Lecture 2: Algebraic graph algorithms

Instructor: Josh Alman
Scribe notes by: Xuan Zhao, Shida Jing

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most up-to-date version.

1 Induced Subgraphs

Recap from last lecture. We consider the following problem: Given an n-node input graph G, does G contain H as an induced subgraph? (see Figure 1)

Figure 1: The target induced subgraph H.

Figure 2: The 4-clique K_{4}.

In the last lecture we proposed the following approach: Let $A \in\{0,1\}^{n \times n}$ be the adjacency matrix of G :

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

The algorithm first computes $A^{2} \in \mathbb{R}^{n \times n}$ in $O\left(n^{2.373}\right)$ time, then computes the value $\sum_{(i, j) \in E(G)}\binom{A^{2}[i, j]}{2}$ in $O\left(n^{2}\right)$ time. This value counts the number of our target graph in G, but also counts 4 -cliques in G :

$$
\begin{aligned}
\sum_{(i, j) \in E(G)}\binom{A^{2}[i, j]}{2} & =\sum_{(i, j) \in E(G)} \# \text { of pairs }(k, l) \text { s.t. }(i, k),(k, j),(i, l),(l, j) \in E(G) \\
& =(\# \text { of } H)+6 \times\left(\# \text { of } K_{4}\right) .
\end{aligned}
$$

Each copy of K_{4} is counted 6 times since it's counted once in the summand corresponding to (i, j) being each of its 6 edges.

A randomized algorithm. Denote $R(G):=\sum_{(i, j) \in E(G)}\binom{A^{2}[i, j]}{2}$.

- If $R(G)$ is not a multiple of 6 , then we conclude that G must contain H as an induced subgraph.
- If $R(G)$ is a nonzero multiple of 6 , we use the following randomized algorithm:

Remove every node of G independently with probability $1 / 2$ to obtain a random subgraph G^{\prime}. We will show that if H is an induced subgraph of G, then with probability $\geq 1 / 16$, \# of H in G^{\prime} is not a multiple of 6 (Lemma 11), and hence $R\left(G^{\prime}\right)$ is not a multiple of 6 .

We repeat this sampling process for 100 times. If for at least one sampled subgraph $G^{\prime}, R\left(G^{\prime}\right)$ is not a multiple of 6 , then we conclude that the original graph G contains H as an induced subgraph. The failure probability is $\operatorname{Pr}[$ failure $] \leq(15 / 16)^{100}<1 / 100$.

Now it remains to prove Lemma 1 .
Lemma 1 (Correctness of the randomized algorithm). If the graph G contains at least one induced copy of the subgraph H, then if we remove every node of G independently with probability $1 / 2$, the resulting graph will have $(\#$ of $H) \not \equiv 0(\bmod 6)$ with probability at least $1 / 16$.

Proof. Let

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{0<i<j<k<l \leq n, \text { s.t. nodes } i, j, k, l \text { form } H \text { in } G} x_{i} x_{j} x_{k} x_{l} .
$$

Then the number of H in G is $P(1,1, \cdots, 1)$.
Plug into P the vector $x \in\{0,1\}^{n}$ defined as

$$
x_{i}= \begin{cases}1 & \text { if we randomly keep node } i, \\ 0 & \text { if we randomly remove node } i .\end{cases}
$$

Then $P(x)$ is the number of H in the random subgraph.
It remains to bound the probability that $P(x) \not \equiv 0(\bmod 6)$ when x is drawn uniformly at random from $\{0,1\}^{n}$. Using Lemma 2 (to be proved below), since the degree of P is 4 , we have

$$
\operatorname{Pr}_{x_{1}, x_{2}, \cdots, x_{n} \sim\{0,1\}}[P(x) \not \equiv 0(\bmod 6)] \geq \frac{1}{16} .
$$

This finishes the proof.
The only missing piece in the previous proof is to show that for a uniformly random Boolean vector x, the probability that $P(x) \not \equiv 0(\bmod 6)$ is at least $1 / 16$. We will prove a slightly more general lemma where the degree of P is any integer d, and the modulus is any integer $m>1$.

Lemma 2. If $P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a multilinear polynomial with integer coefficients which are not all divisible by m, and P has degree at most d, then

$$
\operatorname{Pr}_{x_{1}, x_{2}, \cdots, x_{n} \sim\{0,1\}}[P(x) \not \equiv 0(\bmod m)] \geq \frac{1}{2^{d}} .
$$

Before proving Lemma 2, we first prove the following warm-up lemma, which will be used in the proof of Lemma 2 .

