, and therefore n2 is an obvi-

ous lower bound for the time required. We note that there’s also the following theorem, which proves

somewhat better bounds. However, we will not need this result.

Theorem 3 (Improved fast rectangular matrix multiplication, [GU18]). n × n0.3 by n0.3 × n matrix

multiplication can be done in n2+o(1) operations.

The general idea: The trick we’ll need is to reduce the problem to matrix multiplication of smaller

size. Specifically, let s = na (where we’ll later see that a = 1/O(log c) suffices), and group the inputs into

sets X1, ..., Xn/s, Y1, ..., Yn/s of s points each. Our goal is to construct, for each Xi, a vector vi ∈ Fn0.16

2 ,

and a corresponding vector uj ∈ Fn0.16

2 for each Yj , such that with probability at least 1
3 , 〈vi, uj〉 = 1

(over F2) if and only if there exists an orthogonal pair of vectors (over Z) in the group Xi × Yj .
Suppose we managed to do that. Then we could form the matrix V ∈ F(n/s)×n0.16

2 whose rows are

the vi’s, and the matrix U ∈ F(n/s)×n0.16

2 whose rows are the uj ’s, and compute UV T which computes all

these dot products, in time O
(
n2

s2
log2 ns

)
= O(n2−2a · log2 n) = O

(
n
2− 1

O(log c)

)
, as promised.

2.1 Constructing the vi, uj

Our plan is to construct, for each x, a vector x′ ∈ Fn0.16

2 (and similarly construct a y′ for each y), such that

〈x′, y′〉F2 = 1 if and only if 〈x, y〉Z = 0, with error probability at most 1
3s2

. We can then let vi =
∑

x∈Xi
x′

and uj =
∑

y∈Yj y
′, and get:

〈vi, uj〉 = 〈
∑
x∈Xi

x′,
∑
y∈Yj

y′〉 =
∑
x∈Xi

∑
y∈Yj

〈x′, y′〉.

This last sum will count, with error at most 1
3 (by the union bound on the s2 events, each of which

has its error bounded by 1
3s2

), the parity of the number of different (x, y) ∈ Xi × Yj with 〈x, y〉Z = 0.

To adjust this to check whether or not we have any orthogonal pair, we can use the method of random

subsampling we’ve seen in previous problems: we drop each vector with probability 1
2 , and in the case

that there is any orthogonal pair, there must be at least some probability that the number of remaining

orthogonal pairs is odd. We henceforth assume that if any orthogonal pair exist among Xi × Yj , then

there are an odd number of orthogonal pairs.

2.2 Constructing correspondence x ∈ {0, 1}d → x′ ∈ Fn0.016

2

Define the following AC0 circuit representing a function F : {0, 1}2d → {0, 1} (using x, y to denote

length-d vectors):

2

x[1] y[1] x[2] y[2] x[d] y[d]

AND AND AND

OR

NOT

Claim 4. F (x, y) outputs 0 if and only if x, y ∈ {0, 1}d are orthogonal over Z.

We can now use a result we’ve seen in Lecture 4 on the probabilistic degree of OR: Let p be a

probabilistic polynomial for OR of error ε and degree dlog 1
εe. Then we can replace the OR in the above

expression for F , to get the polynomial

q(x, y) = 1− p(x[1]y[1], x[2]y[2], ..., x[d]y[d]).

Observation 5. q(x, y) defines a probabilistic polynomial for F , with error ≤ ε and degree deg(q) =

2 deg(p) = 2dlog 1
εe.

For our purposes we’ll take ε = 1
3s2

.

To form the corresponding x′, y′, we do the following: expand the polynomial q(x, y) into monomials.

Then group separately the parts corresponding to entries of x and those of y. For example, if the

polynomial was q(x, y) = x[1]y[1]x[3]y[3] + x[7]y[7] + ..., we would take x′ = (x[1]x[3], x[7], ...) and

y′ = (y[1]y[3], y[7], ...).

What is left is to show that q has at most n0.16 monomials. The time for constructing x′, y′ can then

be seen to also be bounded by O(n0.16).

2.3 Bounding the length of x′

Observation 6. q has degree 2dlog 1
εe = 2dlog(3s2)e = 2dlog(3n2a)e. For large enough n this is ≤

3 log(n2a) = 6a log n. Further, q has 2d = 2c log n inputs.

