
COMS 6998: Algebraic Techniques in TCS (Fall’21) Oct 5, 2021

Lecture 4: Probabilistic Polynomials and The Polynomial Method

Instructor: Josh Alman Scribe notes by: Ahmed Shaaban, Yunfeng Guan

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most

up-to-date version.

1 Overview

In this lecture, we will introduce the Polynomial Method, and see how it can be applied to solve the

following two problems.

1. AC0[⊕] lower bounds.

2. Algorithm design: Orthogonal Vectors, Nearest Neighbor. (next lecture)

2 AC0[⊕] lower bounds

2.1 Circuit class AC0

Definition 1. The AC0 circuit class is the set of all functions that can be computed by circuits

- with AND, OR, NOT gates,

- of unbounded fan-in,

- with polynomial size and constant depth.

The size of a circuit is the number of gates in the circuit.

The depth of a circuit is the length of the longest path from the input to the output.

The fan-in of a circuit is the largest number of inputs of a gate.

A natural and important question to ask for a specific circuit class is: What kind of functions can be

computed?

Positive results: many important functions are in AC0, e.g., Add (arithmetic addition for binary repre-

sentations), polynomial-size CNF/DNF formulas (computable with depth-2 AC0 circuits).

However a negative result is given by the next theorem:

Theorem 2 ([FSS81]). PARITY /∈ AC0.

To prove this theorem the switching lemma was used. See [AB09, Ch.14] for a detailed proof.
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2.2 AC0[⊕]: Extension of AC0

Since AC0 cannot compute PARITY, one can try to empower it by allowing new gates.

Definition 3. AC0[⊕] is the circuit class in which a circuit is under the restriction of AC0, but allowed

to use PARITY gates.

However, the following theorem, also the main theorem to prove in this lecture, shows that this circuit

class is still not powerful enough to compute all functions.

Theorem 4 (Main theorem, [Raz87, Smo87]). MAJ /∈ AC0[⊕].

2.3 Relations between circuit classes

AC0
add ⊕

AC0[⊕]
add MODm1 , · · · ,MODmk

ACC0 ⊆ TC0

add MAJ

Known hardness results:

• PARITY /∈ AC0.

• MAJ /∈ AC0[⊕].

• ENP 6⊆ ACC0 ([Wil11]). ENP is the class of problems solvable in exponential time with an NP oracle.

• There is no known hardness result for TC0.

3 Probabilistic Polynomials and The Polynomial Method

Definition 5. Given a Boolean function f : {0, 1}n → {0, 1}, a probabilistic polynomial over F with error

ε for f is a distribution P on polynomials p : Fn → F such that

∀x ∈ {0, 1}n : Pr
p∼P

[p(x) = f(x)] ≥ 1− ε.

In addition we have two concepts concerning probabilistic polynomials.

• The degree of a probabilistic polynomial deg(P) is the maximum degree of all polynomials in the

support of P.

• The ε-probabilistic degree of a Boolean function f is the minimum degree of all probabilistic poly-

nomials for f with error ε.

Probabilistic polynomials in fact have proved to be a powerful tool in complexity theory and algorith-

mic design. In this lecture we will prove our main theorem (Theorem 4) using probabilistic polynomials

(often referred to as the Polynomial Method).

The entire proof consists of two parts:

• Part A: Any AC0[⊕] circuit has low probabilistic degree over F2.

• Part B: MAJ does not have low probabilistic degree.
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4 Part A: Low-degree probabilistic polynomial for AC0[⊕] circuits

4.1 Low-degree probabilistic polynomial for OR

Lemma 6. For any ε ∈ [0, 1], the probabilistic degree of OR on n inputs over F2 with error ε is at most

dlog2(1/ε)e.

It is worth noting that this bound is independent of n.

To prove this lemma, one needs to find a probabilistic polynomial for OR. Some intuition for con-

structing this probabilistic polynomial can be found from the example presented in Lecture 1 (See Lecture

1 Section 2.2.1 Part 4). We therein showcased a low-degree polynomial which is able to match the Boolean

function on a majority of inputs.

To make this example more illuminating, we introduce the following definition.

Definition 7. For any ε ∈ [0, 1], a polynomial p : Fn → F is a (1− ε)-correct polynomial for a Boolean

function f : {0, 1}n → {0, 1} if |{x ∈ {0, 1}n : p(x) = f(x)| ≥ (1− ε) · 2n.

