Lecture 11: The Laser Method

Instructor: Josh Alman
Scribe notes by: Elena Gribelyuk, Yunhao Wang

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most up-to-date version.

1 Definitions and Background

First, we begin by providing the background information and definitions we will need to understand the laser method. Let T be a tensor over sets of variables X, Y, and Z, and partition the set of variables $X=X_{0} \cup X_{1} \cup \cdots \cup X_{q}, Y=Y_{0} \cup Y_{1} \cup \cdots \cup Y_{q}$, and $Z=Z_{0} \cup Z_{1} \cup \cdots \cup Z_{q}$. Also, for $i, j, k \in\{0,1, \cdots, q\}$, write $T_{i j k}=\left.T\right|_{X_{i}, Y_{j}, Z_{k}}$. Then, we see that

$$
T^{\otimes N}=\left(\sum_{i, j, k} T_{i j k}\right)^{\otimes N}=\sum_{\left(T_{1}, \cdots, T_{N}\right) \in\left\{T_{i j k}\right\}^{N}} T_{1} \otimes T_{2} \otimes \cdots \otimes T_{N} .
$$

In other words, when T is partitioned into these subtensors, the N th power of T is also partitioned into products of subtensors. Now, we will introduce a key idea which will motivate the laser method.

Definition 1. Fix a probability distribution $\alpha_{i j k} \geq 0$ for each $T_{i j k}$, so that $\sum_{i, j, k} \alpha_{i j k}=1$.
In particular, we say that $\left(T_{1}, \cdots, T_{N}\right)$ conforms to distribution α if $\forall i, j, k$, we have that

$$
\mid\left\{l \text { such that } T_{l}=T_{i j k}\right\} \mid=\alpha_{i j k} \cdot N
$$

We make two assumptions. (1) We assume that our tensor T is symmetric, i.e., $T_{i j k}=T_{j k i}$ up to rotations. This assumption is without loss of generality since we can make the tensor symmetric by adding all rotations in the same way as the last lecture. (2) We assume that α is also symmetric ($\alpha_{i j k}=\alpha_{j k i}$). We can assume this because for all known methods the bound on ω is minimized when α is symmetric.

Our goal is to find $T^{\otimes N} \geq_{z o} T^{\prime}$, where T^{\prime} is a direct sum of c subtensors that conform to the probability distribution α.

Question: how big can we hope for c to be? Notice that $T_{i_{1} j_{1} k_{1}} \otimes \cdots \otimes T_{i_{N} j_{N} k_{N}}$ uses X-variables from $X_{i_{1}} \times \cdots \times X_{i_{N}}$. We say that $X_{i_{1}} \times \cdots \times X_{i_{N}}$ conforms to α if $\forall i \in\{0,1, \cdots, q\}$,

$$
\mid\left\{l \text { such that } i_{l}=i\right\} \mid=\alpha_{i} \cdot N, \text { where } \alpha_{i}:=\sum_{j, k} \alpha_{i j k} .
$$

If $T_{i_{1} j_{1} k_{1}} \otimes \cdots \otimes T_{i_{N} j_{N} k_{N}}$ conforms to α, then $X_{i_{1}} \times \cdots \times X_{i_{N}}$ must also conform to α. So c is bounded by the number of $X_{i_{1}} \times \cdots \times X_{i_{N}}$ that conforms to α, which is

$$
\binom{N}{\alpha_{0} N, \alpha_{1} N, \cdots, \alpha_{q} N} \geq c .
$$

As a shorthand we will denote this multinomial coefficient as $\binom{N}{\alpha_{i} N}$.
Now, we're ready to state the laser method.
Theorem 2 (Laser method). If T satisfies the following two conditions, then $T^{\otimes N} \geq_{z o} T^{\prime}$, where T^{\prime} is the direct sum of $c=\binom{N}{\alpha_{i} N}^{1-o(1)}$ subtensors that conform to the probability distribution α.

1. The marginals of α uniquely determine α, i.e., given α_{i} for all $i \in[q]$, there is a unique choice of $\alpha_{i j k}$ for all $i, j, k \in[q]$.
2. There is a number P such that if $T_{i j k} \neq 0$, then $i+j+k=P$.

