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Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most
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1 Definitions and Background

First, we begin by providing the background information and definitions we will need to understand the
laser method. Let T be a tensor over sets of variables X, Y , and Z, and partition the set of variables
X = X0∪X1∪ · · ·∪Xq, Y = Y0∪Y1∪ · · ·∪Yq, and Z = Z0∪Z1∪ · · ·∪Zq. Also, for i, j, k ∈ {0, 1, · · · , q},
write Tijk = T |Xi,Yj ,Zk . Then, we see that

T⊗N = (
∑
i,j,k

Tijk)⊗N =
∑

(T1,··· ,TN )∈{Tijk}N
T1 ⊗ T2 ⊗ · · · ⊗ TN .

In other words, when T is partitioned into these subtensors, the Nth power of T is also partitioned into
products of subtensors. Now, we will introduce a key idea which will motivate the laser method.

Definition 1. Fix a probability distribution αijk ≥ 0 for each Tijk, so that
∑
i,j,k αijk = 1.

In particular, we say that (T1, · · · , TN ) conforms to distribution α if ∀i, j, k, we have that

|{l such that Tl = Tijk}| = αijk ·N.

We make two assumptions. (1) We assume that our tensor T is symmetric, i.e., Tijk = Tjki up to
rotations. This assumption is without loss of generality since we can make the tensor symmetric by adding
all rotations in the same way as the last lecture. (2) We assume that α is also symmetric (αijk = αjki).
We can assume this because for all known methods the bound on ω is minimized when α is symmetric.

Our goal is to find T⊗N ≥zo T ′, where T ′ is a direct sum of c subtensors that conform to the probability
distribution α.

Question: how big can we hope for c to be? Notice that Ti1j1k1⊗· · ·⊗TiN jNkN uses X-variables
from Xi1 × · · · ×XiN . We say that Xi1 × · · · ×XiN conforms to α if ∀i ∈ {0, 1, · · · , q},

|{l such that il = i}| = αi ·N, where αi :=
∑
j,k

αijk.

If Ti1j1k1 ⊗ · · · ⊗ TiN jNkN conforms to α, then Xi1 × · · · ×XiN must also conform to α. So c is bounded
by the number of Xi1 × · · · ×XiN that conforms to α, which is(

N

α0N,α1N, · · · , αqN

)
≥ c.
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As a shorthand we will denote this multinomial coefficient as
( N
αiN

)
.

Now, we’re ready to state the laser method.

Theorem 2 (Laser method). If T satisfies the following two conditions, then T⊗N ≥zo T ′, where T ′ is
the direct sum of c =

( N
αiN

)1−o(1) subtensors that conform to the probability distribution α.

1. The marginals of α uniquely determine α, i.e., given αi for all i ∈ [q], there is a unique choice of
αijk for all i, j, k ∈ [q].

2. There is a number P such that if Tijk 6= 0, then i+ j + k = P .

Proof. Definitions. We first define a few notations. For any I = (i1, · · · , iN ), we define XI := Xi1 ×
· · · × XiN . We define Sα ⊂ {0, 1, · · · , q}N to be the set of all (i1, · · · , iN )’s which conforms to α. Note
that Sα =

( N
αiN

)
. For any I, J,K ∈ Sα, we define TIJK := ⊗N

l=1 Tiljlkl .
Step 1. For the first step, we will zero out all variables in XI , YI , ZI , where I does not conform to

α. As a result, we get a tensor
T ′ =

∑
I,J,K∈Sα

TIJK . (1)

Note that by condition 1, every subtensor TIJK in T ′ conforms to our distribution α. So, by zeroing-out
the XI , YI , ZI which don’t conform to the marginals of α, we’ve actually zero-ed out every subtensor
which doesn’t conform to α. Thus, the total number of subtensors TIJK in T ′ is(

N

αijkN

)
(2)

For each fixed XI , the number of subtensors in T ′ that use XI is( N
αijkN

)
( N
αiN

) =: R. (3)

More definitions. Let M be a prime number in the range [300R, 600R]. Recall that by condition 2,
there exists a number P such that if Tijk 6= 0 then i+j+k = P . Define hash functions hx, hj , hz : Sα → ZM
as follows: Pick a random w ∈ ZNM and a random w0 ∈ ZM . For any I, J,K ∈ Sα ⊂ {0, 1, · · · , q}N , let

hx(I) = 2〈I, w〉 (mod M),
hy(J) = 2w0 + 2〈J,w〉 (mod M),
hz(K) = w0 + 〈P −K,w〉 (mod M),

where P −K := (P − k1, P − k2, · · · , P − kN ) for K = (k1, k2, · · · , kN ).
Let’s observe some key properties of these hash functions:

1. If TIJK conforms to α and TIJK 6= 0, then hx(I)+hy(J) = 2hz(K). (Proof: 2〈I, w〉+2〈J,w〉+2w0 =
2〈I + J,w〉+ 2w0 = 2〈P −K,w〉+ 2w0 = 2hz(K)).

