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Lecture 10: Reductions, Asymptotic Sum Ineq, Laser Method

Instructor: Josh Alman Scribe notes by: Ziyao Zhang, Yun Lu

Disclaimer: This draft may be incomplete or have errors. Consult the course webpage for the most

up-to-date version.

1 Reductions Between Tensors

We introduce three types of reductions between tensors. Let A,B be tensors. These three reductions will

satisfy that if A “≥” B, then R(A) ≥ R(B) or R(A) ≥ R(B).

1.1 Zeroing Out

We say B can be zeroing out from A, denoted by A ≥zo B, if we can get from A to B by setting some

variables in A to 0.

Example.

A = x0y0z0 + x0y0z1,

B = x0y0z0.

We can get from A to B by setting z1 to 0.

Rank. If A ≥zo B, then R(A) ≥ R(B). This is because a rank-one tensor is still a rank-one tensor after

setting some variables to zero. So zeroing out could only decrease the rank.

1.2 Restriction

Suppose A is over variables X,Y, Z and B is over variables X ′, Y ′, Z ′. We say B is a restriction of A,

denoted by A ≥ B, if there are linear maps

MX : FX → FX
′
,

MY : FY → FY
′
,

MZ : FZ → FZ
′

such that if

A =
∑

x∈X,y∈Y,z∈Z
A[x, y, z] · xyz
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where A[x, y, z] denotes the coefficient, then

B =
∑

x∈X,y∈Y,z∈Z
A[x, y, z] · MX(x)MY (y)MZ(z).

Example.

A = x1y1z1,

B = x1y1z1 + x1y1z2,

MX = MY = I,

MZ(z1) = z1 + z2.

Here I denote the identity map. We can see that A ≥MX(x1)MY (y1)MZ(z1) = x1y1(z1 + z2) = B.

Rank. If A ≥ B, then R(A) ≥ R(B). This is because a rank-one tensor is the product of three linear

combinations of X,Y, Z respectively, and after combining with the linear maps MX ,MY ,MZ , it is still a

product of three linear combinations.

Proposition 1. R(T ) ≤ r if and only if T is a restriction of 〈r〉, where 〈r〉 denotes the size-r diagonal

tensor:

〈r〉 =
r∑
i=1

xiyizi.

Proof. “if”: If T ≤ 〈r〉, from the previous claim we have R(T ) ≤ R(〈r〉) = r.

“only if”: This follows by the definition. Recall that any rank-one tensor can be represented as

(
∑

i αixi)(
∑

i βyi)(
∑

i γizi), so it is always a restriction of a single monomial x1y1z1.

1.3 Monomial Degeneration

Suppose A is over variables X,Y, Z. We say B is a monomial degeneration of A, denoted by A.mdB, if

there is a map that sends variables in A to a single variable ε:

m : X ∪ Y ∪ Z → {εh | h ∈ Z}

such that for ∀x ∈ X, y ∈ Y, z ∈ Z,

1) If B[x, y, z] 6= 0, then B[x, y, z] = A[x, y, z] and m(x)m(y)m(z) = 1.

2) If B[x, y, z] = 0, then m(x)m(y)m(z) = εh for some h > 0.

Example.

A = x0y1z1 + x1y0z1 + x1y1z0 + x0y0z0,

B = x0y1z1 + x1y0z1 + x1y1z0,

m(x0) = m(y0) = ε,

m(x1) = m(y1) = 1,

m(z0) = 1,m(z1) = 1/ε.
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Then m(x0)m(y0)m(z0) = ε2, and other terms get 1.

Rank. If A.mdB, then R(A) ≥ R(B). This follows from the definition of border rank.

Monomial degeneration is useful for proving border rank upper bounds. In the example above,

R(A) = 2, R(B) = 3, but R(B) ≤ 2.

1.4 Extra: Degeneration

This type of reduction is a combination of restriction and monomial degeneration. We use A.B to denote

that B is a degeneration of A. Similar to restriction, there are linear maps MX ,MY ,MZ . The difference

is that

MX : FX → F[ε, 1/ε]X
′
,

where F[ε, 1/ε] denotes polynomials over ε and 1/ε. An example of the linear map is MX(x1) = εx1+ 1
εx2.

Rank. If A.B, then R(A) ≥ R(B).

2 Asymptotic Sum Inequality

See Section 2 (Disjoint Sum Identity) of Handout 2. We have

R(〈4, 1, 4〉 ⊕ 〈1, 9, 1〉) ≤ 17, (1)

where ⊕ denotes the disjoint sum, which is the sum of two tensors that do not share any variable. This

is a surprising result because R(〈4, 1, 4〉) = 16 and R(〈1, 9, 1〉) = 9, but the border rank of their direct

sum is much smaller than 16 + 9!

To make use of Eq. (1) which bounds the border rank of a direct sum, we use the following theorem

by Schönhage [Sch81].

Theorem 2 (Asymptotic Sum Inequality). If R(
⊕p

i=1 〈ki,mi, ni〉) ≤ r, then
∑p

i=1(ki ·mi · ni)ω/3 ≤ r.

