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Overview Syntax
semantics

An emerging body of NLP work asks /
“Does my neural network implicitly learn task Y?"

If @ neural network hasn't learned some task,
our methods shouldn’t tell us it has.

(Avoid false positives -- This is hard!)
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Probing: supervised analysis of representations

Does my network make task (e.g., part-of-speech) labels accessible?

Choose a function family
to decode the task. (e.g., linear)

The chef made five pizzas

Train a function
representations --> task

Interpret accuracy
on held-out data DT NN VBD JJ NNS

[Shi et al., 2016, Peters et al., 2018, Tenney et al., 2019, Liu et al, 2019, Hewitt and Manning 2019, Kim et al,, 2019..]
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Should we give credit to the representation?
(and/or) the probe and the task supervision?
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3. Can the probe confounder problem affect probing
conclusions in practice?
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Probing: Does ELMo learn part-of-speech?

Train and test probes on ELMo representations on the Penn Treebank

Representation —

Probe family 'MLP 1000-dim

Task ' part-of-speech

Test Accuracy 97.3

Probe achieves high accuracy!

Does the accuracy faithfully reflect the extent to which ELMo has
learned part-of-speech tagging?
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Defining control tasks for linguistic tasks

1. Look at task output space. e.g., 45 parts-of-speech.
2. Randomly partition vocabulary into 45 categories

Category1 Category2 Category3 Category4s
house, pizza, IS, quiet,

eat, the, as, et people,

3. Deterministically label sentences in a corpus by looking up
category for each word

the house is quiet as the people eat pizza
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Train and test probes on ELMo representations on the Penn Treebank

Representation

Probe family

Task

Test Accuracy 92.8 71.2

MLP probe: high accuracy on control tasks; does not reflect representation!

Linear probe: lower accuracy on control tasks
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Selectivity for interpreting probing results

Idea: get a rough measure of how linguistic task accuracy
may derive from probe expressivity and supervision.

We define selectivity as a probe’s
accuracy on the linguistic task minus its
accuracy on the control task
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Probing part-of-speech vs control task

Can control tasks and selectivity help put probing accuracies in context?

Representation

Probe family

Task

Test Accuracy 92.8 97.3 71.2 97.2
Selectivity 4.5 26.0

Probes with similar linguistic task accuracy may have very
different selectivity



Question 2
How does the design of probes affect probing results?

Designing for good linguistic task generalization
does not necessarily lead to selective probes
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Designing probes with control tasks

with tiny hidden state

Original MLP Probe  with Dropout=0.4 (no dropout)

Test Accuracy 02.8 97.3 93.4 97.5 80.6 97.2
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Designing probes with control tasks

Original MLP Probe with Dropout-=0.4 with :r':;y dr:'f;:t:‘tf tate

Representation

Probe family

Task

Test Accuracy 02.8 97.3 93.4 97.5 80.6 97.2
Selectivity 4.5 4.1 16.6

Simply regularizing — to minimize generalization gap — doesn't
necessarily lead to selectivity!



Question 3

Can the probe confounder problem affect probing
conclusions in practice?

Yes — probes may be picking up on spurious signals
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Re-examining probes on ELMo's layers

Is ELMo1 better at part-of-speech than ELMo2?

Representation
Probe family

Task

Test Accuracy

Selectivity

71.2

97.2

26.0

65.2 96.6
314

ELMo1 part-of-speech gains over ELMo2 may be explained
by easier access to a spurious signal: word identity
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Limitations

Our control tasks only use word identity; there are many
possible spurious signals in probing

Selectivity builds intuition but does not permit
fine-grained claims, like "my model got this selectivity, so
It learned the task’
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