Since we are free to assume that the polynomial is multilinear (as for every input variable z ∈ {0, 1},
we have z = z2 = z3 = ...), we can bound the number of monomials by the number of subsets of size at

most deg(q) of the 2d inputs:

#monomials ≤
6a logn∑
i=0

(
2c log n

i

)
≤ (6a log n)

(
2c log n

6a log n

)
,

where we used the fact that, assuming a < c
3 , the largest of the binomial coefficients in the sum is the

last one. Recall the general bound
(
n
k

)
≤
(
en
k

)k
from earlier. Plugging this in, we get:

#monomials ≤ (6a log n)

(
e · 2c log n

6a log n

)6a logn

= (6a log n)
(ec

3a

)6a logn
= nO(a log c

a).

3

If we pick a = 0.001
log c , then this will be at most n0.16. This concludes the algorithm.

3 Closest Pair Problem

Next, we apply a similar technique to solve the closest pair problem, defined as follows:

Definition 7 (Closest Pair Problem). Given input vectors x1, ..., xn, y1, ..., yn ∈ {0, 1}d, and t ∈ Z,

determine whether or not there exist i, j such that HammingDist(xi, yj) ≤ t.

HammingDist(x, y) equals the number of coordinates i where x[i] 6= y[i].

Note that after we determine if such a pair exists in x1, ..., xn, y1, ..., yn, finding the precise pair (xi, yj
such that HammingDist(xi, yj) ≤ t is easy: we simply apply some version of binary search. Thus, it

suffices for us to come up with an efficient problem for the decision problem.

In particular, we may be interested in this problem due to its applications to nearest-neighbor search.

Our goal is to show that we can solve the problem in time n
2− 1

O(c log2 c) . Also, note that the naive algorithm

– which iterates over all n2 pairs of vectors and computes their Hamming distance in time O(d) each, takes

a total of O(n2d) time. Our algorithm will provide an improved runtime for the closest pair problem.

Observation 8. We cannot hope for a much better running time than this, if we assume the Strong

Exponential Time Hypothesis (SETH), from which it follows that for all ε > 0 there exsits some c, such

that the closest pair problem with d = c log n cannot be solved in time O
(
n2−ε

)
.

3.1 Algorithm

Just as what we did in our solution of the orthogonal vectors problem, we will proceed by taking the

following steps:

1. Design a circuit that tests whether the Hamming Distance between any two inputs xi, yj is at most

t. Note that this circuit will require a MAJ gate, as we will show below.

2. Since we don’t yet have a probabilistic polynomial for MAJ, we will need to define one as part of

our construction.

3. Design a probabilistic polynomial for the overall circuit.

4. Proceed exactly as we did in solving the orthogonal vectors problem (divide up polynomial into

vectors, group vectors, perform matrix multiplication to check if any entry is 1).

First, let us design an appropriate circuit for testing the Hamming Distance between any two vectors

x, y ∈ {0, 1}d.

4

x[1] y[1] x[2] y[2] x[d] y[d]

XOR XOR XOR

MAJ

NOT

0t 1d−t

In this circuit 0t denotes a vector of t zeroes, and 1d−t denotes a vector of d − t ones, so the MAJ gate

takes m = 2d inputs.

Note that this circuit is no longer AC0. Last time, we only proved a lower bound for the degree lower

bound for MAJ. Now, we will need to explicitly construct a probabilistic polynomial for MAJ. Once we

have accomplished this step, our algorithm will be to simply replace the MAJ gate with the polynomial

we construct, and proceed exactly as we did in solving the orthogonal vectors problem above.

3.2 Probabilistic polynomial for MAJ

At this point, we make the following generalized claim:

Lemma 9. The threshold function F : {0, 1}m → {0, 1} where

F =

{
1 if

∑
i xi ≤ t,

0 otherwise,

has a probabilistic polynomial with error ε and degree O(
√
m log 1

ε) over R.

Note that the majority function simply uses F with t = m/2, and in the above circuit the majority

function has m = 2d inputs.

Next, we will state two crucial ingredients for our probabilistic polynomial. To give some high-level

motivation for our next steps, it’s important to note that our algorithm will be recursive in nature;

in particular, we will take a polynomial for computing a threshold function on a smaller number of

randomly-sampled inputs, and use it to construct a polynomial for computing a threshold function on a

larger number of inputs. So, we will define a probabilistic polynomial such that if the input is very far

from the threshold, the polynomial is very likely to output the correct answer, and if the input is close

to the threshold, there might be a larger possibility of error.