Lemma 3 (Warm-up lemma). If $P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a multilinear polynomial with integer coefficients which are not all divisible by m, then there exists an $x \in\{0,1\}^{n}$ such that

$$
P(x) \not \equiv 0(\bmod m) .
$$

Proof. The multilinear polynomial P can be written in the form

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{S \subseteq\{1, \cdots, n\}} a_{S} \cdot \prod_{i \in S} x_{i},
$$

where the a_{S} coefficients are integers which are not all divisible by m. Pick a minimum size set $T \subseteq$ $\{1,2, \cdots, n\}$ such that $a_{T} \not \equiv 0(\bmod m)$. Define $y \in\{0,1\}^{n}$ by

$$
y_{i}= \begin{cases}1 & \text { if } i \in T \\ 0 & \text { otherwise }\end{cases}
$$

Then for any set $S \subseteq\{1,2, \cdots, n\}$, we have $\prod_{i \in S} y_{i}=1$ only if $S \subseteq T$. And since T is the minimum size set where $a_{T} \not \equiv 0(\bmod m)$, we have $a_{S} \equiv 0(\bmod m)$ for any strict subset $S \subsetneq T$. It follows that

$$
P(y)=\sum_{S \subseteq T} a_{S}=a_{T} \not \equiv 0(\bmod m) .
$$

Now we are ready to prove Lemma 2 .
Proof of Lemma 2. Again write the multilinear polynomial P in the following form:

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{S \subseteq\{1, \cdots, n\}} a_{S} \cdot \prod_{i \in S} x_{i} .
$$

Pick any set $T \subseteq\{1,2, \cdots, n\}$ of maximum size such that $a_{T} \not \equiv 0(\bmod m)$. Let $d^{\prime}=|T|$. Since P has degree d, we know that $d^{\prime} \leq d$. For convenience we re-order the subscripts and denote this set as $T=\left\{1,2, \ldots d^{\prime}\right\}$.

Consider any $0 / 1$ assignment to $x_{d^{\prime}+1}, \ldots, x_{n}$. Let $Q: \mathbb{Z}^{d^{\prime}} \rightarrow \mathbb{Z}$ be the resulting polynomial from this partial assignment to P, where Q has d^{\prime} variables $x_{1}, \ldots, x_{d^{\prime}} . Q$ is nonzero ($\bmod m$) since the monomial $a_{T} \cdot \prod_{i \in T} x_{i}$ is still in Q. By Lemma 3, there exists an assignment to $x_{1}, \ldots, x_{d^{\prime}}$ such that $Q\left(x_{1}, \ldots, x_{d^{\prime}}\right) \not \equiv 0(\bmod m)$.

Thus, for any $0 / 1$ assignment to $x_{d^{\prime}+1}, \ldots, x_{n}$, there is at least one $0 / 1$ assignment to $x_{1}, \ldots, x_{d^{\prime}}$ such that $P\left(x_{1}, \cdots, x_{n}\right) \not \equiv 0(\bmod m)$. Hence, as desired,

$$
\operatorname{Pr}_{x_{1}, \cdots, x_{n} \sim\{0,1\}}\left[P\left(x_{1}, \cdots, x_{n}\right) \not \equiv 0(\bmod m)\right] \geq \frac{1}{2^{d^{\prime}}} \geq \frac{1}{2^{d}}
$$

2 Polynomial Identity Testing

Suppose we are given an expression for a polynomial and we want to test whether all its terms cancel out resulting in the zero polynomial. For instance, we know that

$$
P(x, y)=x^{2}-y^{2}-(x+y)(x-y)
$$

is the zero polynomial, but for larger examples such as

$$
Q(x, y)=x^{6}-y^{6}-\left(x^{2}-y^{2}\right)\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)
$$

or

$$
R(x, y, z)=(x+y)^{100}+(x+z)^{100}+(y+z)^{100}-2(x+y+z)^{100}
$$

it may be unclear. Expanding out all the terms of the polynomial by brute force can be slow. An efficient test is instead to evaluate the polynomial on a few random points, and check whether the result is always zero. If the polynomial is zero, then it will always output 0 , but otherwise, the next lemma shows that it will output a nonzero value with decent probability.

Lemma 4 (Schwartz-Zippel). Let \mathbb{F} be any field, and let $S \subseteq \mathbb{F}$ be a finite subset. Let $P\left(x_{1}, \cdots, x_{n}\right)$ be a nonzero polynomial over \mathbb{F} with degree $\leq d$. Then

$$
\operatorname{Pr}_{x \sim S^{n}}[P(x)=0] \leq \frac{d}{|S|}
$$

Proof. We proceed by strong induction on n.
Base case $(n=1)$: Any single-variable polynomial over as field \mathbb{F} with degree $\leq d$ has at most d roots. The probability that a random $x \in S$ is a root of $P(x)$ is hence at most $\frac{d}{|S|}$.