Proof. Definitions. We first define a few notations. For any $I=\left(i_{1}, \cdots, i_{N}\right)$, we define $X_{I}:=X_{i_{1}} \times$ $\cdots \times X_{i_{N}}$. We define $S_{\alpha} \subset\{0,1, \cdots, q\}^{N}$ to be the set of all $\left(i_{1}, \cdots, i_{N}\right)$'s which conforms to α. Note that $S_{\alpha}=\binom{N}{\alpha_{i} N}$. For any $I, J, K \in S_{\alpha}$, we define $T_{I J K}:=\bigotimes_{l=1}^{N} T_{i_{l} j_{l} k_{l}}$.

Step 1. For the first step, we will zero out all variables in X_{I}, Y_{I}, Z_{I}, where I does not conform to α. As a result, we get a tensor

$$
\begin{equation*}
T^{\prime}=\sum_{I, J, K \in S_{\alpha}} T_{I J K} \tag{1}
\end{equation*}
$$

Note that by condition 1 , every subtensor $T_{I J K}$ in T^{\prime} conforms to our distribution α. So, by zeroing-out the X_{I}, Y_{I}, Z_{I} which don't conform to the marginals of α, we've actually zero-ed out every subtensor which doesn't conform to α. Thus, the total number of subtensors $T_{I J K}$ in T^{\prime} is

$$
\begin{equation*}
\binom{N}{\alpha_{i j k} N} \tag{2}
\end{equation*}
$$

For each fixed X_{I}, the number of subtensors in T^{\prime} that use X_{I} is

$$
\begin{equation*}
\frac{\binom{N}{\alpha_{i j k} N}}{\binom{N}{\alpha_{i} N}}=: R \tag{3}
\end{equation*}
$$

More definitions. Let M be a prime number in the range $[300 R, 600 R$]. Recall that by condition 2, there exists a number P such that if $T_{i j k} \neq 0$ then $i+j+k=P$. Define hash functions $h_{x}, h_{j}, h_{z}: S_{\alpha} \rightarrow \mathbb{Z}_{M}$ as follows: Pick a random $w \in \mathbb{Z}_{M}^{N}$ and a random $w_{0} \in \mathbb{Z}_{M}$. For any $I, J, K \in S_{\alpha} \subset\{0,1, \cdots, q\}^{N}$, let

$$
\begin{aligned}
h_{x}(I) & =2\langle I, w\rangle \quad(\bmod M) \\
h_{y}(J) & =2 w_{0}+2\langle J, w\rangle \quad(\bmod M) \\
h_{z}(K) & =w_{0}+\langle P-K, w\rangle \quad(\bmod M)
\end{aligned}
$$

where $P-K:=\left(P-k_{1}, P-k_{2}, \cdots, P-k_{N}\right)$ for $K=\left(k_{1}, k_{2}, \cdots, k_{N}\right)$.
Let's observe some key properties of these hash functions:

1. If $T_{I J K}$ conforms to α and $T_{I J K} \neq 0$, then $h_{x}(I)+h_{y}(J)=2 h_{z}(K)$. (Proof: $2\langle I, w\rangle+2\langle J, w\rangle+2 w_{0}=$ $\left.2\langle I+J, w\rangle+2 w_{0}=2\langle P-K, w\rangle+2 w_{0}=2 h_{z}(K)\right)$.
2. If $T_{I J K}$ conforms to α, then $h_{x}(I), h_{y}(J), h_{z}(K)$ are uniformly random numbers mod M, even when conditioned on one of the other two.

The last ingredient is the following lemma:
Lemma 3. There is a subset $A \subseteq \mathbb{Z}_{M}$ of size $|A| \geq M^{1-o(1)}$, such that if $a, b, c \in A$ and $a+b=2 c$, then $a=b=c$.

This lemma basically states that there is a subset $A \subseteq \mathbb{Z}_{M}$ which doesn't contain any 3-term arithmetic progressions. We will prove the lemma later.

Step 2. Given the set A of the lemma, we zero out all X_{I} for which $h_{x}(I) \notin A$, similarly we zero out all Y_{J} and Z_{K} for which $h_{y}(J) \notin A$ and $h_{z}(K) \notin A$.