As a sanity check, when p = 1 we have (kmn)ω/3 ≤ R(〈k,m, n〉), which is proved last time.

Using this theorem and Eq. (1), we have

16ω/3 + 9ω/3 ≤ 17 =⇒ ω ≤ 2.55.

To prove this theorem - a more general case, we first prove a lemma, which considers the case where

all ki’s are equal, all mi’s are equal and all ni’s are equal.

Lemma 3. If R(f � 〈k,m, n〉) ≤ g, then ω ≤ 3 · log dg/fe
log (kmn) .

Here f � 〈k,m, n〉 denotes the disjoint sum of f many copies of tensor 〈k,m, n〉, i.e.
⊕f

i=1 〈k,m, n〉.
Notice that f � 〈k,m, n〉 = 〈f〉 ⊗ 〈k,m, n〉. (Recall that 〈f〉 :=

∑f
i=1 xiyizi.)

Be patient. To prove this lemma, we need to prove a claim.

Claim 4. If R(f � 〈k,m, n〉) ≤ g, then R(f � 〈ks,ms, ns〉) ≤ dg/fes · f for any positive integer s.
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Proof. We prove by induction on s. When s = 1, it is exactly the condition. In the induction step,

f �
〈
ks+1,ms+1, ns+1

〉
= 〈f〉 ⊗

〈
ks+1,ms+1, ns+1

〉
= 〈f〉 ⊗ 〈k,m, n〉 ⊗ 〈ks,ms, ns〉
≤ 〈g〉 ⊗ 〈ks,ms, ns〉
= g � 〈ks,ms, ns〉 .

The second last step is due to the fact that 〈f〉⊗ 〈k,m, n〉 has rank at most g, so it is a restriction of 〈g〉.
Therefore,

R(f �
〈
ks+1,ms+1, ns+1

〉
) ≤ R(g � 〈ks,ms, ns〉)
≤ R(dg/fe · f � 〈ks,ms, ns〉)
≤ dg/fe · dg/fes · f
= dg/fes+1 · f.

Now we can prove the lemma.

Proof of Lemma 3. If R(f � 〈k,m, n〉) ≤ g, using Claim 4 we have

R(〈ks,ms, ns〉) ≤ R(f � 〈ks,ms, ns〉)

≤ d g
f
es · f.

Then we have

ω ≤ 3 ·
log(d gf e

s · f)

log((kmn)s)
= 3 ·

s · log d gf e+ log f

s · log(kmn)

−→ ω ≤ 3 · log dg/fe
log(kmn)

As s tends to be very large, log f becomes insignificant

Then we can prove the theorem.

Proof of Theorem 2. Let tensor T =
⊕p

i=1〈ki,mi, ni〉. Taking its s-th Kronecker power,

T⊗s =
⊕

a1+···+ap=s

(
s

a1, · · · , ap

)
�

〈
p∏
i=1

kaii ,

p∏
i=1

mai
i ,

p∏
i=1

naii

〉
.

In particular, for any choice of a1, · · · , ap, we can zero out everything else to get just(
s

a1, · · · , ap

)
�

〈
p∏
i=1

kaii ,

p∏
i=1

mai
i ,

p∏
i=1

naii

〉

That means, by our assumption, R(
(

s
a1,··· ,ap

)
� 〈
∏p
i=1 k

ai
i ,
∏p
i=1m

ai
i ,
∏p
i=1 n

ai
i 〉) ≤ R(T⊗s) ≤ rs. And

similar to what we proved in the last lecture, we have
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R

((
s

a1, · · · , ap

)
�

〈
p∏
i=1

kaii ,

p∏
i=1

mai
i ,

p∏
i=1

naii

〉)
= R(T⊗s) ≤ rs · p(s),

where p(s) is some polynomial of s. Then we can apply Lemma 3 to get a specific bound on ω:(
s

a1, · · · , ap

)
·
( p∏
i=1

(ki ·mi · ni)ai
)ω

3 ≤ rs · p(s) (2)

Now we sum it over all the possible choices of ai’s, so to show the average of these values are high.

Then by binomial theorem,

∑
a1+···+ap=s

(
s

a1, · · · , ap

)
·
p∏
i=1

(ki ·mi · ni)ai·
ω
3 =

( p∑
i=1

(ki ·mi · ni)
ω
3

)s
.

Pick a1, · · · , ap that maximize the term, then we have(
s

a1, · · · , ap

)
·
p∏
i=1

(ki ·mi · ni)ai·
ω
3 ≥

(
∑p

i=1(ki ·mi · ni)
ω
3 )s(

p+s−1
p−1

) . (3)

Note that
(
p+s−1
p−1

)
is the number of choices of a1, · · · , ap that sums to s, and it is a polynomial of s

with degree p. Combining Eq. (2) and (3) and take s→∞, we get
∑p

i=1(ki ·mi · ni)ω/3 ≤ r.

3 Strassen’s Tensor and Laser Method

After proving ω ≤ 2.55, people conjectured that ω = 2.5. This was disproved by Strassen, who showed

that ω ≤ 2.48 [Str87].