2. If TIJK conforms to α, then hx(I), hy(J), hz(K) are uniformly random numbers mod M , even when
conditioned on one of the other two.
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The last ingredient is the following lemma:

Lemma 3. There is a subset A ⊆ ZM of size |A| ≥M1−o(1), such that if a, b, c ∈ A and a+ b = 2c, then
a = b = c.

This lemma basically states that there is a subset A ⊆ ZM which doesn’t contain any 3-term arithmetic
progressions. We will prove the lemma later.

Step 2. Given the set A of the lemma, we zero out all XI for which hx(I) /∈ A, similarly we zero out
all YJ and ZK for which hy(J) /∈ A and hz(K) /∈ A.

Consider any subtensor TIJK in T ′ of Eq. (1). What is the probability that we did not zero it out,
i.e., the probability that hx(I) ∈ A, hy(J) ∈ A, and hz(K) ∈ A?

• hx(I) ∈ A with probability |A|M = 1
Mo(1) , since hx(I) is an uniformly random integer mod M .

• Notice that since there is no 3-term arithmetic progression in A, but we have hx(I), hy(J), hz(K)
satisfy the arithmetic progression hx(I) + hy(J) = 2hz(K), so according to Lemma 3, we need to
have hx(I) = hy(J) = hz(K).
hy(J) = hx(I) with probability 1

M , since hy(J) is an uniformly random integer mod M even when
hx is fixed.

• Finally, notice that whenever we fix two of the three hash functions, the last one is also fixed, so
hz(K) = hx(I) with probability 1.

So in total, the probability that we don’t zero out TIJK is

1
Mo(1) ·

1
M
· 1 = 1

M1+o(1) . (4)

Consider any TIJK and TI′J ′K′ in T ′ that share variables. What is the probability that we did not
zero out either of them?

Notice that TIJK and TI′J ′K′ share variables means that either I = I ′, or J = J ′, or K = K ′. They
can share at most one variable, because if they share two variables, then by condition 2 (if Tijk 6= 0 then
i + j + k = P ) they must share all of the three variables, in which case we have TIJK = TI′J ′K′ . Then,
without loss of generality, we can assume that I = I ′, J 6= J ′,K 6= K ′. By a similar argument as before,
neither of TIJK and TI′J ′K′ is zeroed out when hx(I) ∈ A, hy(J) = hx(I), and hy(J ′) = hx(I ′) = hx(I).

• hx(I) ∈ A with probability 1
Mo(1) .

• hy(J) = hx(I) with probability 1
M .

• hy(J ′) = hx(I) with probability 1
M .

Therefore, in total the probability is

1
Mo(1) ·

1
M
· 1
M

= 1
M2+o(1) . (5)

Step 3. Finally, we repeatedly pick I such that two or more subtensors use XI , and we zero out XI .
We zero out such YJ and ZK in the same way.
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If we remove b ≥ 2 subtensors when zeroing out XI , we effectively removed b · (b− 1) ≥ b pairs that
share variables. So as long as the number of subtensors is much larger than the number of pairs that
share variables, after this step we are still left with a large number of subtensors. Using Eq. (4) and (2),
the expected number of subtensors after Step 2 is 1

M1+o(1) ·
( N
αijkN

)
. Using Eq. (3), each subtensor TIJK

in T ′ shares XI with R other subtensors, and similarly it shares YJ or ZK with R other subtensors, so
there are in total

( N
αijkN

)
·3R number of pairs that share variables in T ′. Then using Eq. (5), the expected

number of pairs that share variables after Step 2 is 1
M2+o(1) ·

( N
αijkN

)
· 3R.

Thus, the expected number of remaining subtensors after Step 3 is

≥ 1
M1+o(1) ·

(
N

αijkN

)
− 1
M2+o(1) ·

(
N

αijkN

)
· 3R

≥ 1
M1+o(1) ·

(
N

αijkN

)
· (1− 3R

M
)

≥ 0.99
M1+o(1) ·

(
N

αijkN

)
≥
(
N

αiN

)1−o(1)

=: c.

where the second step follows fromM ≥ 300R, and the third step follows fromM ≤ 600R andR =
( N
αijkN

)
( N
αiN

) .
This finishes the proof of the laser method.

At last, we prove Lemma 3. The set A ⊆ ZM in which no three numbers form an arithmetic progression
is called a Salem–Spencer set [SS42]. It was later improved by Behrend [Beh46].