Consider any subtensor $T_{I J K}$ in T^{\prime} of Eq. (1). What is the probability that we did not zero it out, i.e., the probability that $h_{x}(I) \in A, h_{y}(J) \in A$, and $h_{z}(K) \in A$?

- $h_{x}(I) \in A$ with probability $\frac{|A|}{M}=\frac{1}{M^{o(1)}}$, since $h_{x}(I)$ is an uniformly random integer mod M.
- Notice that since there is no 3 -term arithmetic progression in A, but we have $h_{x}(I), h_{y}(J), h_{z}(K)$ satisfy the arithmetic progression $h_{x}(I)+h_{y}(J)=2 h_{z}(K)$, so according to Lemma 3, we need to have $h_{x}(I)=h_{y}(J)=h_{z}(K)$.
$h_{y}(J)=h_{x}(I)$ with probability $\frac{1}{M}$, since $h_{y}(J)$ is an uniformly random integer $\bmod M$ even when h_{x} is fixed.
- Finally, notice that whenever we fix two of the three hash functions, the last one is also fixed, so $h_{z}(K)=h_{x}(I)$ with probability 1.

So in total, the probability that we don't zero out $T_{I J K}$ is

$$
\begin{equation*}
\frac{1}{M^{o(1)}} \cdot \frac{1}{M} \cdot 1=\frac{1}{M^{1+o(1)}} . \tag{4}
\end{equation*}
$$

Consider any $T_{I J K}$ and $T_{I^{\prime} J^{\prime} K^{\prime}}$ in T^{\prime} that share variables. What is the probability that we did not zero out either of them?

Notice that $T_{I J K}$ and $T_{I^{\prime} J^{\prime} K^{\prime}}$ share variables means that either $I=I^{\prime}$, or $J=J^{\prime}$, or $K=K^{\prime}$. They can share at most one variable, because if they share two variables, then by condition 2 (if $T_{i j k} \neq 0$ then $i+j+k=P$) they must share all of the three variables, in which case we have $T_{I J K}=T_{I^{\prime} J^{\prime} K^{\prime}}$. Then, without loss of generality, we can assume that $I=I^{\prime}, J \neq J^{\prime}, K \neq K^{\prime}$. By a similar argument as before, neither of $T_{I J K}$ and $T_{I^{\prime} J^{\prime} K^{\prime}}$ is zeroed out when $h_{x}(I) \in A, h_{y}(J)=h_{x}(I)$, and $h_{y}\left(J^{\prime}\right)=h_{x}\left(I^{\prime}\right)=h_{x}(I)$.

- $h_{x}(I) \in A$ with probability $\frac{1}{M^{o(1)}}$.
- $h_{y}(J)=h_{x}(I)$ with probability $\frac{1}{M}$.
- $h_{y}\left(J^{\prime}\right)=h_{x}(I)$ with probability $\frac{1}{M}$.

Therefore, in total the probability is

$$
\begin{equation*}
\frac{1}{M^{o(1)}} \cdot \frac{1}{M} \cdot \frac{1}{M}=\frac{1}{M^{2+o(1)}} \tag{5}
\end{equation*}
$$

Step 3. Finally, we repeatedly pick I such that two or more subtensors use X_{I}, and we zero out X_{I}. We zero out such Y_{J} and Z_{K} in the same way.

If we remove $b \geq 2$ subtensors when zeroing out X_{I}, we effectively removed $b \cdot(b-1) \geq b$ pairs that share variables. So as long as the number of subtensors is much larger than the number of pairs that share variables, after this step we are still left with a large number of subtensors. Using Eq. (4) and (22), the expected number of subtensors after Step 2 is $\frac{1}{M^{1+o(1)}} \cdot\binom{N}{\alpha_{i j k} N}$. Using Eq. (3), each subtensor $T_{I J K}$ in T^{\prime} shares X_{I} with R other subtensors, and similarly it shares Y_{J} or Z_{K} with R other subtensors, so there are in total $\binom{N}{\alpha_{i j k} N} \cdot 3 R$ number of pairs that share variables in T^{\prime}. Then using Eq. (5), the expected number of pairs that share variables after Step 2 is $\frac{1}{M^{2+o(1)}} \cdot\binom{N}{\alpha_{i j k} N} \cdot 3 R$.