The (1− ε)-correct degree of f over F if the minimum degree of such a polynomial p.

An important observation is that a probabilistic polynomial with error ε must contain a (1−ε)-correct

polynomial in its support. Hence the (1−ε)-correct degree over field F for a Boolean function f is always

a lower bound of ε-probabilistic degree.

Though this observation can’t help us directly prove the lemma for OR, it will be of significant use in

Part B.

4.2 Proof of Lemma 6

We try to design a randomized procedure such that the probabilistic polynomial is defined as the functions

generated from this procedure.

Let k = dlog2(1/ε)e. Pick k subsets S1, · · · , Sk ⊆ [n] independently uniformly at random. The

procedure outputs the polynomial

p(x1, · · · , xn) = 1−
k∏

l=1

(1−
∑
i∈Sl

xi) (over F2)

It is easy to see that p has degree k.

Correctness: Now we try to compute the probability of p(x) = f(x).

Case 1: x = (0, 0, · · · , 0). p(x) = 1 with probability 1 (regardless of S1, · · · , Sk).

Case 2: x 6= (0, 0, · · · , 0). p(x) = 1 if ∃l ∈ [k] s.t.
∑

i∈Sk
xi = 1.

Claim 8.

Pr
S⊆[n]

[
∑
i∈S

xi = 1] =
1

2
.

Proof. Use “Principle of deferred decisions” and pick S in a 2-step fashion:

Fix a j ∈ [n] such that xj = 1. Step 1: ∀i ∈ [n]\{j}, pick i into S with probability 1/2. Step 2: pick

j into S with probability 1/2. As the two outcomes of step 2 correspond to different parity, we have that

the overall probability is 1/2.
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Therefore for any x 6= (0, 0, · · · , 0),

Pr[p(x) 6= 1] =
k∏

l=1

Pr[
∑
i∈Sk

xi 6= 1] = 2−k.

Since in the beginning we set k = dlog2(1/ε)e, we have Pr[p(x) 6= 1] ≤ ε.

Remark: We can similarly prove AND has low probabilistic degree.

4.3 Main result for Part A

Theorem 9. Any circuit in AC0[⊕] has low probabilistic degree over F2.

More specifically, any function f computable by an AC0[⊕] circuit with size s and depth d has a

probabilistic polynomial over F2 with error 1/3 and degree O(logd n).

Proof. To prove that any AC0[⊕] has low degree we will use the previous lemma. Let A be the AC0[⊕]

circuit that computes the function f , and has size s and depth d. Replace each OR and AND gate of A

with a probabilistic polynomial of error
1

3s
.

By a simple union bound the total probability of error is ≤ s · 1

3s
=

1

3
. Note that s is a polynomial

in n so it follows by the previous lemma that the degree of each polynomial is O(log n).

Next we compose all these polynomials to compute the circuit. For a depth-d circuit, we eventually get

a polynomial of degree O(logd n). This bound on the degree follows by simply noting that the composition

of polynomials multiplies their degrees.

Finally note that parity gates do not pose a problem because the parity of a string can be computed

using the degree 1 polynomial p(x) = x1 + · · ·+ xn (over the field F2).

In conclusion, we proved that any function computable by AC0[⊕] circuits has poly log(n) probabilistic

degree over F2 with error 1/3.

5 Part B: No low-degree probabilistic polynomial for MAJ

5.1 Low (1− ε)-correct degree for MAJ ⇒ for all Boolean functions

Lemma 10. For any S ⊆ {0, 1}n, if there is a polynomial p : Fn
2 → F2 that satisfies p(x) = MAJ(x)

for all x ∈ S, and deg(p) = d, then for all f : {0, 1}n → {0, 1}, there is a polynomial q : Fn
2 → F2 with

deg(q) ≤ d+ n/2 s.t. q(x) = f(x) for all x ∈ S.

Proof. Write f in 2 equivalent ways.

f(x1, · · · , xn) =
∑
T⊆[n]

aT
∏
i∈T

xi =
∑
T⊆[n]

bT
∏
i∈T

(1− xi).

If MAJ(x) = 0, then all
∏

i∈T xi terms involving more than half of the variables must evaluate to 0. Then

f(x) =
∑

T⊆[n],|T |≤n/2

aT
∏
i∈T

xi. (Denote as g1(x))
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Similarly, if MAJ(x) = 1,

f(x) =
∑

T⊆[n],|T |≤n/2

bT
∏
i∈T

(1− xi). (Denote as g2(x))

Combine the two cases above, we know f(x) can also be written as

f(x) = (1−MAJ(x)) · g1(x) + MAJ(x) · g2(x).