Proof of Lemma 3. Let n, d be two integers that depend on M and will be fixed later. Consider the set
{1, 2, · · · , n}d which has nd points. Consider the spheres x1

2 +x2
2 + · · ·+xd2 = t for t ∈ {1, 2, 3, · · · , dn2},

and in total there are dn2 spheres. There must exist at least one sphere which contains ≥ nd

dn2 points
from {1, 2, · · · , n}d. We fix such a sphere. Notice that since all these ≥ nd

dn2 points are on a sphere, there
is no arithmetic progression.

Then we map d-dimension points to integers:

(x1, · · · , xd)→ x1 + (2n+ 1)x2 + · · ·+ (2n+ 1)d−1xd.

We let A be the set of ≥ nd

dn2 integers obtained by this mapping. A good property of this mapping is that
since xi ∈ {1, · · · , n}, the sum of two xi’s is at most 2n, and since we use 2n + 1 as the base, there is
no carry-over. Therefore, since there is no arithmetic progression in the original points, there is also no
arithmetic progression in the set A.

It remains to fix the values of d and n. Pick d =
√

logM and n = M1/d−1
2 , so that the maximum

possible integer in A is (2n+ 1)d = M . The size of A is bounded by

|A| ≥ nd

dn2 = M

2d ·
1
dn2 = M1−o(1).
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2 Omega Bound with Copersmith-Winograd Tensor

‘Simple’ Coppersmith-Winograd tensor. The ‘simple’ Coppersmith-Winograd tensor is defined as

T =
q∑
i=1

(x0yizi + xiy0zi + xiyiz0).

We have R(T ) ≤ q + 2 (proof see Handout 3).
Partition the set X as X0 = {x0}, X1 = {x1, · · · , xq}, and similarly partition Y = Y0 ∪ Y1 and

Z = Z0 ∪ Z1. The three non-zero tensors are T011 = 〈1, 1, q〉, T101 = 〈q, 1, 1〉, and T110 = 〈1, q, 1〉. The
Kronecker product of N such tensors always has volume qN .

We set the probability α as α110 = α101 = α011 = 1
3 , hence α0 = 1

3 and α1 = 2
3 .

It’s easy to check that both T and α are symmetric, and the two conditions of Theorem 2 are satisfied.
Applying the laser method (Theorem 2), we can zero out T⊗N into c disjoint tensors of volume qN , and

c =
(

N
1
3N,

2
3N

)1−o(1)

=
(
N
1
3N

)1−o(1)

=
( 3

22/3

)N−o(N)
,

where the last step follows from the bionomial bound that
( N
pN

)
=
(

1
pp(1−p)1−p

)N−o(N)
.

Then applying the asymptotic sum inequality, we have

ω ≤ 3 ·
log

(
(q+2)N

c

)
log (qN ) ≈ 3 ·

log
(

q+2
3/22/3

)
log (q)

q=8=⇒ ω ≤ 2.404.

Coppersmith-Winograd tensor. Next consider the Coppersmith-Winograd tensor

T =
q∑
i=1

(x0yizi + xiy0zi + xiyiz0) + x0y0zq+1 + x0yq+1z0 + xq+1y0z0.

We have R(T ) ≤ q + 2 (proof see Handout 3).
Partition the set X into X0 = {x0}, X1 = {x1, · · · , xq}, and X2 = {xq+1}. Similarly we partition

Y = Y0 ∪ Y1 ∪ Y2, and Z = Z0 ∪ Z1 ∪ Z2. The non-zero tensors are T011 = 〈1, 1, q〉, T101 = 〈q, 1, 1〉,
T110 = 〈1, q, 1〉, and T002 = T020 = T200 = 〈1, 1, 1〉. (Note that all non-zero Tijk have i+ j + k = 2.)

We set α110 = α101 = α011 = a and α002 = α020 = α200 = 1
3 − a, so the marginal probabilities are

α0 = 2
3 − a, α1 = 2a and α2 = 1

3 − a.
Applying the laser method (Theorem 2) and the asymptotic sum inequality in the same way as before,

and optimize over the parameters q and a, we have that the best bound reached when q = 6 and a ≈ 0.3,
and ω ≤ 2.387.

Square of Coppersmith-Winograd tensor. Let T be the Coppersmith-Winograd tensor, and let
T ′ = T⊗2. For more details see Section 3 of Handout 3. By applying the laser method to T ′, we have
ω ≤ 2.376 [CW87].

And by applying the laser method to the 32-th power of T , we have ω ≤ 2.37287 [LG14].
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Current best ω. By applying a whole new idea, people are able to reach ω ≤ 2.37286 [AW21], which
is the current best upper bound on ω.
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