Thus, the expected number of remaining subtensors after Step 3 is

$$
\begin{aligned}
& \geq \frac{1}{M^{1+o(1)}} \cdot\binom{N}{\alpha_{i j k} N}-\frac{1}{M^{2+o(1)}} \cdot\binom{N}{\alpha_{i j k} N} \cdot 3 R \\
& \geq \frac{1}{M^{1+o(1)}} \cdot\binom{N}{\alpha_{i j k} N} \cdot\left(1-\frac{3 R}{M}\right) \\
& \geq \frac{0.99}{M^{1+o(1)}} \cdot\binom{N}{\alpha_{i j k} N} \geq\binom{ N}{\alpha_{i} N}^{1-o(1)}=: c .
\end{aligned}
$$

where the second step follows from $M \geq 300 R$, and the third step follows from $M \leq 600 R$ and $R=\frac{\binom{N}{\alpha_{i j N} N}}{\left(\alpha_{i} N\right)}$.
This finishes the proof of the laser method.
At last, we prove Lemma 3. The set $A \subseteq \mathbb{Z}_{M}$ in which no three numbers form an arithmetic progression is called a Salem-Spencer set [SS42. It was later improved by Behrend Beh46.

Proof of Lemma 3. Let n, d be two integers that depend on M and will be fixed later. Consider the set $\{1,2, \cdots, n\}^{d}$ which has n^{d} points. Consider the spheres $x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{d}{ }^{2}=t$ for $t \in\left\{1,2,3, \cdots, d n^{2}\right\}$, and in total there are $d n^{2}$ spheres. There must exist at least one sphere which contains $\geq \frac{n^{d}}{d n^{2}}$ points from $\{1,2, \cdots, n\}^{d}$. We fix such a sphere. Notice that since all these $\geq \frac{n^{d}}{d n^{2}}$ points are on a sphere, there is no arithmetic progression.

Then we map d-dimension points to integers:

$$
\left(x_{1}, \cdots, x_{d}\right) \rightarrow x_{1}+(2 n+1) x_{2}+\cdots+(2 n+1)^{d-1} x_{d}
$$

We let A be the set of $\geq \frac{n^{d}}{d n^{2}}$ integers obtained by this mapping. A good property of this mapping is that since $x_{i} \in\{1, \cdots, n\}$, the sum of two x_{i} 's is at most $2 n$, and since we use $2 n+1$ as the base, there is no carry-over. Therefore, since there is no arithmetic progression in the original points, there is also no arithmetic progression in the set A.

It remains to fix the values of d and n. Pick $d=\sqrt{\log M}$ and $n=\frac{M^{1 / d}-1}{2}$, so that the maximum possible integer in A is $(2 n+1)^{d}=M$. The size of A is bounded by

$$
|A| \geq \frac{n^{d}}{d n^{2}}=\frac{M}{2^{d}} \cdot \frac{1}{d n^{2}}=M^{1-o(1)} .
$$

2 Omega Bound with Copersmith-Winograd Tensor

'Simple' Coppersmith-Winograd tensor. The 'simple' Coppersmith-Winograd tensor is defined as

$$
T=\sum_{i=1}^{q}\left(x_{0} y_{i} z_{i}+x_{i} y_{0} z_{i}+x_{i} y_{i} z_{0}\right) .
$$

We have $\underline{R}(T) \leq q+2$ (proof see Handout 3).
Partition the set X as $X_{0}=\left\{x_{0}\right\}, X_{1}=\left\{x_{1}, \cdots, x_{q}\right\}$, and similarly partition $Y=Y_{0} \cup Y_{1}$ and $Z=Z_{0} \cup Z_{1}$. The three non-zero tensors are $T_{011}=\langle 1,1, q\rangle, T_{101}=\langle q, 1,1\rangle$, and $T_{110}=\langle 1, q, 1\rangle$. The Kronecker product of N such tensors always has volume q^{N}.