Strassen’s tensor. Strassen’s tensor is defined as

Str =

q∑
i=1

(xiy0zi + x0yizi).

Note that Str = 〈q, 1, 1〉+ 〈1, q, 1〉 (not direct sum). Strassen proved that

R(Str) ≤ q + 1,

which is much smaller than 2q. See Handout 2 for proof.

We cannot directly apply the asymptotic sum inequality since Strassen’s tensor has sum instead of

direct sum, i.e., the two tensors share variables. To deal with this, Strassen developed a technique called

the laser method.

Laser Method. Strassen observed that the tensor Str has an outer structure and an inner structure.

Let X = {x0, · · · , xq}, Y = {y0, · · · , yq}, Z = {z1, · · · , zq}, so that Str is a tensor over X,Y, Z. Define

X0 = {x0}, X1 = {x1, · · · , xq}. Similarly define Y0 and Y1. Note that X0 ∪X1 = X and Y0 ∪ Y1 = Y .
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Define Z1 = Z. The inner structure are defined as the set of tensors Strijk = Str|Xi,Yj ,Zk
, e.g.,

Str011 = Str|X0,Y1,Z1 =

q∑
i=1

x0yizi = 〈1, 1, q〉.

It’s easy to see the only two non-zero tensors are Str011 = 〈1, 1, q〉 and Str101 = 〈q, 1, 1〉, and they both

have volume q. (The volume is defined as Vol(〈k,m, n〉) := kmn.)

The outer structure is defined as a tensor T over {0, 1}, {0, 1}, and {1} such that T [i, j, k] = 1 if

Strijk 6= 0 and T [i, j, k] = 0 otherwise. It’s easy to see that

T = x0y1z1 + x1y0z1 = 〈1, 2, 1〉.

We use “ ⊗ ” to denote the operation that combines the outer structure with the inner structure:

Str = 〈1, 2, 1〉“⊗ ”{〈1, 1, q〉, 〈q, 1, 1〉}. Strassen makes the tensor Str symmetric. After permutations on

x, y, z, we get the following two tensors which also have border rank ≤ q + 1:

Str′ = 〈1, 1, 2〉“⊗ ”{〈q, 1, 1〉, 〈1, q, 1〉},
Str′′ = 〈2, 1, 1〉“⊗ ”{〈1, q, 1〉, 〈1, 1, q〉}.

We leave it to the readers to check that the “⊗ ” operation satisfies that for tensors T, T ′ and sets S, S′

(T“⊗ ”S)⊗ (T ′“⊗ ”S′) = (T ⊗ T ′)“⊗ ”(S ⊗ S′), where S ⊗ S′ := {a⊗ a′ | a ∈ S, a′ ∈ S′}. Thus, after

taking the Kronecker product of the three Strassen vectors, we get

Str ⊗ Str′ ⊗ Str′′ = 〈2, 2, 2〉“⊗ ”Vol(q3),

where with an abuse of notation we use Vol(q3) to denote a set of tensors with volume q3. Since R(Str⊗
Str′ ⊗ Str′′) ≤ (q + 1)3, taking the s-th Kronecker product of this tensor, we get

R(〈2s, 2s, 2s〉“⊗ ”Vol(q3s)) ≤ (q + 1)3s. (4)

We then show that the tensor 〈2, 2, 2〉“ ⊗ ”Vol(q3) can be reduced to a direct sum using monomial

degeneration. We first prove the following proposition.

Proposition 5. 〈n, n, n〉�md

〈
3
4n

2
〉
.

Proof. What we want to do is to take the 〈n, n, n〉 tensor and multiply each variable by a power of ε.

For simplicity assume that n is odd and we write n = 2m + 1. The proof for even n is similar. Then

〈n, n, n〉 =
∑m

i=−m
∑m

j=−m
∑m

k=−m xikykjzij . We multiply xik by εi
2+2ik, ykj by εk

2+2kj and zij by εk
2+2ij .

Then the tensor 〈n, n, n〉 becomes

m∑
i,j,k=−m

ε(i+j+k)
2
xikykjzij .md

m∑
i,j,k=−m

s.t. i+j+k=0

xikykjzij

≥ 〈3
4
n2〉,

where the last step follows by observing that after fixing any i and j, k is uniquely determined by
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i+ j + k = 0, so the tensors xikykjzij do not share variables under the constraint i+ j + k = 0.

This monomial degeneration implies that 〈2s, 2s, 2s〉 .md 〈3422s〉. In fact, applying the same power of

ε of the proposition to the inner tensors of 〈2s, 2s, 2s〉“ ⊗ ”Vol(q3s), we can reduce it to a direct sum of
3
4(22s) number of volume-q3s tensors. (For more details see e.g. Section 8 of [Blä13].) Thus using the

asymptotic sum inequality (Theorem 2) we have

R(〈2s, 2s, 2s〉“⊗ ”Vol(q3s)) ≥ 3

4
(22s) · (q3s)ω/3. (5)

Combining Eq. (4) and (5), we have

3

4
(22s)(q3s)ω/3 ≤ (q + 1)3s.

Then we take q = 5 and s→∞, and we get ω ≤ 2.48.
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