Therefore, if p(x) satisfies p(x) = MAJ(x) for all x ∈ S, and deg(p) = d, then q(x) = (1− p(x)) · g1(x) +

p(x) · g2(x) is a polynomial of degree d+ n/2 satisfying q(x) = f(x) for all x ∈ S.

5.2 (1− ε)-correct degree lower bound for MAJ

Here we prove the (1− ε)-correct degree lower bound for MAJ. And the main result of Part B is in fact

a direct corollary to this theorem. For proving we will use Lemma 10 and the technique of counting

argument (dimension argument).

Theorem 11. There is a constant c > 0 s.t. for every polynomial p : Fn
2 → F2 of degree < c ·

√
n we have

S = {x ∈ {0, 1}n : p(x) = MAJ(x)}, |S| < 2

3
· 2n.

Proof. Assume to the contrary that there exists a polynomial p of degree < c ·
√
n that satisfies |S| ≥ 2

3 ·2
n

where S = {x ∈ {0, 1}n : p(x) = MAJ(x)}.
First we construct the following function: For any x ∈ Fn

2 , fx : Fn
2 → F2 is the function satisfying

fx(x) = 1 and fx(y) = 0,∀y ∈ Fn
2 , y 6= x.

By Lemma 10, there exists a polynomial px of degree ≤ n/2 + c
√
n for each fx such that px(y) =

fx(y),∀y ∈ S.

Let V = span
F2

{px : x ∈ S}. Since all fx are linearly independent, we have

dim(V ) = |S| ≥ 2

3
· 2n.

On the other hand, since we consider the field F2, and x · x = x in F2, all polynomials are mutilinear, so

dim(V ) ≤ dim (multilinear polynomials Fn
2 → F2 of degree ≤ n

2
+ c
√
n)

= # of monomials over n variables of degree ≤ n

2
+ c
√
n

=

n
2
+c
√
n∑

i=0

(
n

i

)
= 2n −

n
2
−c
√
n∑

i=0

(
n

i

)
By using an upper bound for binomial coefficients we will prove later (Claim 12), we know

dim(V ) ≤ 2n −

n
2
−c
√
n∑

i=0

(
n

i

)
<

2

3
· 2n.
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which leads to contradiction.

5.3 Main result for Part B

After proving the theorem, we can derive the main result easily. Recall the definition of (1 − ε)-correct

polynomial given in Part A, we can see Theorem 11 is just an equivalent statement of MAJ does not have

2/3-correct polynomial of degree < c
√
n. Then the 2/3-correct degree of MAJ is at least c

√
n. Further,

from the observation given along with the definition, the 1/3-probabilistic degree is at least c
√
n. This

implies the final result we want.

5.4 Combining Part A and Part B

In Part A we proved that the 1/3-probabilistic degree of any function computable by AC0[⊕] circuits is

≤ O(poly log(n)), and in Part B we proved that the 1/3-probabilistic degree of MAJ is ≥ Ω(
√
n). This

finishes the proof of MAJ /∈ AC0[⊕].

5.5 Binomial coefficient bound

Now it only remains to prove the last step in Theorem 11.

Claim 12.
∑n

2
−c
√
n

i=1

(
n
i

)
> 1

3 · 2
n.

Proof. First observe that the quantity ∑n
2
−c
√
n

i=0

(
n
i

)
2n

is the probability that if we flip n coins with Pr[H] = Pr[T ] = 1
2 such that the number of heads is less

than or equal to n
2 − c

√
n.

Define n random variables x1, x2, · · · , xn such that xi = 1 iff the outcome of the i-th coin is head.

We then employ the following “reverse” Chernoff bound which lower bounds the tail probability:

Pr

(
n∑

i=1

xi ≤ (1− ε)pn

)
≥ exp(−9pnε2).

Where p is the probability that xi = 1 (in this case 1
2). By setting ε = 2c√

n
we get that:

Pr

(
n∑

i=1

xi ≤
n

2
− c
√
n

)
≥ exp(−18c2).

By choosing the right constant c we are able to conclude:

n
2
−c
√
n∑

i=0

(
n

i

)
= 2n · Pr

(
n∑

i=1

xi ≤
n

2
− c
√
n

)
>

1

3
2n.
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