We set the probability α as $\alpha_{110}=\alpha_{101}=\alpha_{011}=\frac{1}{3}$, hence $\alpha_{0}=\frac{1}{3}$ and $\alpha_{1}=\frac{2}{3}$.
It's easy to check that both T and α are symmetric, and the two conditions of Theorem 2 are satisfied. Applying the laser method (Theorem 2), we can zero out $T^{\otimes N}$ into c disjoint tensors of volume q^{N}, and

$$
c=\binom{N}{\frac{1}{3} N, \frac{2}{3} N}^{1-o(1)}=\binom{N}{\frac{1}{3} N}^{1-o(1)}=\left(\frac{3}{2^{2 / 3}}\right)^{N-o(N)},
$$

where the last step follows from the bionomial bound that $\binom{N}{p N}=\left(\frac{1}{p^{p}(1-p)^{1-p}}\right)^{N-o(N)}$.
Then applying the asymptotic sum inequality, we have

$$
\omega \leq 3 \cdot \frac{\log \left(\frac{(q+2)^{N}}{c}\right)}{\log \left(q^{N}\right)} \approx 3 \cdot \frac{\log \left(\frac{q+2}{3 / 2^{2 / 3}}\right)}{\log (q)} \stackrel{q=8}{\Longrightarrow} \omega \leq 2.404 .
$$

Coppersmith-Winograd tensor. Next consider the Coppersmith-Winograd tensor

$$
T=\sum_{i=1}^{q}\left(x_{0} y_{i} z_{i}+x_{i} y_{0} z_{i}+x_{i} y_{i} z_{0}\right)+x_{0} y_{0} z_{q+1}+x_{0} y_{q+1} z_{0}+x_{q+1} y_{0} z_{0} .
$$

We have $\underline{R}(T) \leq q+2$ (proof see Handout 3).
Partition the set X into $X_{0}=\left\{x_{0}\right\}, X_{1}=\left\{x_{1}, \cdots, x_{q}\right\}$, and $X_{2}=\left\{x_{q+1}\right\}$. Similarly we partition $Y=Y_{0} \cup Y_{1} \cup Y_{2}$, and $Z=Z_{0} \cup Z_{1} \cup Z_{2}$. The non-zero tensors are $T_{011}=\langle 1,1, q\rangle, T_{101}=\langle q, 1,1\rangle$, $T_{110}=\langle 1, q, 1\rangle$, and $T_{002}=T_{020}=T_{200}=\langle 1,1,1\rangle$. (Note that all non-zero $T_{i j k}$ have $i+j+k=2$.)

We set $\alpha_{110}=\alpha_{101}=\alpha_{011}=a$ and $\alpha_{002}=\alpha_{020}=\alpha_{200}=\frac{1}{3}-a$, so the marginal probabilities are $\alpha_{0}=\frac{2}{3}-a, \alpha_{1}=2 a$ and $\alpha_{2}=\frac{1}{3}-a$.

Applying the laser method (Theorem 2) and the asymptotic sum inequality in the same way as before, and optimize over the parameters q and a, we have that the best bound reached when $q=6$ and $a \approx 0.3$, and $\omega \leq 2.387$.

Square of Coppersmith-Winograd tensor. Let T be the Coppersmith-Winograd tensor, and let $T^{\prime}=T^{\otimes 2}$. For more details see Section 3 of Handout 3. By applying the laser method to T^{\prime}, we have $\omega \leq 2.376$ CW87.

And by applying the laser method to the 32 -th power of T, we have $\omega \leq 2.37287$ [LG14].

Current best ω. By applying a whole new idea, people are able to reach $\omega \leq 2.37286$ [AW21], which is the current best upper bound on ω.

References

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 522-539. SIAM, 2021.
[Beh46] Felix A Behrend. On sets of integers which contain no three terms in arithmetical progression. Proceedings of the National Academy of Sciences of the United States of America, 32(12):331, 1946.
[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 1-6, 1987.
[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th international symposium on symbolic and algebraic computation, pages 296-303, 2014.
[SS42] Raphaël Salem and Donald C Spencer. On sets of integers which contain no three terms in arithmetical progression. Proceedings of the National Academy of Sciences of the United States of America, 28(12):561, 1942.

