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This work’s questions! tl;dr answers

Do ELMo and BERT encode English dependency
trees in their contextual representations?

We provide evidence for yes, approximately!

How do we ask whether vector representations
encode trees?

By structural probes: look at the geometry! A
hypothesis for syntax in word representations.
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Related work: what does my unsupervised
neural network learn about language?

Probing: train a simple model to extract linguistic properties from vector
representations. But hard to ask about whole trees!

Part-of-speech!

The chef made five pizzas
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Partial dependency info!

The chef made five pizzas
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Outline
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Are vector spaces and trees reconcilable?

Are vector space representations in NLP reconcilable with the discrete
(syntactic) tree structures hypothesized in language?
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Distance metrics unify trees and vectors

An undirected tree defines a distance metric on pairs of words, the path metric:
the number of edges in the path between the words.
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Distance metrics unify trees and vectors

An undirected tree defines a distance metric on pairs of words, the path metric:
the number of edges in the path between the words.

closé The chef dpan = 1
/_\was .
chef
The ran far out chef ran dpath =1
who o of chef Was dpath =1
store food .
the was store  dpun=4

The edges of the tree can be recovered by looking at all distance=1 pairs.

[For more fun, see Deza and Laurent. A Geometry of Cuts and Metrics. Springer. 2009



Norms unify edge directions and vectors

A rooted tree defines a norm on the words, the parse depth:
the number of edges from each word to ROOT.
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Norms unify edge directions and vectors

A rooted tree defines a norm on the words, the parse depth:
the number of edges from each word to ROOT.
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Norms unify edge directions and vectors

A rooted tree defines a norm on the words, the parse depth:
the number of edges from each word to ROOT.
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Finding trees in vector spaces

We don't expect all dimensions of the
QUt vector space to encode syntax -- NNs
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Finding trees in vector spaces

In the transformed space,
store QUt (squared) L2 distance
the - approximates tree distance.
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Finding trees in vector spaces

In the transformed space,

ctore out (squared) L2 distance
the - approximates tree distance.
: chef 7 - .
S . fQOd dpatn(iJ) : Tree path distance
: I1B(h,- h )|I5 : Squared Vector space
B distance (|lh;-h |5
t o was store
O of
;¢ S was chef
who /wa's
Th e was store
was chef




Finding trees in vector spaces

With this property, a minimum
<tore out spanning tree in the vector
the space distance recovers the tree.
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Finding trees in vector spaces

With this property, a minimum
<tore out spanning tree in the vector
the space distance recovers the tree.

;i chef /
¢ food

L)

J was
ran ¢ chef

D

out
who

. store food
6 S f i the
: : - Ol

who 7 ¢
/was

The



Does BERT encode undirected parse trees
-> does there exist a distance transformation?
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Does BERT encode edge directions
-> does there exist a depth transformation?
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Does BERT encode edge directions
-> does there exist a depth transformation?
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experiments & results

Evaluating ELMo, BERT, and baselines
Training structural probes on PTB train, evaluating on test.

Evaluate by comparing structural probe minimum
spanning trees to human-annotated parse trees.



Trees aren't well-encoded in baselines
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But they are in trained representations!
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Trees from structural probe parse distances
approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree
Teal (below sentence): Minimum spanning tree, structural probe on BERT
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Trees from structural probe parse distances
approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree
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Trees on baseline representations don't
approximate gold trees well!

Black (above sentence): Human-annotated parse tree
Purple (below sentence): MST, structural probe on random-weights BiLSTM
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Trees on baseline representations don't
approximate gold trees well!

Black (above sentence): Human-annotated parse tree
Purple (below sentence): MST, structural probe on random-weights BiLSTM
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Predicted depths on BERT + ELMo

reconstruct parse depths well
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Predicted depths on BERT + ELMo

reconstruct parse depths well
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Predicted depths on BERT + ELMo

reconstruct parse depths well
grey circle: gold parse depth
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Not just for language

The structural probe method has since been used to find
evolutionary trees in unsupervised representations of proteins!

Have a continuous space and
wondering if discrete structures are
embedded in it?

Try finding their distance metrics via a
structural probe!

o

Transformer (trained) [Rives et al., 2019]

Nodes are representations of protein
families; distances are evolutionary history
tree distances



Summary, Musings, & Limitations
Structural probes show ELMo and BERT encode a surprising amount of syntax!

Structural probes give us intuitions about the geometric properties of contextual
word representations, like we've had for word2vec and GloVe.

All probes use supervision, and we should be careful what fine-grained syntactic
conclusions we makel!

See Saphra and Lopez (2019) and Lakretz et al. (2019) for complementary methods!

The code is super ready for you to jump in!

https.~/github.com/john-hewitt/structural-probes
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