Induction step: Assume the lemma statement is true for $n-1$, and we want to prove it for n. Write the polynomial P in the following form:

$$
P\left(x_{1}, \cdots, x_{n}\right)=\sum_{i=0}^{d} x_{n}^{i} \cdot P_{i}\left(x_{1} \cdots, x_{n-1}\right)
$$

where P_{i} is a polynomial over $n-1$ variables with degree $\leq d-i$.
Let k be the largest value such that $P_{k} \neq 0$. If we randomly pick $x_{1}, \cdots, x_{n-1} \in S$, then by the induction hypothesis,

$$
\operatorname{Pr}\left[P_{k}\left(x_{1}, \cdots, x_{n-1}\right)=0\right] \leq \frac{d-k}{|S|}
$$

Suppose that x_{1}, \cdots, x_{n-1} satisfy $P_{k}\left(x_{1}, \cdots, x_{n-1}\right) \neq 0$. Then, after fixing x_{1}, \cdots, x_{n-1}, our polynomial P becomes a nonzero polynomial of degree $\leq k$ in the single variable x_{n}. As in the base case, it follows that

$$
\operatorname{Pr}\left[P\left(x_{n}\right)=0\right] \leq \frac{k}{|S|}
$$

By the union bound, we have

$$
\operatorname{Pr}\left[P\left(x_{1}, \cdots, x_{n}\right)=0\right] \leq \operatorname{Pr}\left[P_{k}\left(x_{1}, \ldots, x_{n-1}\right)=0\right]+\operatorname{Pr}\left[P\left(x_{1}, \ldots, x_{n}\right)=0 \mid P_{k}\left(x_{1}, \ldots, x_{n-1}\right) \neq 0\right]
$$

which is at most $\frac{d-k}{|S|}+\frac{k}{|S|}=\frac{d}{|S|}$.

3 Maximum Matchings in Graphs

We next study the problem of determining the size of a maximum matching in an undirected graph. We will assume for now that we can compute the determinant of a $n \times n$ matrix in $O\left(n^{2.323}\right)$ operations. This
assumption will be discussed in following classes.
Definition 5 (Matching in a graph). For an undirected graph G with n nodes, a matching is a subset S of the edges of the graph G such that every node of G is incident to at most one edge of S. A perfect matching is a matching in which each node of G is incident to exactly one edge of S, or equivalently, a matching of size $n / 2$.

There is a simple reduction showing that if one can detect whether a graph has a perfect matching in time $T(n)$, then one can binary search for the maximum size of a matching in a graph in time $O(T(n) \log n)$. (The idea is that, for any k, to test whether G has a matching of size at least $(n-k) / 2$, one can add k nodes to G which are adjacent to each other and every other node in G, and test whether the resulting graph has a perfect matching.)

Our goal is to find if a graph has a perfect matching in $O\left(n^{2.373}\right)$ time, and we will use polynomial identity testing as discussed above. Our plan is to define a polynomial P such that

1. $P(x) \neq 0$ if and only if G has a perfect matching, and
2. $P(x)$ is easy to evaluate.

We will define our $P(x)$ as the determinant of the Tutte matrix of G.
Definition 6 (Tutte matrix). Let G be a graph with n nodes. Let $x_{i, j}$ where $i, j \in\{1,2, \cdots, n\}$ be n^{2} variables. The Tutte matrix M is an $n \times n$ matrix:

$$
M[i, j]= \begin{cases}0 & \text { if }(i, j) \notin E(G), \\ x_{i, j} & \text { if }(i, j) \in E(G) \text { and } i<j, \\ -x_{j, i} & \text { if }(i, j) \in E(G) \text { and } j<i .\end{cases}
$$

The determinant of $M, \operatorname{det}(M)$, is the polynomial we are looking for with degree $\leq n$. We are going to prove that $\operatorname{det}(M) \neq 0$ if and only if G has a perfect matching.

Assuming this claim is true, our algorithm works as follows: pick a finite field $\left|\mathbb{F}_{q}\right|>2 n$, then evaluate $\operatorname{det}(M)$ on random points in \mathbb{F}_{q}. By the Schwartz-Zippel Lemma (Lemma 4), after trying a large constant number of random points, we learn with high probability whether $\operatorname{det}(M)$ is a zero polynomial.