Claim 10. For x ∈ {0, 1}m, let x̃ ∈ {0, 1}
m
k be a random sample of entries of x. Then, Pr[|x| − k · |x̃| 6∈

[−a, a]) ≤ ε
3 if constants c and k are chosen to be large enough, a = c

√
m log 1

ε , where we denote

|x| =
∑

i xi.

5

This statement is proved using Chernoff bound. Observe that this statement suggests that after

randomly sampling m
k entries of any given x vector, the difference between the number of 1’s in x and

the number of 1’s in x̃ must be between −a and a with high probability. At this point, we will introduce

the second ingredient in our construction: we will define a deterministic polynomial which will correctly

compute on inputs x where |x| ∈ [t− 2a, t+ 2a].

Claim 11. There exists a polynomial A : {0, 1}m → R such that

A(x) =

{
1 if |x| ∈ [t− 2a, t],

0 if |x| ∈ (t, t+ 2a],

and the degree of A is ≤ 4a+ 1.

Note that we do not require anything when x is not in [t− 2a, t+ 2a].

How will we construct such a polynomial A? We use polynomial interpolation: there is a polynomial

q : R → R with deg(q) ≤ 4a + 1 such that q(z) = 1 when z ∈ {t − 2a, ..., t} and q(z) = 0 when

z ∈ {t+ 1, ..., t+ 2a}. Then, we let

A(x) = q

(
n∑
i=1

x[i]

)
, deg(A) ≤ 4a+ 1.

Finally, we are ready to formally state our recursive construction for the probabilistic polynomial of

the majority function, proceeding as follows:

1. Recursively draw polynomials from two probabilistic polynomials

R ∈ P1, S ∈ P2,

where P1 is the probabilistic polynomial which tests |x̃| ≤ t+a
k , and P2 is the probabilistic polynomial

which tests |x̃| ≤ t−a
k . Both P1 and P2 take m

k inputs, and both of them have error ε/3.

2. Our probabilistic polynomial is defined as

P (x) = A(x)R(x̃)(1− S(x̃)) + S(x̃).

It suffices for us to show the correctness of our probabilistic polynomial, i.e., that P correctly computes

the threshold function F with error ε, and bound the degree of P .

Proof of Lemma 9. Correctness. Assume R, S output the correct value for testing |x̃| ≤ t+a
k and

|x̃| ≤ t−a
k respectively. This assumption holds with probability ≥ 1− 2ε

3 . Consider four cases:

1. If |x̃| > t+2a, then by Claim 10 |x̃| > t+a
k with probability ≥ 1− ε

3 , so we get that R(x̃) = S(x̃) = 0

and P (x) = 0.

2. If |x| ∈ (t, t+ 2a], then A(x) = 0 and |x̃| > t−a
k , so S(x̃) = 0, and thus P (x) = 0.

3. If |x| ∈ [t− 2a, t], then A(x) = 1 and |x̃| < t+a
k , so R(x̃) = 1, and so P (x) = 1.

4. If |x| < t− 2a, then S(x̃) = 1, so P (x) = 1.

6

Using Union bound, the total error is bounded by 2ε
3 + ε

3 = ε.

Degree. As for the degree, denote by D(m, ε) the degree of the resulting polynomial. By the recursive

definition, we have

D(m, ε) ≤ 2D
(m
k
,
ε

3

)
+ 4a+ 1

We will prove by induction that D(m, ε) ≤ b
√
m log 1

ε for a large enough constant b. The requirement

by the induction step, using the recursive definition (recall a = c
√
m log 1

ε):

D(m, ε) ≤ 2b

√
m

k
log

3

ε
+ 4c

√
m log

1

ε
≤
(

2b√
k

+ 4c

)√
m log

3

ε
.

So we require

b >
2b√
k

+ 4c+ log 3,

which will be satisfied by a large enough b, as promised, as long as ε is bounded away from 1. It is noted

that any ε ≥ 1
2 can be reached trivially by randomly choosing between the two constant polynomials

{0, 1}, and we therefore do not lose anything by assuming ε < 1
2 .

References

[Cop82] Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM Journal on Computing,

11(3):467–471, 1982.

[GU18] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers

of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1029–1046. SIAM, 2018.

7

	Useful Bounds
	Orthogonal Vectors Problem
	Constructing the vi, uj
	Constructing correspondence x{0,1}d x'F2n0.016
	Bounding the length of x'

	Closest Pair Problem
	Algorithm
	Probabilistic polynomial for MAJ

	References