Theorem 7. $\operatorname{det}(M) \neq 0$ if and only if G has a perfect matching.
Proof. Recall the determinant of the matrix M is given by

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \cdot \prod_{i=1}^{n} M[i, \sigma[i]],
$$

where S_{n} is the set of all the permutations on $\{1, \cdots, n\}$. To make our discussion easier, we will use f_{σ} to denote $\prod_{i=1}^{n} M[i, \sigma[i]]$. So we have

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) f_{\sigma}
$$

So what is f_{σ} anyways? Think about f_{σ} in terms of a "cycle cover" of G. A cycle cover of a graph is a cover where all the edges (directed) belong to a cycle or a loop. If you draw all the directed edges out in
terms of the permutation σ (all edges have the form $(i, \sigma(i))$ with the arrow pointing towards $\sigma(i)$), then $f_{\sigma}=0$ unless all of these edges are in G. This is because if one of the edges you draw is not in G, then the entry in M corresponding to your edge would have evaluated to be 0 , based on how M is defined.

It is not hard to see that if σ has a fixed point $(\sigma(i)=i)$, then f_{σ} would be 0 . Because if σ has a fixed point, when you draw out the edges defined by σ, you'll get a self-loop, which is impossible to be in G.

Now, define $O_{n} \subseteq S_{n}$ such that O_{n} are permutations that have an odd cycle.
Permutations with odd cycles. We claim that

$$
\sum_{\sigma \in O_{n}} \operatorname{sgn}(\sigma) f_{\sigma}=0
$$

In other words, the terms that corresponds to the permutations in O_{n} will cancel each other out in the calculation of the determinant. Next we prove this claim.

Fix a $\sigma \in O_{n}$. If there is a 1 -cycle (a fixed point) in σ, then $f_{\sigma}=0$, as discussed above. If there is no 1 -cycle in σ, then we can pick the odd cycle in σ that contains the smallest index. Let σ^{\prime} be σ but with that cycle reversed. (For instance, if σ mapped $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, then σ^{\prime} instead maps $1 \leftarrow 2 \leftarrow 3 \leftarrow 1$, but is equal to σ on all other inputs.)

Since the permutations σ^{\prime} and σ only differ in an odd cycle, by the definitions of the sign of permutations, we have $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{\prime}\right)$. It is not hard to see that $f_{\sigma}=-f_{\sigma^{\prime}}$ due to the fact that M satisfies $M^{T}=-M$: We reversed an odd cycle, so that an odd number of signs are reversed. Thus we have

$$
\operatorname{sgn}(\sigma) f_{\sigma}+\operatorname{sgn}\left(\sigma^{\prime}\right) f_{\sigma^{\prime}}=0
$$

Therefore, the permutations in O_{n} cancel out in pairs, so $\sum_{\sigma \in O_{n}} \operatorname{sgn}(\sigma) f_{\sigma}=0$.
Permutations without odd cycles. Now we will show that for all permutations that are not in O_{n}, we have

$$
\sum_{\sigma \in S_{n} \backslash O_{n}} \operatorname{sgn}(\sigma) f_{\sigma} \neq 0 \text { if and only if } G \text { has a perfect matching. }
$$

For the forward direction, if the formula is not equal to zero, then we have at least one σ with $f_{\sigma} \neq 0$. This means there is an even cycle cover of G, which in turn implies a perfect matching. Indeed, if we pick every other edge in each even cycle, or just the single edge in the case of a cycle of length 2 , the result will be a perfect matching for G.

For the backward direction, if G has a perfect matching, then each node is connected by exactly one edge in the matching. We define a permutation $\sigma \in S_{n}$ by turning each edge into a cycle formed by two edges, as shown below:

By doing this, we convert a perfect matching into an even-cycle cover σ. Therefore:

$$
\begin{aligned}
f_{\sigma} & =\prod_{i=1}^{n} M[i, \sigma(i)] \\
& =\prod_{(i, j) \in \text { matching }} M[i, j] \cdot M[j, i], \quad \text { because all edges are part of a 2-cycle } \\
& =\prod_{(i, j) \in \text { matching }}-x_{i j}^{2} .
\end{aligned}
$$

There is no other $\sigma^{\prime} \in S_{n}$ such that f_{σ} and $f_{\sigma^{\prime}}$ use the same set of variables since σ uses all the copies of every variable it uses in M. Therefore, $\sum_{\sigma \in S_{n} \backslash O_{n}} \operatorname{sgn}(\sigma) f_{\sigma} \neq 0$, since the term corresponding to our σ can't get canceled out. This completes the proof.

